喜歡就充值下載吧。資源目錄里展示的全都有,下載后全都有,圖紙均為CAD原圖,有疑問(wèn)咨詢QQ:414951605 或1304139763
英文文獻(xiàn)
Discussion on key technology
of mine boom type heavy roadheade
[Abstract]:The paperproposed the key technological issues of the hard rock cutting for themine boom type heavy roadheader. In combined with the research and developmentof the EBZ300TY mine heavy roadheader, the paperdiscussed the technicalmeasuresmade. Accordingto the certain geological conditions of the client, the proposed the alternatives on the rationalmatching of theworking parameters, the cut-ter improvementdesign direction, the selected type cutting head, the stabilization and layout of the roadheader, the development of thekey parts, the orientation position, the face cross sectionmonitoring and others.
[Key words]:mine heavy roadheader; hard rock cutting; key technology
Cantilevered boring machines have made express from 1960s during the 20th century inChina, with continued research, testing and improvement in recent 50 years, the performance of machine has increased: cutting power range from 50kW to 220 kW, from light to heavy-duty models of the more than 20 kinds of products, in the coal mine coal and semi-mechanized coal-rock tunnel boring widely used in China in recent years to meet the basic the rapid development of the coal industry needs. Along with the mine working face size and the continuous improvement of production, the modernization of a large number of million-ton mine-building, especially the construction of new wells in the rock to open up the roadway, on whole-rock boring machine demand increases every year, its technical capabilities and requirements for continuing raised.
The development of cutting power reaches 300 kW, the machine to adapt to the quality of over 100t roadway section 30 ~ 50 m2, cutting of rock uniaxial compressive strength reached 120MPa heavy hard rock boring machine, it is in growing demand and rapid advancement of technology boring machine made under the premise. With the development of the past 50 years compared to the boring machine, it is not a simple local improvement, nor is it a successful model of the past, zoom in or out, boring machine technology but a far-reaching changes in many aspects. This is because some of its key technologies will be applied to other products on the boring machine, boring machine and then bring the whole technology industry. The following boring machine at home and abroad according to the present developments and the development experience of heavy hard rock boring machine for cutting the key technologies are discussed.
Cutting capacity 1
Cutting capacity is heavy hard rock boring machine restricted the use of the most important factor in the development of heavy-duty boring machine at the heart of the level of their ability are usually measured by three indicators, namely, tooth loss cut-off rate (to / m3), production capacity (m3 / h) and cutting energy consumption than the (kW ? h/m3), which cut the rate of tooth loss is more decisive role. Cutting in hard rock boring machine, if the hardness of rock, or grinding teeth of a strong lead to the actual loss rate cut more than 1 / m3, then they would pick as a result of consumption of high cost and frequent replacement of the cutter and machine vibration increased increase in maintenance costs compared with the drilling and blasting method becomes uneconomical. Therefore, heavy boring machine's ability to adapt to cutting hard rock cutting is essential, for this body of work needs to choose the parameters, the type of cutting head and cutting tool, such as an in-depth study.
1 ? 1 operating parameters of a reasonable match with the performance prediction
Cutting in the process, and one of the most important parameter is the most basic cutting thickness (coal cutter rock cutting depth), and the rock cutting nature of the cutting is not suitable thickness will reduce cutting efficiency and Pick of the wear and tear, resulting in more dust. Different cut-off in the rock structure, the formation of different mechanical properties. Because of the specificity of cutting hard rock, hard rock boring machine during the design, user-specific nature of the geological conditions of rock parameters for the selection and matching of heavy hard rock boring machine is designed to correct the premise. In the different rock types, such as strength, abrasion, and rock types, such as cutting tests conducted on the basis of the combination of dedicated design software for cutting optimization of operating parameters of the design, hard-rock boring machine is cutting to achieve high performance the only way .
