高等數(shù)學(同濟第六版)課件第六章 1.元素法幾何應用

上傳人:奇異 文檔編號:22419057 上傳時間:2021-05-25 格式:PPT 頁數(shù):36 大?。?94KB
收藏 版權申訴 舉報 下載
高等數(shù)學(同濟第六版)課件第六章 1.元素法幾何應用_第1頁
第1頁 / 共36頁
高等數(shù)學(同濟第六版)課件第六章 1.元素法幾何應用_第2頁
第2頁 / 共36頁
高等數(shù)學(同濟第六版)課件第六章 1.元素法幾何應用_第3頁
第3頁 / 共36頁

下載文檔到電腦,查找使用更方便

12 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高等數(shù)學(同濟第六版)課件第六章 1.元素法幾何應用》由會員分享,可在線閱讀,更多相關《高等數(shù)學(同濟第六版)課件第六章 1.元素法幾何應用(36頁珍藏版)》請在裝配圖網上搜索。

1、 a b xoy ix1x 1ix 1nx(1)將 a,b分 成 n個 小 區(qū) 間(2)任 取 i xi-1, xi, 計 算 f(i)xi(3)作 和 iini xfS )(1(4)取 極 限 iiini xf )(lim 10 ba dxxf )( )(xfy (1)將 a,b分 成 n個 小 區(qū) 間(2)任 取 i xi-1, xi, 計 算 f(i)xi(3)作 和 iini xfS )(1(4)取 極 限 iini xf )(lim 10 ba dxxf )( a b xoy )(xfy設 想 a,b分 的 無 限 細 ,x dxx(1)(2)兩 步 合 為 :計 算 dxxf )(

2、3)(4)兩 步 合 為 : ba dxxf )( ( 1) 選 取 一 個 變 量 x為 積 分 變 量 ,( 2) 設 想 把 區(qū) 間 a,b分 的 無 限 細 , ba dxxfU )(3) 在 區(qū) 間 a,b上 作 定 積 分 , 得 并 確 定 它 的 變 化 區(qū) 間 a,b; 在 任 一 小 區(qū) 間求 出 部 分 量 : dU=f(x)dx; x,x+dx上 ,即 得 所 求 的 量 xyo )(1 xfy )(2 xfya bdx dxxfxfdA )()( 12 ba dxxfxfA )()( 12 xyo )(1 ygx )(2 ygxcddy dyygygdA )()( 1

3、2 dc dyygygA )()( 12 解 ).4,8(),2,2( 422 xy xy選 y 為 積 分 變 量 4,2ydyyydA )24( 2 xy 22 4 xy例 1 計 算 由 曲 線 和 直 線xy 22 4 xy所 圍 成 的 圖 形 的 面 積 . dyyyA 42 2)24( 4232 642 yyy =18dy 選 x 為 積 分 變 量dxxdA 221 dxxxdA )42(2 dxxA 20 22 dxxx )42(82 xy 22 4 xydx dx 解 橢 圓 方 程 tby tax sincos a ydxA 04 02 )cos(sin4 tatdb d

4、ttab 20 2sin4 .ab tax cos令 0 tax 20 tx例 2 求 橢 圓 12222 byax 的 面 積 . 寫 出 下 列 圖 形 的 面 積 的 定 積 分 表 示 式 :2.由 y =ex與 該 曲 線 過 原 點 的 切 線 及 y軸 圍 成 的 圖 形 。 1.由 曲 線 xx eyey , 及 直 線 x=1所 圍 成 的 圖 形 其 中 連 續(xù) xo d d面 積 元 素 ddA 2)(21面 積 .)(21 2 dA )(設 由 曲 線 )( 與)( 0)( 及 射 線圍 成 一 曲 邊 扇 形 , 求 其 面 積 例 3 求 阿 基 米 德 螺 線 (

5、a 0)上 相 應 于 從 0到 的 一 段 與 極 軸 圍 成 圖 形 的 面 積 a 2 -30 -20 -10 0 10 20 30 40 -30 -20 -10 0 10 20 30 o a解 .)(21 220 daA 20326a 解 .23 2a daA 20 2 )cos1(212 da )coscos21( 202 02 sin2a例 4 求 心 形 線 )cos1( a 所 圍 圖 形 的 面 積 ( a 0) da )2cos1(21 02 2a 221a 02 2sin21a 小 結面 積 的 求 法 :一 、 直 角 坐 標 :( 1) 選 擇 合 適 的 積 分 變

