條料清潔機推料機構設計
條料清潔機推料機構設計,條料清潔機推料機構設計,清潔,機推料,機構,設計
紫瑯職業(yè)技術學院
畢業(yè)設計任務書
系 部
機電工程
專業(yè)班級
學生姓名
指導教師
論文題目
條料清潔機推料機構設計
畢業(yè)設計(論文)的目的
1、撰寫畢業(yè)論文是在校大學生最后一次知識的全面檢驗,是對學生基本知識、基本理論和基本技能掌握與提高程度的一次總測試。
2、通過撰寫畢業(yè)論文讓學生不斷了解自動化機械的發(fā)展,并針對目前自動化機械的發(fā)展趨勢從而分析在工業(yè)的運用。
3、通過撰寫畢業(yè)論文,可以使學生掌握自動化機械的重要性以,并學習并掌握自動化機械的工作原理以及診斷與檢修方法。
畢業(yè)設計(論文)要求
1)帶著課題進行社會實踐并收集自動化機械的運用的相關資料。
2)掌握自動化機械的運用及各部件的控制原理與檢測方法。
3)論文要求思路清晰,重點突出,圖文并茂,舉例恰當。
4)認真查閱資料,收集的數(shù)據(jù)資料要求具體、真實、詳細。
5)認真對待畢業(yè)論文撰寫,內(nèi)容要有自己的觀點。
6)獨立完成畢業(yè)論文。
畢業(yè)設計(論文)進度安排
2011年11月中旬—12月上旬 依照任務書閱讀文獻,收集資料準備草案
2011年12月上旬—12月中旬 確定方案,編寫設計開題報告,并交老師審核
2011年12月中旬—2012年3月中旬 完成初稿,交老師審核。
2012年3月中旬—4月下旬 完成二稿,交老師審核
2012年4月下旬—5月下旬 定稿并提交畢業(yè)設計相關資料,準備答辯
2012年6月2日—6月3日 答辯
紫瑯職業(yè)技術學院
2012屆模具設計與制造專業(yè)畢業(yè)設計開題報告
姓名
系部
機電系
專業(yè)
模具設計與制造
班級
題目
條料清潔機推料機構設計
一、選題背景、目的及意義
自動化技術廣泛用于工業(yè)、農(nóng)業(yè)、軍事、科學研究、交通運輸、商業(yè)、醫(yī)療、服務和家庭等方面。采用自動化技術不僅可以把人從繁重的體力勞動、部分腦力勞動以及惡劣、危險的工作環(huán)境中解放出來,而且能擴展人的器官功能,極大地提高勞動生產(chǎn)率,增強人類認識世界和改造世界的能力。
二、主要內(nèi)容及提綱 (需緊密結合論題,提綱中應包含一級和二級目錄
1、緒論
2、條料清潔機介紹
2.1全自動條料清潔機特點及外觀
2.2設備功能介紹
2.3清潔操作程序
2.4程序
2.5工作原理示意圖
2.6機臺各機構說明
2.7設備規(guī)格
3、推料機構設計
3.1氣壓源選用條件
3.2汽缸相關計算資料及換算表
3.3汽缸選擇
3.4汽缸出力計算
3.5推料機構零件設計
3.6推料機構示意圖
致 謝
參考文獻
三、主要方法和措施
查閱相關圖書文獻,利用網(wǎng)絡搜集相關資料,結合所學基本機械設計知識,通過對工件的分析以及零件結構特點的分析與計算出本設計
四、主要參考文獻
[1] 姜勇,李善鋒,郭華 .AutoCAD2008中文版機械設計.北京:人民郵電出版
[2] 李澄,吳天生,聞百橋 .機械制圖 .北京:高等教育出版社,1997
[3] 張運波.電氣控制技術.北京.高等教育出版社:2006
五、畢業(yè)設計推進計劃
2011年11月中旬—12月上旬 依照任務書閱讀文獻,收集資料準備草案
2011年12月上旬—12月中旬 確定方案,編寫設計開題報告,并交老師審核