In addition, the design parameters for performance prediction of the success of the use of boring machine is an important factor. According to research institutions abroad, the research results [2], can be forecast according to certain formula for the cut-off rate of tooth loss and to predict cutting capacity. Will be by way of cutting the rock compressive strength, cutting power, boring machine weight, diameter of cutting head as the standardization of parameters such as parameters.
Come to the conclusion that the hardness in cutting when the cutter reached 120MPa consumption rate of a more economical level.
1 ? 2 tool to improve the design
The last 50 years, researchers in order to improve Cutting capacity rock tests done a lot of research, such as increasing the weight of the machine, the design of solid rack, a big increase in power, such as cutting. Test shows that the constraints of the main factors driving hard rock is still the pick, as the cut-off performance is good or bad teeth, the length of life boring machine a direct impact on the economy, thus cutting the need for an in-depth study tool.
At present, the extensive use of boring machine with cone-shaped alloy head pick-ho, as they have since the blade and impact resistance and have been affirmed, in a variety of boring machine has been widely used and become standardized. In addition, through the introduction of new welding technology, increasing the diameter of the first alloy and improve abrasion resistance, such as cut-off method of tooth roots, pick a larger improvement in the durability of cutter. Despite the ho-shaped cutter to carry out an in-depth research, manufacturing process has been greatly improved, but still can not economically stronger for grinding of hard rock mining. This is because when the ho-shaped cutter with the rock when the contact area, and in the higher stages of wear and tear become blunt and sharp teeth, the posterior horn of the negative, the plane of the wear and tear and extrusion of rock have a lot of rock powder, work to be larger than the energy, cutting efficiency is very low, if the pick-shaped cutter to stop rotating, then the performance of their cutting the rate of deterioration will be increased.
Should improve the design tools to enable the transfer to the rock through the tool of power and energy to achieve maximum value. Recently developed new tools, the United States of Geology, University of Colorado School of Mines Research Institute of the disc machine cutting tool [3], and mining services company in Australia, the development of the era of chain-shaped cutter head alloy. Before the adoption of a rotary cutting tool for cutting hard rock, due to large size tools and boring machine cutting head size is limited to use; the latter has a cutting tool than the energy stability, the extent of tool use has been a sharp remain unchanged, less dust, vibration small degree block is characterized by the more hard rock boring machine ideal choice, and the use of broad prospects.
1 ? 3 types of cutting head
The design of cutting head usually meet the following requirements: tool consumption in small, even by force, good stability, high cutting efficiency. To achieve this
These requirements is the main criteria for the design of each tool rotary cutting head in a week can cut the same materials. Practice shows that in the horizontal boring machine, two kinds of longitudinal cutting head type, the horizontal boring machine is more suitable for hard rock cutting [4-5]. This is due to cut-off horizontal cutting head and cut off the small side, at the same time to participate in cutting the number of teeth less than the cut-off, the machine allows the greatest resistance to the same work, they can force the use of larger single-pole; horizontal cutting head cutting line spacing small , can be cut smaller deep, single-tooth cutting resistance on the smaller, the horizontal than the vertical axis of the high hardness cutting; forward open horizontal cut, as cutting edge and are located in traction with the cantilever axis parallel to the plane, you can take full advantage of the weight of the machine, cutting good stability, and pick and Chip of the effect of
Better than the vertical axis type.
2 job stability and the whole arrangement
Evaluation of the stability of boring machine is an important indicator of performance, cutting a direct impact on the performance and reliability of machines. Affect the stability of the boring machine by many factors, such as the cutting head of the load, the balance of machine layout, grounding area, body height, cantilever rack, and other major components of the weight and stiffness, cutting head type and so on.
