2018-2019學(xué)年九年級(jí)數(shù)學(xué)下冊(cè) 第2章 圓 2.1 圓的對(duì)稱性練習(xí) (新版)湘教版.doc
《2018-2019學(xué)年九年級(jí)數(shù)學(xué)下冊(cè) 第2章 圓 2.1 圓的對(duì)稱性練習(xí) (新版)湘教版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018-2019學(xué)年九年級(jí)數(shù)學(xué)下冊(cè) 第2章 圓 2.1 圓的對(duì)稱性練習(xí) (新版)湘教版.doc(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2.1圓的對(duì)稱性 知|識(shí)|目|標(biāo) 1.通過觀察生活中的圓形物體和自己畫圓,理解圓的有關(guān)概念. 2.通過測量比較,能判斷點(diǎn)與圓的位置關(guān)系. 3.在復(fù)習(xí)回顧中心對(duì)稱與軸對(duì)稱的基礎(chǔ)上,理解圓的對(duì)稱性. 目標(biāo)一 理解圓的有關(guān)概念 例1 教材補(bǔ)充例題下列四個(gè)說法:①半徑確定了,圓就確定了;②直徑是弦;③弦是直徑;④半圓是弧,但弧不一定是半圓;⑤長度相等的弧是等?。渲绣e(cuò)誤的說法有( ) A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè) 例2 教材補(bǔ)充例題如圖2-1-1所示,已知CD是⊙O的直徑,∠EOD=78,點(diǎn)A在DC的延長線上,AE交⊙O于點(diǎn)B,且AB=OC,求∠A的度數(shù). 圖2-1-1 【歸納總結(jié)】圓中容易混淆的兩組基本概念: (1)弦與直徑: ①直徑是弦,是圓中最長的弦,但弦不一定是直徑; ②弦是連接圓上任意兩點(diǎn)的線段,但直徑是經(jīng)過圓心的弦. (2)弧與半圓: ①半圓是弧,但弧不一定是半圓; ②圓上任意兩點(diǎn)分圓成兩段弧,圓上任意一條直徑的兩個(gè)端點(diǎn)把圓分成兩條弧,每一條弧叫作半圓. 目標(biāo)二 能判斷點(diǎn)與圓的位置關(guān)系 例3 教材補(bǔ)充例題xx陜西模擬⊙O的半徑為5,圓心O的坐標(biāo)為(0,0),點(diǎn)P的坐標(biāo)為(4,2),則點(diǎn)P與⊙O的位置關(guān)系是( ) A.點(diǎn)P在⊙O內(nèi) B.點(diǎn)P的⊙O上 C.點(diǎn)P在⊙O外 D.點(diǎn)P在⊙O上或⊙O外 【歸納總結(jié)】判斷點(diǎn)與圓的位置關(guān)系的方法: (1)判斷點(diǎn)與圓的位置關(guān)系的“三步法”:①連接該點(diǎn)和圓心;②計(jì)算該點(diǎn)與圓心之間的距離d;③依據(jù)圓的半徑r與d的大小關(guān)系得出結(jié)論. (2)點(diǎn)與圓的位置關(guān)系可以轉(zhuǎn)化為點(diǎn)到圓心的距離與半徑的關(guān)系,這是從形到數(shù)的認(rèn)識(shí);反過來,也可以通過點(diǎn)到圓心的距離與半徑的關(guān)系來判斷點(diǎn)與圓的位置關(guān)系,這是從數(shù)到形的認(rèn)識(shí). 目標(biāo)三 理解圓的對(duì)稱性 例4 教材補(bǔ)充例題在研究圓的有關(guān)性質(zhì)時(shí),我們?cè)鲞^這樣的一個(gè)操作“將一張圓形紙片沿著它的任意一條直徑翻折,可以看到直徑兩側(cè)的兩個(gè)半圓互相重合”.由此說明( ) A.圓是中心對(duì)稱圖形,圓心是它的對(duì)稱中心 B.圓是軸對(duì)稱圖形,任意一條直徑所在的直線都是它的對(duì)稱軸 C.圓的直徑互相平分 D.直徑是圓內(nèi)最長的弦 【歸納總結(jié)】圓的對(duì)稱性: (1)軸對(duì)稱性:圓是對(duì)稱軸最多的軸對(duì)稱圖形,任意一條直徑所在的直線都是它的對(duì)稱軸,或者說過圓心的任意一條直線都是它的對(duì)稱軸. (2)中心對(duì)稱性:圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形.事實(shí)上圓繞著圓心旋轉(zhuǎn)任意角度都能和自身重合,圓的這一性質(zhì)也稱為圓的旋轉(zhuǎn)不變性. 知識(shí)點(diǎn)一 圓的定義 圓是平面內(nèi)到一定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形,這個(gè)定點(diǎn)叫作圓心,定長叫作半徑.圓也可以看成是平面內(nèi)一個(gè)動(dòng)點(diǎn)繞一個(gè)定點(diǎn)旋轉(zhuǎn)一周所形成的圖形,定點(diǎn)叫作圓心,定點(diǎn)與動(dòng)點(diǎn)的連線段叫作半徑. 