2011年12月中旬—2012年3月中旬 完成初稿,交老師審核。
2012年3月中旬—4月下旬 完成二稿,交老師審核
2012年4月下旬—5月下旬 定稿并提交畢業(yè)設計相關資料,準備答辯
2012年6月2日—6月3日 答辯
學生簽名: 年 月 日
指導教師意見(對選題的有效性、研究方法的正確性、課題的廣度、深度的意見及開題是否通過):
通過( ) 修改后通過 ( ) 未通過 ( )
指導教師簽名: 年 月 日
注:開題報告裝訂在畢業(yè)設計任務書后
開題是否通過請指導教師在括號內(nèi)打“ √”
紫瑯職業(yè)技術學院
畢業(yè)設計
題 目:
條料清潔機推料機構設計
副 標 題:
學 生 姓 名:
所在系、專業(yè):
機電工程系、模具設計與制造
班 級:
指 導 教 師:
日 期:
I
目 錄
目 錄
目 錄 I
1、緒論 1
2、條料清潔機介紹 1
2.1全自動條料清潔機特點及外觀 1
2.2設備功能介紹 1
2.3清潔操作程序 2
2.4程序 2
2.5工作原理示意圖 3
2.6機臺各機構說明 4
2.7設備規(guī)格 5
3、推料機構設計 5
3.1氣壓源選用條件 5
3.2汽缸相關計算資料及換算表 6
3.3汽缸選擇 7
3.4汽缸出力計算 8
3.5推料機構零件設計 8
3.6推料機構示意圖 9
致 謝 10
參考文獻 11
I
條料清潔機推料機構設計
1、緒論
自動化技術廣泛用于工業(yè)、農(nóng)業(yè)、軍事、科學研究、交通運輸、商業(yè)、醫(yī)療、服務和家庭等方面。采用自動化技術不僅可以把人從繁重的體力勞動、部分腦力勞動以及惡劣、危險的工作環(huán)境中解放出來,而且能擴展人的器官功能,極大地提高勞動生產(chǎn)率,增強人類認識世界和改造世界的能力。
本文主要介紹條料清潔機此種自動化設備的作用以及其中一個機構的設計。
2、條料清潔機介紹
2.1全自動條料清潔機特點及外觀
SBT Cleaner-SCM A10 全自動條料清潔機
此針對條料清潔需求設計之全自動條料清潔機,采用Strip by strip之清潔方式,具有清潔效果好之特點,易操作,低故障,改機快之特點。適合高Particle要求之產(chǎn)品使用。例如: CU wireproduction line , CCD sensor Line.
可一次放入3個料盒,機臺自動從料盒中逐一取出條料進行清潔,完成清潔之條料再送出至
2.2設備功能介紹
SCM A10 是專用于料條清潔的機器系統(tǒng), 由Input Magazine取出料條, 以Strip 方式逐一做清潔, 比較於整個料盒之清潔方式, 具有更佳之清潔效果。
利用Air +釋放離子藉以中和靜電之方式進行料條表面之Particle移除, 另外由集塵系統(tǒng)蒐集Particle 避免二次污染達成清潔之功能。
此機臺具有 吹風壓力可調(diào), 吹風時間可調(diào)之功能。依清潔效果及產(chǎn)能之需求去調(diào)整。
具有如下基本功能
一.具有觸控之人機界面,所有設定均在人機界面中做設定及修改
二.可依實際之清潔需求去設定條料條料于清潔區(qū)之清潔時間
三.條料傳送功能
四.改機方便,適用各種類型之條料清潔
五.相關安全防護罩及緊急停止按鈕設計
2.3清潔操作程序
1.於入料input處放入需要清潔的料
盒,出料口放入空料盒,
2.按開始鈕即開始清潔, 機器自Input
料盒取出要清潔的材料, 送入清潔區(qū)
開始清潔, 清潔完畢后將材料送出至
出料盒中.