Heavy boring machine is designed for cutting hard rock, and its main characteristic is that the weight of big machinery, big power. The quality of a big machine for cutting the work of providing a more solid platform to effectively reduce the vibration machine, but it also brought about a balanced arrangement of hard to machine, machine ground pressure of the big problems, how to make the whole arrangement of a balanced center of gravity position reasonable is a heavy-duty design difficult. Heavy boring machine weighing more than a 100, ton although the horizontal cutting of the work agencies have good stability, but the weight of cutting big institutions, so that whole center of gravity forward, causing the front track ground pressure is too large, the need for running chassis to the rack, as well as the arrangement of special means, on the one hand, adjust the rack and track the structural design of aircraft, reasonable weight and to increase its strength and stiffness, the parameters to match the requirements on the other hand, as far as increasing ground track area to reduce ground pressure.
3 key components of development and design
Performance requirements of new technologies and the increasing weight and power of the machine by making the boring machine parts the machine can not fully meet the overall requirements, the need for a pilot study of key components. Heavy Cutting excessive body weight, the traditional slewing bearing slewing mechanism can not meet the work requirements, the need to develop new-type rotary body design. Rack and pinion has a carrying capacity of rotating bodies, and rotary constant force, vibration and strong impact resistance, smooth operation, the advantages of compact structure.
Heavy boring machine ground pressure, and makes walking traction device efficiency is not high, especially in the soft, wet ground. Telescopic cutting a large extent, solved the problem, it can be static in the machines, the machines take full advantage of gravity and track traction device of the friction with the ground, so that cutting head to promote greater traction. However, within the traditional telescopic spline and T-slot outside the telescopic structure, not only structurally complex, processing difficulties, and the relatively high failure rate, so the need for heavy-duty cantilever Cutting the characteristics of the development of strong and stable institutions of stretching.
4 Boring Machine-oriented positioning and monitoring section
Bulky heavy boring machine, the driver line of sight worse, according to the traditional approach to accurate driving and cutting cross-section to promote the right direction to ensure that it is very difficult, often boring machine drivers rely on the experience and technology, in most cases the need for duplication of ultra-cutting or patch cutting region, therefore it is difficult to control operating costs. How in the shortest possible time, the greatest precision cutting, the use of the lowest operating costs, it is hard rock boring machine needs to be resolved another difficult
Address these problems, usually boring machine automated positioning system. This is through the use of a high level of integration of computer-driven boring machine operations to complete the display, as shown in Figure 2. Display can be clearly marked on the boring machine precise position and orientation information; the design of roadway cross-section profile of the axial projection; boring machine cutting head section in an ideal location on the real-time. Through the use of the system can achieve precise control of the cross-section; to ensure that the design of roadway in accordance with the direction; raise boring machine footage; be completed roadway cutting part is not visible; automatically advanced site features such as measurement of theodolite.
5 Accessibility
5 ? 1 Heading Face Comprehensive Dust Removal System technology
At present, the wet roadway dust removal system results in tunneling a major factor in the poor is that the dust removal system is not able to face boring machine, as well as the wind system for supporting effective, so a comprehensive dust removal system heading face technology research in general is supporting heavy boring machine One of the main research and development studies. In addition, the large cross-section of dust control technology studies and the role of charged dust device is controlled mechanized excavation face the spread of dust from outside air. One of the key issues and technical problems is the formation of mural mural hairdryer wind speed to determine the best effect, the need for an in-depth study on this.
5 ? 2 bolt support system
Bolting is the coal mine roadway support the main form of support will bolt drilling and boring machine arm system integrated in one, the realization of a fully mechanized excavation face bolt hole drilling and bolt installation mechanized operations, a very care to improve the efficiency of the earth anchor to reduce the time for auxiliary operations, effective care to shorten the operating cycle time anchor. In addition, the anchor of care to achieve automation and control operations, further improve the efficiency of the anchor retaining staff and reducing the number of operations to improve the care of the anchor of the security operation.
6 Conclusion
1) specific nature of the geological conditions of rock to choose and match the parameters of heavy hard rock boring machine is designed to correct the premise.
2) the use of cutting energy consumption than the stable, remain the same sharpness of the new alloy ornament-shaped cutter, heavy hard rock boring machine is a better choice.