6、 量 , 寫 出 面 積 元 素 ( 2) 積 分 計 算 。先 畫 出 圖 形二 、 極 坐 標 :( 1) 轉 化 成 曲 邊 扇 形 問 題( 2) 利 用 曲 邊 扇 形 面 積 公 式 : .)(21 2 dA 寫 出 下 列 圖 形 面 積 在 極 坐 標 下 的 定 積 分 表 示 式 :1. 由 及 所 確 定 圖 形 . cos3 cos1 .cos9 23 2 d 30 2)cos1( dA2.螺 線 a 的 第 一 與 第 二 圈 之 間 及 極 軸 所 圍 圖 形 -30 -20 -10 0 10 20 30 40 -30 -20 -10 0 10 20 30 o xo

7、 a bx dxx 若 一 個 立 體 在 x軸 上 的 投 影 區(qū) 間 為 a,b, ,)( dxxAdV .)( ba dxxAVA(x)為 過 點 x且 垂 直 于 x軸 的 截 面 面 積 ,A(x)在 a,b上 連 續(xù) , 求 立 體 體 積 V. RR x yo解 取 坐 標 系 如 圖底 圓 方 程 為 222 Ryx x截 面 面 積 ,tan)(21)( 22 xRxA立 體 體 積 dxxRV RR tan)(21 22 .tan32 3 R例 5 一 平 面 經 過 半 徑 為 R的 圓 柱 體 的 底 圓 中 心 ,并 與 底 面 交 成 角 , 計 算 這 平 面 截

8、 圓 柱 體所 得 立 體 的 體 積 解 取 坐 標 系 如 圖底 圓 方 程 為 ,222 Ryx xyo Rx截 面 面 積 22)( xRhyhxA 立 體 體 積 dxxRhV RR 22 .21 2hR例 6 求 以 半 徑 為 R的 圓 為 底 、 平 行 且 等 于 底 圓直 徑 的 線 段 為 頂 、 高 為 h的 正 劈 錐 體 的 體 積 旋 轉 體 就 是 由 一 個 平 面 圖 形 饒 這 平 面 內 一 條 直線 旋 轉 一 周 而 成 的 立 體 這 直 線 叫 做 旋 轉 軸 圓 柱 圓 錐 圓 臺 2)()( xfxA x xyo體 積 為 dxxfV ba

9、)(2 )(xfy 求 由 連 續(xù) 曲 線 y=f(x)、 直 線 x=a、 x=b 及 x 軸所 圍 成 的 曲 邊 梯 形 繞 x 軸 旋 轉 一 周而 成 的 旋 轉 體 體 積 ?積 分 變 量 為 x a,b截 面 面 積 : 例 7 證 明 底 圓 半 徑 為 r高 為 h的 圓 錐 體 的 體 積 為 :hrV 231證 建 立 坐 標 系 如 圖 y rhP xoxhry 直 線 OP方 程 為 dxxhrV h 20 hxhr 0322 3 .3 2hr a ao y x解 ,323232 xay 332322 xay , aax dxxaV aa 33232 .10532

10、3a例 8 求 星 形 線 ( a 0 )繞 x 軸 旋 轉323232 ayx 構 成 旋 轉 體 的 體 積 . 旋 轉 體 的 體 積 xyo )(yx cddyyV dc 2)(直 線 y=c, y=d 及 y 軸 所 圍 成 的 曲 邊 梯 形)(yx 如 果 旋 轉 體 是 由 連 續(xù) 曲 線繞 y 軸 旋 轉 一 周 而 成 的 立 體 ,體 積 為 : 解 dxxyV ax )(2 20 0 22 )cos1(2 ta 0 323 )coscos3cos31(2 dtttta .5 32a a2a )(xy分 別 繞 x 軸 、),sin( ttax )cos1( tay 例