3. 繼續(xù)下一條清潔, 直至全數(shù)清潔完
成
PS: 可依需求控制如下清潔條件
1. 可設定清潔的時間
2. 可以調(diào)節(jié)吹風的風力
2.4程序
2.4.1 Leadframe Cleaning Machine動作程序:
2.4.2 《離子風》路徑:
吹氣裝置具備離子槍功能, 在出風做清潔的同時會產(chǎn)生正負離子, 因許多
Particle 因靜電關係吸附在材料表面, 使用Air + 離子方式藉以中和材料本身
的靜電, 達到Particle 移除的動作, 另一側則以抽風裝置將Particle順利吸。
2.5工作原理示意圖
2.6機臺各機構說明
機構名稱
功能
A.待除塵物料匣
人員將待清潔的Leadframe,依序放入料匣內(nèi)無聊匣會自動上升到位。
B.入料推桿
將Leadframe推至輸送帶上。
C.防飛滾輪
防止Leadframe被離子風槍吹起。
D.負壓廢氣回吸裝置
將離子風槍吹起的Particle回抽,防止二次污染。
E.離子風槍
產(chǎn)生離子風清潔Leadframe。
F.已除塵物料匣
將已清潔的Leadframe,依序收入料匣內(nèi)。
G.收料拉桿
將Leadframe拉至收料匣中。
H.輸送機構
運送Leadframe至離子風槍處清潔。
2.7設備規(guī)格
2.7.1 SCM A10 真空吹風料條清潔系統(tǒng)包括:
主要規(guī)格:
適合料框: (W)max 100mm(L)max 300mm
適合條料:(L)240mm*(W)74mm
適合料盒高度: max 200mm
料盒數(shù)量: 可放置3個料盒
產(chǎn)品更換時間: 20分鐘
系統(tǒng)控制: PLC +DELTA 人機介面
三節(jié)顯示燈(紅黃綠)
電源要求: AC1P, 220V ,50/60Hz,16A
氣源要求: 5 Bar
2.7.2 機臺主要組成部分
料盒進料區(qū)
料盒進料傳送軌道
吹氣式清潔區(qū)及集塵設備
料盒出料區(qū)
離子風槍裝置
抽氣馬達及過濾裝置一套
機臺本體及隔音罩一套
控制器系統(tǒng)及操作面板
OPTION:條碼系統(tǒng) BAR Code Reader System.
3、推料機構設計
3.1氣壓源選用條件
3.1.1壓縮機的選擇
空氣壓縮機是將大氣經(jīng)由壓縮機的壓縮變成有壓力的氣體(空氣),氣壓系統(tǒng)所用的壓縮機之形式及大小,主要由該系統(tǒng)的空氣消費量及工作壓力而定。除上述之外的經(jīng)濟因素也是選擇的要點,在空氣用量不大的環(huán)境可使用往復式壓縮機最便宜。
1-1 空氣壓縮機之輸出量
指空氣壓縮機輸出壓縮空氣之體積,規(guī)定輸出量有兩個不同之方法
(1)理論輸出量
(2)有效輸出量
理論輸出量等于位移體積與回轉數(shù)之乘積。
有效輸出量則依壓縮機的種類不同而有所區(qū)別,一般使用者只用到有效輸出量,因為有效輸出量是最直接用在傳動及控制氣壓設備,輸出量以Nm3/分或Nm3/小時為單位。
1-2 壓力
一般分為工作壓力及操作壓力,工作壓力是壓縮機出口后說有設備使用者管路內(nèi)的壓力。操作壓力為在工作時所需之壓力。一般操作壓力為6kg/cm2 ,各氣壓元件可按照此壓力設計。
3.2汽缸相關計算資料及換算表
3.2.1汽缸出力計算式
F=P*A-f
F:汽缸出力(kgf) A:截面積(cm2)
P:使用壓力(kgf/cm2) f:摩擦阻力(kgf)一般不計
3.2.2汽缸理論出力表
3.2.3汽缸規(guī)格及行程
3.3汽缸選擇