3) In order to better adapt to cutting hard rock, heavy use of hard rock boring machine horizontal cutting way, with production capacity, and job stability, and lower than the energy consumption characteristics.
4) heavy-duty boring machine according to the characteristics of the balanced arrangement of parts, and a reasonable weight.
5) heavy-duty boring machine according to the characteristics of the development of strong and stable cutting telescopic slewing mechanism and heavy-duty.
6) the use of boring machine-oriented cross-section location and surveillance systems, to improve the performance of heavy boring machine.
7) to heavy boring machine for the technology platform, can also be used to eliminate dust and equipment automatic bolting device and system to enhance the safety of staff, efficiency of mechanized excavation face.
中文譯文
懸臂式重型掘進(jìn)機(jī)關(guān)鍵技術(shù)探討
【摘 要】:提出了懸臂式重型掘進(jìn)機(jī)硬巖切割的關(guān)鍵技術(shù)問(wèn)題,并結(jié)合EBZ300TY重型掘進(jìn)機(jī)的研制開(kāi)發(fā),對(duì)所采取的技術(shù)措施進(jìn)行了探討。提出了根據(jù)用戶特定地質(zhì)條件進(jìn)行工作參數(shù)合理匹配、刀具改進(jìn)設(shè)計(jì)方向、截割頭選取的類型、整機(jī)穩(wěn)定性及布置、關(guān)鍵部件的開(kāi)發(fā)和導(dǎo)向定位及斷面監(jiān)視等方案。
【關(guān)鍵詞】:重型掘進(jìn)機(jī);硬巖切割;關(guān)鍵技術(shù)
我國(guó)懸臂式掘進(jìn)機(jī)是20世紀(jì)60年代發(fā)展起來(lái)的,經(jīng)近50年的研究、試驗(yàn)和改進(jìn),機(jī)器性能不
斷提高,已開(kāi)發(fā)出截割功率50~220 kW,從輕型到重型的20多種型號(hào)的系列產(chǎn)品,在煤礦井下煤及半煤巖巷道的機(jī)械化掘進(jìn)中廣泛應(yīng)用,基本滿足了近年來(lái)我國(guó)煤炭工業(yè)快速發(fā)展的需求。隨著我國(guó)礦井規(guī)模和工作面單產(chǎn)的不斷提高,大批千萬(wàn)噸級(jí)現(xiàn)代化礦井的建設(shè),特別是新井建設(shè)中巖石巷道的開(kāi)拓,對(duì)全巖掘進(jìn)機(jī)的需求逐年增加,對(duì)其技術(shù)能力和要求也持續(xù)提高。