知識(shí)點(diǎn)二 點(diǎn)與圓的位置關(guān)系 設(shè)⊙O的半徑為r,點(diǎn)P到圓心O的距離為d,則點(diǎn)與圓的三種位置關(guān)系和d與r的大小關(guān)系的對(duì)應(yīng)關(guān)系如下表: 點(diǎn)與圓 的位置 關(guān)系 圖形表示 點(diǎn)到圓心的距離 d與半徑r的關(guān)系 點(diǎn)在 圓內(nèi) 點(diǎn)P在⊙O內(nèi)?d<r 點(diǎn)在 圓上 點(diǎn)P在⊙O上?d=r 點(diǎn)在 圓外 點(diǎn)P在⊙O外?d>r [注意] 符號(hào)“?”讀作“等價(jià)于”,它表示從符號(hào)“?”的左端可以得到右端,從右端也可以得到左端. 知識(shí)點(diǎn)三 圓的有關(guān)概念 1.弦、直徑 弦:連接圓上任意兩點(diǎn)的______叫作弦. 直徑:經(jīng)過______的弦叫作直徑. 直徑是圓中______的弦. 2.弧、半圓、優(yōu)弧、劣 弧:圓上任意________的部分叫作圓弧,簡稱弧. 半圓:圓的任意一條直徑的兩個(gè)端點(diǎn)把圓分成兩條弧,每一條弧都叫作半圓. 劣弧:小于半圓的弧是劣?。? 優(yōu)?。捍笥诎雸A的弧是優(yōu)?。? 3.弦與弧的區(qū)別: 弦 弧 定義 連接圓上任意兩點(diǎn)的線段叫作弦 圓上任意兩點(diǎn)間的部分叫作圓弧,簡稱弧 表示 用線段形式表示,如CD 用符號(hào)“⌒”表示,如 區(qū)分 弦與直徑的關(guān)系 弧與半圓的關(guān)系 4.把能夠重合的兩個(gè)圓叫作______,把能夠互相重合的弧叫作______. 知識(shí)點(diǎn)四 圓的對(duì)稱性 圓是軸對(duì)稱圖形,任意一條直徑所在的直線都是圓的對(duì)稱軸,圓又是中心對(duì)稱圖形,______是它的對(duì)稱中心. [點(diǎn)撥] “直徑是圓的對(duì)稱軸”這一說法是錯(cuò)誤的,因?yàn)閷?duì)稱軸都是直線,而直徑是線段. 1.判斷正誤: (1)弦是直徑;( ) (2)半圓是??;( ) (3)長度相等的弧是等弧;( ) (4)經(jīng)過圓內(nèi)一點(diǎn)可以作無數(shù)條直徑.( ) 2.若一個(gè)點(diǎn)到一個(gè)圓的最短距離為4 cm,最長距離為8 cm,則這個(gè)圓的半徑為________. 答案:6 cm 以上答案是否正確?若不正確,請(qǐng)給出正確的答案. 教師詳解詳析 【目標(biāo)突破】 例1 [解析] C 根據(jù)圓、直徑、弦、半圓等概念來判斷.半徑確定了,只能說明圓的大小確定了,但是位置沒有確定;直徑是弦,但弦不一定是直徑;能夠互相重合的弧叫作等弧,所以①③⑤的說法是錯(cuò)誤的. 例2 [解析] 已知∠EOD=78,與∠A構(gòu)成了內(nèi)、外角的關(guān)系,而∠E的度數(shù)也未知,且AB=OC這一條件不能直接使用,因此想到同圓的半徑相等,需作半徑OB,從而得到OB=AB. 解:如圖,連接OB. ∵AB=OC,OB=OC, ∴AB=OB, ∴∠A=∠1. 又∵OB=OE, ∴∠E=∠2=∠1+∠A=2∠A,∴∠DOE=∠E+∠A=3∠A. 而∠DOE=78, ∴3∠A=78, ∴∠A=26. 例3 A 例4 [解析] B 根據(jù)將一張圓形紙片沿著它的任意一條直徑翻折,可以看到直徑兩側(cè)的兩個(gè)半圓互相重合,顯然說明了圓的軸對(duì)稱性. 【總結(jié)反思】 [小結(jié)] 知識(shí)點(diǎn)三 1.線段 圓心 最長 2.兩點(diǎn)間 4.等圓 等弧 知識(shí)點(diǎn)四 圓心 [反思] 1.(1) (2)√ (3) (4) [解析] 直徑是弦,但弦不一定是直徑,故(1)不正確;弧包括半圓、優(yōu)弧和劣弧,故(2)正確;等弧是能夠重合的弧,故(3)不正確;經(jīng)過圓內(nèi)一點(diǎn)只能作一條直徑或無數(shù)條直徑(圓內(nèi)一點(diǎn)正好是圓心),故(4)不正確. 反思:要切實(shí)去掌握弦、直徑、弧、等弧等各種概念的包含關(guān)系與成立條件. 2.不正確.當(dāng)點(diǎn)P在⊙O內(nèi)時(shí)(如圖①),此時(shí)PA=4 cm,PB=8 cm,AB=12 cm,因此圓的半徑為6 cm; 當(dāng)點(diǎn)P在⊙O外時(shí)(如圖②),此時(shí)PA=4 cm,PB=8 cm,直線PB過圓心O,直徑AB=PB-PA=8-4=4(cm),因此圓的半徑為2 cm. 所以這個(gè)圓的半徑為6 cm或2 cm. 圖① 圖② 反思:在沒有圖形的情況下要進(jìn)行分類討論.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018-2019學(xué)年九年級(jí)數(shù)學(xué)下冊(cè) 第2章 2.1 圓的對(duì)稱性練習(xí) 新版湘教版 2018 2019 學(xué)年 九年級(jí) 數(shù)學(xué) 下冊(cè) 對(duì)稱性 練習(xí) 新版 湘教版
鏈接地址:http://ioszen.com/p-3697455.html