由于適用條料長度為240mm,且以實際安裝情況為依據(jù),現(xiàn)選擇缸徑40mm,軸徑16mm,行程70mm的汽缸。
汽缸示意圖:
3.4汽缸出力計算
公式:F=P*A-f
現(xiàn)所選用缸徑40mm,軸徑16mm,行程70mm的汽缸
由汽缸理論出力表得:
P=12.6
A=12.5
f:汽缸內(nèi)部活塞與缸內(nèi)壁有油膜層封閉,所以摩擦力輕微,接近于零,一般不計
所以:F=P*A
=12.6*12.5
=157.5(kgf)
所以所選汽缸出力為157.5kgf。
3.5推料機構零件設計
3.5.1推料機構設計目的
推料機構在整臺條料清潔機中起到把未清潔的條料從料盒中推出至輸送帶上,以便進行靜電清潔的目的。考慮到需節(jié)約成本,所以使用汽缸來做前后移動地推送動作。此機構現(xiàn)需整個懸空固定于入料平臺上,所以整體機構需減輕重量,其中零件基本使用AL6061來加工。其上需安裝光電,偵測條料推出時是否有卡料,以保護條料不會損壞。
3.5.2入料推入部件01
此零件用來橫向固定上文所述所選汽缸,所以螺紋孔需按汽缸固定孔距離確定,距離為45.5mm。并且考慮到客人產(chǎn)品的長度變化,所以固定孔需增多,每隔10mm打一對固定空,考慮到加工件大小及客人產(chǎn)品大小,現(xiàn)增加7組固定孔。為減輕零件重量,此零件為鋁件。
3.5.3入料推入部件02
此零件需固定在汽缸推板上,且需要足夠的穩(wěn)定性以支撐余下安裝其上的工件。為了使直線軸承能穩(wěn)定固定且考慮維修更換方便,軸承固定孔與直線軸承使用過度配合,并用扣環(huán)鎖住。開孔位置應考慮余下加工件需與汽缸有一定的避空距離。現(xiàn)選取外徑為10mm,內(nèi)徑為5mm的直線軸承,所以打直徑10mm通孔。
3.5.4入料推入部件03
此零件為活動部件,所以使用材料較少的結構。但零件中間凹槽部分需固定入料推料部件05,所以結構需加寬,以增加強度。
3.5.5入料推入部件04
此零件固定于入料推入部件03上,穿過直線軸承使入料推入部件03固定在入料推入部件02上,使入料推料部件03能前后移動。
3.5.6入料推入部件05
此零件起到推桿的作用,用以把條料從料盒中推出到輸送帶上,現(xiàn)條料與輸送帶之間的距離為45mm,條料長途為240mm,此零件長度為195mm。
3.6推料機構示意圖
9
致 謝
經(jīng)這么久的努力,終于完成了大學三年最后的一項教學任務——畢業(yè)設計。但愿這篇經(jīng)過我的努力以及老師和同學的共同幫助而完成的畢業(yè)論文可以總結我的學業(yè),竭誠地希望它可以作為一份相當?shù)亩Y物,讓我可以將她奉獻給一直關愛我、幫助我和扶持我的人們。
在此,我首先要感謝畢業(yè)實習公司的蘭海老師,在整個設計過程中給予我指導,并且為我的畢業(yè)設計提出了很多寶貴的意見。經(jīng)過老師的悉心指導,這次的設計才能成功的完成。同時也還要感謝所有對我的論文給予過幫助的同學,他們與我共同討論,共同修改,讓我的論文得以更加完善和出色。
衷心地感謝機電系所有給予了我關心和幫助的老師們!正是他們的幫助和教育,讓我學習到了很多,在這三年的大學中充分的提高自己的學識,培養(yǎng)了我的素養(yǎng)。
感謝我的家人!正是因為他們的全力支持才使我得以完成這三年的學業(yè),也因為他們對我無私的付出和深切的關懷,才使我在面臨困難的時候給我前進的動力。
最后,再一次深深地感謝一直以來給予我關心和幫助的父母、老師、同學和朋友,你們的深情厚意讓我難以忘懷,你們的關心和幫助伴隨了我整個大學三年,正因為有你們的關心和幫助,我的大學將劃上圓滿的句號!謝謝!