研制截割功率達(dá)到300kW,機(jī)器質(zhì)量超過(guò)100t適應(yīng)巷道斷面30~50 m2,截割巖石單軸抗壓強(qiáng)度達(dá)到120MPa的重型硬巖掘進(jìn)機(jī),正是在不斷增長(zhǎng)的需求和掘進(jìn)機(jī)技術(shù)快速進(jìn)步的前提下提出的。同過(guò)去50年研制的掘進(jìn)機(jī)相比,它不是簡(jiǎn)單的局部改進(jìn),也不是以往成功機(jī)型的放大或縮小,而是掘進(jìn)機(jī)技術(shù)一次意義深遠(yuǎn)的多方面變革。這是因?yàn)樗囊恍╆P(guān)鍵技術(shù)將會(huì)推廣應(yīng)用到其他掘進(jìn)機(jī)產(chǎn)品上,進(jìn)而帶動(dòng)整個(gè)掘進(jìn)機(jī)行業(yè)的技術(shù)進(jìn)步。下面根據(jù)目前國(guó)內(nèi)外掘進(jìn)機(jī)的發(fā)展動(dòng)態(tài)和開(kāi)發(fā)體會(huì),對(duì)重型掘進(jìn)機(jī)硬巖切割的關(guān)鍵技術(shù)進(jìn)行初步探討。
1 截割能力
硬巖切割能力是重型掘進(jìn)機(jī)使用范圍受限制的最主要因素,也是重型掘進(jìn)機(jī)研制的核心所在,其能力高低通常有3個(gè)指標(biāo)來(lái)衡量,即截齒損耗率(把/m3)、生產(chǎn)能力(m3/h)和截割比能耗(kW·h/m3),其中以截齒損耗率更具決定作用。在掘進(jìn)機(jī)切割硬巖時(shí),如果巖石硬度高或者研磨性很強(qiáng)導(dǎo)致截齒實(shí)際損耗率超過(guò)1把/m3,那么就會(huì)由于高昂的截齒消耗費(fèi)用,以及經(jīng)常更換截齒和機(jī)器的振動(dòng)加劇增加的維護(hù)費(fèi)等與鉆爆法相比變得不經(jīng)濟(jì)。因此,使重型掘進(jìn)機(jī)的截割能力適應(yīng)硬巖切割至關(guān)重要,為此需要對(duì)工作機(jī)構(gòu)的參數(shù)選擇、截割頭類型和截割刀具等進(jìn)行深入研究。
1·1 工作參數(shù)合理匹配與性能預(yù)測(cè)
在掘進(jìn)機(jī)截割過(guò)程中,一個(gè)最重要且最基本的參數(shù)是切削厚度(截齒截割煤巖體的深度),與被截割巖石性質(zhì)不適合的切削厚度只會(huì)降低截割效率,增加截齒的磨損,產(chǎn)生更多的粉塵。在巖石截構(gòu)各異,形成的力學(xué)性質(zhì)千差萬(wàn)別。由于切割硬巖的特殊性,在進(jìn)行硬巖掘進(jìn)機(jī)設(shè)計(jì)時(shí),針對(duì)用戶特定地質(zhì)條件的巖石性質(zhì)來(lái)進(jìn)行參數(shù)選擇和匹配是重型硬巖掘進(jìn)機(jī)正確設(shè)計(jì)的前提。在針對(duì)不同巖石類型,如強(qiáng)度、磨蝕性、巖石類型等進(jìn)行截割試驗(yàn)的基礎(chǔ)上,結(jié)合專用設(shè)計(jì)軟件來(lái)進(jìn)行截割工作參數(shù)的優(yōu)化設(shè)計(jì),是使硬巖掘進(jìn)機(jī)達(dá)到高截割性能的必由之路。
此外,對(duì)設(shè)計(jì)參數(shù)的性能預(yù)測(cè)是掘進(jìn)機(jī)成功使用的一個(gè)重要因素。根據(jù)國(guó)外研究機(jī)構(gòu)的研究成果[2],可根據(jù)一定的預(yù)測(cè)方程式對(duì)截齒損耗率和截割生產(chǎn)能力進(jìn)行預(yù)測(cè)。將所截割巖石的單向抗壓強(qiáng)度、截割功率、掘進(jìn)機(jī)重量、截割頭直徑等參數(shù)作為標(biāo)準(zhǔn)化參數(shù)。得出的結(jié)論是在截割硬度達(dá)到120MPa時(shí)截齒消耗率達(dá)到較經(jīng)濟(jì)的水平。