11、9 求 擺 線的 一 拱 與 y=0 所 圍 成 的 圖 形 ,y 軸 旋 轉 構 成 旋 轉 體 的 體 積 .繞 x 軸 旋 轉 的 旋 轉 體 體 積 dtta )cos1( dyyxV ay )(220 2 dyyxa )(220 1 oy xa2 ABCa2 )(2 yxx)(1 yxx 2 22 )cos1()sin( tadtta 0 22 )cos1()sin( tadtta 20 23 sin)sin( tdttta .6 33a繞 y 軸 旋 轉 的 旋 轉 體 體 積 練 習1.由 )0( 22 ppxy ),2( pp 處 的 法 線 所和 它 在圍 成 的 圖 形 繞

12、 y軸 旋 轉 所 得 旋 轉 體 的 體 積 .2.由 xy 22 和 x=0, y=1圍 成 的 圖 形 繞 y=1旋 轉 所 得 旋 轉 體 的 體 積 . 小 結一 、 旋 轉 體 體 積 由 連 續(xù) 曲 線 y=f(x)、 直 線 x=a、 x=b 及 x 軸 所 圍成 的 曲 邊 梯 形 ,1.繞 x 軸 旋 轉 一 周 而 成 的 旋 轉 體 : dxxfV ba 2)( 2.繞 y 軸 旋 轉 一 周 而 成 的 旋 轉 體 : dxxfxV bay |)(|2 二 、 平 行 截 面 面 積 已 知 立 體 體 積 平 行 截 面 面 積 為 : A(x) 體 積 .)( b

13、a dxxAV xoy A B1M 2M 1nM, 10 MMA依 次 連 接 相 鄰 分 點 ,接 折 線 , 其 長 為 且 每 個 小 弧 段 的 長 度 都 趨 向 于 零 時 ,得 內 0M nM稱 此 曲 線 弧 為 可 求 長 的 。 |1 1 ni ii MM的 極 限 存 在 ,設 曲 線 弧 AB,在 弧 上 插 入分 點 稱 此 極 限 為 曲 線 弧 AB的 弧 長當 分 點 無 限 增 多 ,|1 1 ni ii MM BMn , xNM TRx dxxyo dydxds22 )()( dydxds 弧微分:是 否 所 有 的 曲 線 弧都 是 可 求 長 的 ?定

14、理 : 光 滑 或 分 段 光 滑的 曲 線 弧 是 可 求 長 的 。如 何 求 弧 長 xy 1sin xoy a bx dxx22 )()( dydx dxy 21 弧 長 元 素 dxyds 21 弧 長 .1 2dxys ba 設 曲 線 弧 為 y=f(x) )( bxa 其 中 y=f(x) 在 a,b上 有 一 階連 續(xù) 導 數(shù) , 取 積 分 變 量 為 x在 a,b上 任 取 小 區(qū) 間 x, x+dx小 切 線 段 的 長 : x=g(y) dyc x=g(y)在 c,d y在 c,d y, y+dy yxyxds .2 yxdc 解 ,21xy ,1 dxxds 所 求

15、 弧 長 為 dxxs ba 1 .)1()1(32 2323 ab bax 23)1(32 例 10 計 算 曲 線 2332xy 相 應 于 x從 a到 b的 一 段 弧 的 長 度 . 曲 線 弧 為 ,)( )( ty tx )( t22 )()( dydxds 2222 )()( dttdtt dttt )()( 22 弧 長 .)()( 22 dttts 其 中 在 上 具 有 連 續(xù) 導 數(shù) )(),( tt , 解 tay tax 33sincos )20( t根 據(jù) 對 稱 性 14ss dtyx 20 224 dttta 20 cossin34 .6a a ao y x例

16、11 求 星 形 線 ( a 0)的 全 長 323232 ayx 曲 線 弧 為 )( )( sin)( cos)(yx )( 22 )()( dydxds ,)()( 22 d弧 長 .)()( 22 ds )( 其 中 在 上 具 有 連 續(xù) 導 數(shù) )( , 例 12 求 阿 基 米 德 螺 線 (a 0)上 a相 應 于 從 0到 的 弧 長 解 ,a ds 20 22 )()( .)412ln(4122 22 a daa20 222 2 da 20 2 1 直角坐標系:參數(shù)方程:極坐標系:弧 微 分 求 法 : 22 )()( dydxds )(xfy dxyds 21 )(yx dyxds 21 ,)( )( ty tx dtyxds tt 22 dds )()( 22)(作 業(yè) : P286:T23,T27,T30

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!