參考文獻
參考文獻
[1] 姜勇,李善鋒,郭華 .AutoCAD2008中文版機械設計.北京:人民郵電出版
[2] 李澄,吳天生,聞百橋 .機械制圖 .北京:高等教育出版社,1997
[3] 張運波.電氣控制技術.北京.高等教育出版社:2006
2
Journal of Materials Processing Technology 151 (2004) 237241 Recent developments in sheet hydroforming technology S.H. Zhang a, , Z.R. Wang b ,Y.Xu a , Z.T. Wang a , L.X. Zhou a a Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China b School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China Abstract In this paper, recent developments in sheet hydroforming technology are summarized, several key technical problems to be solved for the development of sheet hydroforming technology are analyzed, and varied sheet hydroforming technologies are discussed. Compound deformation by drawing and bulging is the main direction for the development of sheet hydroforming technology, in which it is advantageous to increase the feeding of materials, and the ratio of drawing deformation (drawing in of the blank flange) to bulging, enabling the forming limit of a sheet blank to be increased. It is also advantageous to increase the local deformation capacity for sheet hydroforming, to increase the range of application of the process. Press capacity is one of the important factors restraining the range of applications. As one of the flexible forming technologies that is still under development, it has much potential for innovative applications. Its applications have been increasing remarkably, recently in automotive companies. A breakthrough in the technology will be obtained by the development of novel equipment. A new sheet hydroforming technology using a movable die is proposed in this paper, which has been developed recently by the authors. 2004 Elsevier B.V. All rights reserved. Keywords: Sheet hydroforming; Drawing in; Bulging; Flexible forming; Forming limit 1. Introduction Compared with conventional deep drawing, sheet hydro- forming technology possesses many remarkable advantages, such as a higher drawing ratio, better surface quality, less springback, better dimensional freezing and the capability of forming complicated-shaped sheet metal parts. For exam- ple a multi-pass forming process may be decreased to one pass for the forming parabolic parts. Sheet hydroforming technology has been applied to industries for the forming of automotive panels and aircraft skins 1. It is a soft-tool forming technology and as the development of this technol- ogy is imperfect compared with other rigid forming tech- nologies, there are more extensive demands and space for it to be improved with the development of modern industry. There are many demands for hydrofoming technology for use with some new materials, such as forming of magnesium alloy sheets, composite material sheets and sandwich sheets. Some new hydroforming processes have entered this area, such as viscous pressure forming technology, warm sheet hydroforming, the hydroforming of sheet metal pairs and the hydroforming of tailor-welded blanks. Through long-term Corresponding author. Tel.: +86-24-8397-8266/8721; fax: +86-24-2390-6831. E-mail address: (S.H. Zhang). investigation by the AP namely, the compound deformation of bulging and drawing due to the draw-in of blank flange area (blank feeding of the blank flange area), which compensates the materials for the stretch of the bulging area and avoids excessive thinning resulting from the increase of the blank area, thus assuring material strength and rigidity in the bulging area. It is very diffi- cult to realize the uniform distribution of thinning, the large local deformation of sheet the metal and the increasing of the forming limit of the blank without blank feeding and supplementation. Thus the advantages for the hydroforming of complicated-shaped parts from sheet cannot be revealed fully, although the breakthrough for tube hydroforming has been realized. A tubular component can be hydroformed if dealing with a high-pressure forming process with the simul- taneous feeding of the tube end 3, which increases the tube area and thus reduces little thinning. The requirements for the pressure of the tool in tube hydroforming are small. The internal pressure for the tube is closed and self-restrained, and the closing force involved is small. The material feeding of the tube end can be enforced without difficulty for this technology, compared with the difficulties of the feeding in of the material in hydroforming. As in tube hydroforming, a closing force is required for sheet hydroforming, but a difficulty is that the closing force for sheet hydroforming is far greater than that in tube hydro- forming, and requires a high press tonnage: this is an impor- tant factor restraining the application of sheet hydroforming. The closing pressure can be supplied by a hydraulic press, but the pressure for sheet hydroforming is no limits and not self-restrained. 