1·2 刀具改進(jìn)設(shè)計(jì)
近50年來(lái),科研人員為了提高掘進(jìn)機(jī)截割巖石的能力做了大量的試驗(yàn)研究,比如增加機(jī)器的重量,設(shè)計(jì)堅(jiān)固的機(jī)架,增大截割功率等。試驗(yàn)表明,制約硬巖掘進(jìn)的主要因素仍是截齒,由于截齒性能的好壞、壽命的長(zhǎng)短直接影響掘進(jìn)機(jī)的經(jīng)濟(jì)性,因此就需要對(duì)截割刀具進(jìn)行深入研究。
目前,在掘進(jìn)機(jī)上大量使用的帶錐形合金頭的鎬形截齒,由于其所具有的自刃性、耐沖擊性而得到了肯定,在各種掘進(jìn)機(jī)上被廣泛使用并趨于標(biāo)準(zhǔn)化。另外,通過(guò)采用新的焊接技術(shù)、增大合金頭直徑和提高截齒根部抗磨性等方法,較大改善了鎬形截齒的耐用性。盡管對(duì)鎬形截齒進(jìn)行了深入研究,制造工藝也有了極大的改善,但仍然無(wú)法經(jīng)濟(jì)地用于研磨性較強(qiáng)的硬巖挖掘。這是由于當(dāng)鎬形截齒工作時(shí)與巖石的接觸面積大,在磨損較高的階段齒尖變鈍時(shí),會(huì)產(chǎn)生負(fù)的后角,大的磨損平面擠壓巖石并產(chǎn)生大量的巖粉,工作時(shí)需較大的比能,截割效率很低,如果鎬形截齒停止旋轉(zhuǎn),那么其截割性能惡化速度還會(huì)加劇。
應(yīng)該改善刀具的外形設(shè)計(jì),使通過(guò)刀具轉(zhuǎn)移給巖石的力和能量達(dá)到最大值。最近研制的新型刀具,有美國(guó)科羅拉多礦業(yè)大學(xué)地質(zhì)機(jī)械研究院研制的圓盤(pán)截割刀具[3],還有澳大利亞時(shí)代礦業(yè)服務(wù)公司開(kāi)發(fā)的鋃形合金頭截齒。前一種刀具通過(guò)旋轉(zhuǎn)截割用于硬巖切割,由于刀具的外形尺寸大而掘進(jìn)機(jī)截割頭尺寸小使用受到限制;后一種刀具具有截割比能耗穩(wěn)定,刀具使用中銳利程度一直保持不變,粉塵少、震動(dòng)小、塊度大的特點(diǎn),是硬巖掘進(jìn)機(jī)較理想的選擇,并具有廣闊的使用前景。
1·3 截割頭類型
截割頭的設(shè)計(jì)通常滿足以下要求:刀具消耗小,受力均勻,穩(wěn)定性好,截割效率高。要實(shí)現(xiàn)這些要求,主要的設(shè)計(jì)準(zhǔn)則就是每個(gè)刀具在截割頭旋轉(zhuǎn)一周時(shí)能夠切下相同的物料。實(shí)踐表明,在掘進(jìn)機(jī)的橫、縱軸2種型式的截割頭中,橫軸掘進(jìn)機(jī)更適合硬巖切割[4-5]。這是由于橫軸截割頭截割斷面小,同時(shí)參加截割的截齒數(shù)量少,在機(jī)器允許最大工作阻力相同時(shí),就可以采用較大的單刀力;橫軸截割頭截線間距小,可以采用較小的截深,單齒截割阻力就較小,因此橫軸式比縱軸式的截割硬度高;橫軸式前進(jìn)開(kāi)切時(shí),由于截割力和牽引力都位于與懸臂軸線相平行的平面內(nèi),可以充分利用機(jī)器的重量,截割穩(wěn)定性好,且截齒的受力和排屑效果都較縱軸式好。
2 工作穩(wěn)定性和整機(jī)的布置