2.1. Hydroforming with a rubber diaphragm A rubber membrane was employed as the diaphragm of the hydraulic chamber and the blankholder in the early form of sheet hydroforming. This process has been applied to small batch production of automotive panels and aircraft skins (Fig. 1). There are many advantages for this process: better surface quality and the forming of more complicated workpieces. It is suitable for small batch production. How- ever, it also has some disadvantages, such as low process efficiency and the requirement of heavy presses. In addition, it is easy to destroy the rubber membrane and difficult to control wrinkling. 2.2. The hydromechanical deep drawing process and the hydro-rim deep drawing process The hydromechanical deep drawing process has been de- veloped on the basis of rubber membrane hydroforming (Fig. 2(a). The pressure can be produced by the downwards movement of the punch into the fluid chamber, or supplied by a hydraulic system, because a rubber membrane is not used. Thus, it is very easy to obtain hydraulic pressure. The tool device is similar to a conventional tool. All these param- eters lead to high efficiency. The shape of the workpieces may be very complicated, and the drawing ratio may be in- creased, from 1.8 to 2.7, compared with that for conven- tional drawing processes. There are many applications for this process 1315. More local deformation and forming of complicated parts are realized by using this process. Forced feeding is difficult to practice in current sheet hy- droforming processes. To some extent, the radial hydrome- S.H. Zhang et al. / Journal of Materials Processing Technology 151 (2004) 237241 239 Fig. 1. Sheet hydroforming with a rubber membrane: (a) the process; (b) a hydroformed workpiece. chanical deep drawing (hydro-rim) process can realize some forced radial feeding (Fig. 2(b), which can significantly in- crease the forming limit of the sheet metal. According to the research results in 2, the drawing ratio can be increased, from 2.6 to 3.2, compared with that for the common hy- dromechanical deep drawing process. 2.3. Hydroforming of sheet metal pairs A special case is the hydroforming of welded-closing sheet metal pairs (Fig. 3(a). The hydroforming technology of sheet metal pairs was developed by Kleiner et al at. Dort- mund University in the early 1990s 46. In the first scheme the periphery of the sheet metal can be welded using laser welding. Then a liquid medium can be filled between the blanks, and pressurization can be effected by a hydraulic sys- tem. Plastic deformation starts in the blank under the pres- sure and then further deformation occurs sequentially in the zone contacting with the die. However, it is very difficult to realize radial feeding using this method, as it is essentially a pure bulging deformation. The advantage is that the pres- sure is a kind of self-restraining pressure. There is a low re- quirement for the closing force. A stainless steel automotive model was formed with the new press of 100,000 kN with hydroforming technology. To some extent, this technology is similar to tube hydroforming, however, it is very difficult to realize the radial feeding of the blank. Fig. 2. Showing: (a) hydromechanical deep drawing; (b) hydro-rim deep drawing. Another variation was proposed by Dortmund University (Fig. 3(b). The principle is that the tool system is made up of an upper and lower die and an intermediate plate. The intermediate plate can be applied on its own or together with the upper and lower blank, for hydroforming. The pressure pipeline may be connected or disconnected. Generally, the shape of the upper and lower workpieces is symmetrical when the pressure pipeline is connected, whilst the shapes of the upper and lower workpieces are independent when the pressure pipeline is not connected: infact, they may deform separately. This tool is for the realization of the compound deformation of drawing and bulging. 2.4. The compound deformation of drawing and bulging Sheet hydroforming with compound drawing and bulging has been investigated for many years. Since the early 1980s, the theory of hydroforming with draw-in has been studied by Shang at Singapore National University 7. He studied the reasonable match of draw-in and bulging, but it is still in the research stage and has not been applied. 2.5. The dieless integral hydro-bulge forming (IHBF) of spherical shells Another special case is the integral hydro-bulge forming (IHBF) of spherical shells. IHBF is a new dieless forming 240 S.H. Zhang et al. / Journal of Materials Processing Technology 151 (2004) 237241 Fig. 3. The hydroforming of sheet metal pairs with an intermediate plate. technology for sphere-inner-scribing polyhedral shell, that means, all the side inter-sections of the polyhedral shell sides are on the sphere; which was invented by Wang 8 at Harbin Institute of Technology in 1985. It realized the dieless IHBF of flat sheets. In fact, this technology is a pure bulging process as it is impossible to obtain the supplementation of materials. Moreover, it is a non-uniform bulging forming. The hydroforming of single curvature shells and the dieless IHBF of double spherical vessels, oblate spheroid shells, ellipsoidal shells and pairs of pressure vessel heads were developed later, which resulted in the full development of the dieless IHBF technology and secured wide applications. 3. A new sheet hydroforming technology: hydroforming with a movable die A sheet hydroforming technology with a movable female die was proposed by authors in 2001 (see Fig. 4) 11,12. Some hydroformed workpieces of stainless steel and magne- sium alloys are shown in Fig. 5. For sheet hydroforming with a movable die, a combined die is used, which consists of a fixed part and a movable part. As the technology can realize the compound deformation of drawing and bulging, it is suit- able for forming complicated-shaped parts and low-plasticity difficult-to-form materials. That part of the blank in the flange area is drawn in during the process, which may real- ize the compound deformation of deep drawing and bulging. Fig. 5. Some hydroformed workpieces of stainless steel and magnesium alloy. Blankholder plate Movable die Combination die Bolster plate O-ring sealing Blank Dies Fig. 4. Schematic of the new set-up for sheet hydroforming using a movable die. The movable die component keeps in touch with the blank during the early stage. Plastic deformation and then defor- mation of the blank in the die-contacting area take place. The movable die remains in contact with the blank under the friction force, which makes the deformation area spread to the non-contacting area. Preliminary research shows that the thinning of the sheet metal can be alleviated remark- ably if this innovative process is adopted 12 (see Fig. 6). The forming limit of the sheet metal is increased. This pro- cess is suitable for the forming of complicated-shaped parts such as aluminum alloy sheets, as well as low-plasticity and light-weight materials such as aluminum lithium alloy and magnesium alloys. S.H. Zhang et al. / Journal of Materials Processing Technology 151 (2004) 237241 241 Fig. 6. Comparison of the thinning ratio between hydroforming with and without a movable die. It is difficult for the tool to be damaged or worn because of the use of hydraulic pressure, so the tool life is improved. Moreover, it is very easy to modify the product because the blankholder has versatility and the punch is not required to be changed: it is only required to change the die for the form- ing of different parts. It can be shown that this process has many advantages over conventional processes: it makes the dies contact well, which results in better shape, dimensional accuracy, less springback and higher precision, remarkably lower tools cost and obviously shorter production periods for small batch production. This process is especially suit- able for the production of large-scale sheet metal parts with complicated shape, varied size and of small