穩(wěn)定性是評(píng)價(jià)掘進(jìn)機(jī)性能的一項(xiàng)重要指標(biāo),直接影響著截割性能和機(jī)器的可靠性。影響掘進(jìn)機(jī)穩(wěn)定性的因素有很多,如截割頭的載荷、整機(jī)布置的均衡、接地面積、機(jī)身高度、機(jī)架和懸臂等主要構(gòu)件的重量及剛度、截割頭型式等等。
重型掘進(jìn)機(jī)主要是為切割硬巖而設(shè)計(jì), 它的主要特點(diǎn)是機(jī)器重量大,功率大。大的機(jī)器質(zhì)量可以為截割提供更加穩(wěn)固的工作平臺(tái),有效降低機(jī)器的震動(dòng),但同時(shí)也帶來(lái)整機(jī)均衡布置難,機(jī)器的接地比壓大的問(wèn)題,如何使整機(jī)布置均衡,重心位置合理是重型機(jī)設(shè)計(jì)的一項(xiàng)難點(diǎn)。重型掘進(jìn)機(jī)重量超過(guò)了100 t,雖然采用橫軸式截割機(jī)構(gòu)具有良好的工作穩(wěn)定性,但截割機(jī)構(gòu)的重量大,使整機(jī)重心靠前,致使履帶前部接地比壓過(guò)大,需要對(duì)機(jī)架以及行走底盤(pán)的布置采取特殊手段,一方面調(diào)整機(jī)架和履帶架的結(jié)構(gòu)設(shè)計(jì),合理配重,并增加其強(qiáng)度和剛度,另一方面在參數(shù)匹配要求范圍內(nèi),盡量增大履帶接地面積以降低接地比壓。
3 關(guān)鍵部件的開(kāi)發(fā)設(shè)計(jì)
新的技術(shù)性能要求以及不斷增加的機(jī)器重量和功率,使以往掘進(jìn)機(jī)的部件已經(jīng)不能完全滿足機(jī)器整體要求,需要對(duì)關(guān)鍵部件進(jìn)行試驗(yàn)研究。重型掘進(jìn)機(jī)截割機(jī)構(gòu)重量過(guò)大,傳統(tǒng)的回轉(zhuǎn)支承無(wú)法滿足回轉(zhuǎn)機(jī)構(gòu)的工作要求,需開(kāi)發(fā)設(shè)計(jì)新型回轉(zhuǎn)機(jī)構(gòu)。齒輪齒條回轉(zhuǎn)機(jī)構(gòu)具有承載能力大、回轉(zhuǎn)牽引力恒定、抗沖擊振動(dòng)能力強(qiáng)、運(yùn)轉(zhuǎn)平穩(wěn)、結(jié)構(gòu)緊湊等優(yōu)點(diǎn)。
重型掘進(jìn)機(jī)接地比壓大,使得行走牽引裝置效率不高,尤其是在松軟、潮濕的地面上。伸縮式截割在很大程度上解決了這個(gè)問(wèn)題,它可以在機(jī)器靜止的情況下,充分利用機(jī)器的重力及履帶牽引裝置與地面的摩擦力,使截割頭產(chǎn)生更大的推進(jìn)牽引力。然而,傳統(tǒng)的花鍵內(nèi)伸縮和T型槽外伸縮結(jié)構(gòu),不僅結(jié)構(gòu)復(fù)雜、加工困難,而且故障率比較高,因此需要針對(duì)重型掘進(jìn)機(jī)截割懸臂的特點(diǎn)開(kāi)發(fā)堅(jiān)固穩(wěn)定的伸縮機(jī)構(gòu)。
4 掘進(jìn)機(jī)導(dǎo)向定位及斷面監(jiān)視
重型掘進(jìn)機(jī)體積大,司機(jī)視線差,按照傳統(tǒng)的掘進(jìn)方法去精確切割斷面并確保推進(jìn)方向正確是非常困難的,常常依靠掘進(jìn)機(jī)司機(jī)的經(jīng)驗(yàn)和技術(shù),大多數(shù)情況下需要重復(fù)切割或修補(bǔ)超切區(qū)域,因此操作成本很難控制。如何在最短的時(shí)間、最大切割精確度、使用最少的操作成本,是硬巖掘進(jìn)機(jī)需要解決的又一個(gè)難點(diǎn)。