batch. It makes the production of complicated shape parts simple and flex- ible and realizes the quick production of workpieces. It is especially suitable for the development of new products in the aerospace industry and prototypes in the automotive in- dustry. If the deformation methods of conventional tools are adopted, because the production batch is not great, the de- sign cycle is long and the manufacturing cost is high, whilst if the presently described process is adopted, the cost for the tool will be decreased and the production periods and development cycle will be shortened. It is expected to apply this technology to many other area of manufacture, such as the production of prototype workpieces, which may save the cost of development, shorten the development cycle for the development of new models and improve competitive power for the business. 4. Conclusions In this paper, recent developments of sheet hydroforming technology are discussed systematically. With the realization of the compound deformation of drawing and bulging for further development of sheet hydroforming, more draw-in of blank flange (drawing deformation) and more capacity of local deformation, can be achieved. The forming limit of sheet metal can be significantly increased, and a wider range of part shape can be formed. Moreover, the multi-pass form- ing process for conventional complicated sheet parts can be decreased to one or two passes. Thus higher efficiency and lower costs can be achieved, which compensates for the low efficiency of the single pass procedure of hydroforming. The pre-requisite to the application for this process is a large tonnage for the equipment and high automation. The com- pound deformation of drawing and bulging can be realized if hydroforming with movable dies is adopted. Moreover, the distribution of wall thickness can be controlled. Thin- ning can be decreased and the forming limit of sheet metal can be increased. There are wide prospects for this technol- ogy, and the process can meet the developing direction of production requirements. References 1 S.H. Zhang, Developments in hydroforming, J. Mater. Process. Tech- nol. 91 (1991) 236244. 2 S.H. Zhang, J. Danckert, Development of hydromechanical deep drawing, J. Mater. Process. Technol. 83 (1998) 1425. 3 F. Dohmann, Ch. Hartl, Hydroforminga method to manufacture light-weight parts, J. Mater. Process. Technol. 60 (1996) 669676. 4 M. Kleiner, A. Gartzke, R. Kolleck, J. Ramer, T. Weidner, Finite element simulation for high pressure sheet metal forming (HBU process) and tool construction, Adv. Technol. Plast. 2 (1996) 975 983. 5 S. Novotny, P. Hein, Hydroforming of sheet metal pairs from alu- minum alloys, in: Proceedings of the SheMet99, 9 September 1999, pp. 591598. 6 P. Hein, F. Vollertsen, Hydroforming of sheet metal pairs, J. Mater. Process. Technol. 87 (1999) 154164. 7 H.M. Shang, F.S. Chau, C.J. Tay, S.L. Toh, J. Mech. Work. Technol. 13 (1986) 279289. 8 Z.R. Wang, T. Wang, D.C. Kang, S.H. Zhang, Y. Fang, The technol- ogy of the hydro-bulging of whole spherical vessels and experimental analysis, J. Mech. Work. Technol. 18 (1) (1989) 8594. 9 M.W. Fu, S.Q. Lu, M.H. Huang, High-precision sheet metal work- pieces manufactured by using a viscous-plastic pressure-carrying medium, J. Mater. Process. Technol. 62 (1996) 7075. 10 J. Liu, B. Westhoff, M. Ahmetoglu, T. Altan, Application of viscous pressure forming (VPF) to low volume stamping of difficult-to-form alloys, J. Mater. Process. Technol. 59 (1996) 4958. 11 S.H. Zhang, Y. Xu, Z.T. Wang, Sheet hydroforming tools, China Patent ZL01211437.5 (2001). 12 S.H. Zhang,Y. Xu, L.X. Zhou, Z.T. Wang, Computer simulation on sheet hydroforming with a movable female die, in: Proceedings of the NUMISHEET2002, 1525 October 2002, Jeju, Korea, pp. 391397. 13 L.H. Lang, J. Danckert, K.B. Nielsen, S.H. Zhang, D.C. Kang, About sheet hydroforming and hydromechanical deep drawing without draw die, J. Plast. Eng. 9 (4) (2002) 2934. 14 J. Zhao, R. Ma, Latest technology and its development trends in sheet metal forming, Met. Forming Technol. 20 (6) (2002) 14, 9. 15 Y.S. Wu, J.C. Xie, G.A. Hu, Development trends and application of hydroforming in sheet metal, Met. Forming Technol. 20 (4) (2002) 13, 7.
收藏
鏈接地址:http://ioszen.com/article/21040439.html