解決上述問(wèn)題,通常采用掘進(jìn)機(jī)自動(dòng)化定位系統(tǒng)。這是通過(guò)使用一個(gè)高集成度計(jì)算機(jī)驅(qū)動(dòng)的掘進(jìn)機(jī)操作顯示器來(lái)完成的,如圖2所示。顯示器可以清晰標(biāo)出精確的掘進(jìn)機(jī)位置和方向信息;設(shè)計(jì)巷道斷面的軸向投影輪廓;掘進(jìn)機(jī)切割頭在理想斷面上的實(shí)時(shí)位置。通過(guò)使用該系統(tǒng)可以實(shí)現(xiàn)精確的斷面控制;保證巷道按照設(shè)計(jì)方向推進(jìn);提高掘進(jìn)機(jī)進(jìn)尺;可以完成不可見(jiàn)部分巷道切割;自動(dòng)超前測(cè)量經(jīng)緯儀站點(diǎn)等功能。
5 輔助功能
5·1 掘進(jìn)工作面綜合除塵系統(tǒng)總體配套技術(shù)
目前濕式除塵系統(tǒng)在掘進(jìn)巷道使用效果不佳的一個(gè)主要因素就是,除塵系統(tǒng)沒(méi)有能和掘進(jìn)機(jī)以及工作面供風(fēng)系統(tǒng)進(jìn)行有效的配套,所以掘進(jìn)工作面綜合除塵系統(tǒng)總體配套技術(shù)研究也是重型掘進(jìn)機(jī)研制中的一個(gè)主要研究?jī)?nèi)容。另外,大斷面控塵技術(shù)的研究及控塵裝置的作用,是控制綜掘工作面含塵氣流向外擴(kuò)散。其中的關(guān)鍵問(wèn)題和技術(shù)難點(diǎn)就是附壁風(fēng)筒形成附壁效應(yīng)最佳風(fēng)速的確定,需要對(duì)此進(jìn)行深入研究。
5·2 錨桿支護(hù)系統(tǒng)
錨桿支護(hù)是目前煤礦井下巷道支護(hù)主要支護(hù)形式,將錨桿鉆臂系統(tǒng)與掘進(jìn)機(jī)集成于一體,實(shí)現(xiàn)了綜掘工作面錨桿孔鉆進(jìn)和錨桿安裝的機(jī)械化作業(yè),極大地提高錨護(hù)效率,減少輔助作業(yè)時(shí)間,有效縮短錨護(hù)作業(yè)循環(huán)時(shí)間。另外,錨護(hù)作業(yè)自動(dòng)化控制的實(shí)現(xiàn),進(jìn)一步提高了錨護(hù)效率并減少了作業(yè)人員數(shù)量,提高了錨護(hù)作業(yè)的安全性。
6 結(jié) 語(yǔ)
1)針對(duì)特定地質(zhì)條件的巖石性質(zhì)來(lái)進(jìn)行參數(shù)選擇和匹配是重型硬巖掘進(jìn)機(jī)正確設(shè)計(jì)的前提。
2)采用截割比能耗穩(wěn)定,銳利程度保持不變的新型鋃形合金截齒,是重型硬巖掘進(jìn)機(jī)較理想的選擇。
3)為了更好地適應(yīng)硬巖切割,重型硬巖掘進(jìn)機(jī)采用橫軸式截割方式,具有生產(chǎn)能力大、工作穩(wěn)定性好、比能耗低的特點(diǎn)。
4)應(yīng)根據(jù)重型掘進(jìn)機(jī)的特點(diǎn)對(duì)各部件均衡布置,并合理配重。
5)根據(jù)重型掘進(jìn)機(jī)的特點(diǎn),開(kāi)發(fā)堅(jiān)固穩(wěn)定的伸縮式截割機(jī)構(gòu)和重載回轉(zhuǎn)機(jī)構(gòu)。
6)采用掘進(jìn)機(jī)導(dǎo)向定位及斷面監(jiān)視系統(tǒng),改善重型掘進(jìn)機(jī)操作性能。
7)以重型掘進(jìn)機(jī)為技術(shù)平臺(tái),采用還可以裝備自動(dòng)滅塵裝置和錨桿支護(hù)系統(tǒng),提高工作人員的安全性、綜