裝配圖大學(xué)生方程式賽車設(shè)計(模具及卡具設(shè)計)(有cad圖+三維圖)
裝配圖大學(xué)生方程式賽車設(shè)計(模具及卡具設(shè)計)(有cad圖+三維圖),裝配,大學(xué)生,方程式賽車,設(shè)計,模具,卡具,cad,三維
為汽車信息娛樂系統(tǒng)研究的自動化測試系統(tǒng)
黃英萍、羅斯麥克莫倫、馬克奧克·賽跟、甘王特·戴赫拉、皮特·瓊斯、彼得·貝內(nèi)特、亞歷山德·羅斯、莫扎·特可、簡·凱樂其
收到:2009年12月18日/接受:2010年3月12日在線發(fā)表:2010年4月15日#施普林格出版社倫敦有限公司2010年
摘要 當(dāng)前的溢價車輛實施的各式各樣的信息、娛樂和通信一般稱為信息娛樂系統(tǒng)。在汽車的發(fā)展期間,信息娛樂測試系統(tǒng)整體一級是常規(guī)地進(jìn)行由專家可以觀察一個客戶手動出級別。這種方法有明顯的限制方面若要測試覆蓋率和效力由于的復(fù)雜性系統(tǒng)函數(shù)和人類的能力。因此,它是為自動化汽車制造商所要求的高度測試系統(tǒng),將復(fù)制人類的信息娛樂系統(tǒng)包括有關(guān)感官方式有關(guān)的專家控制(即,接觸)和觀察(即,視線和聲音)下測試系統(tǒng)。本白皮書介紹了設(shè)計、開發(fā)和評價的這種系統(tǒng),包括基于視覺的車輛網(wǎng)絡(luò)仿真檢查、自動導(dǎo)航功能,隨機(jī)手搖波形產(chǎn)生、完善的檢測和測試自動化。開發(fā)的系統(tǒng)是能夠:刺激車輛系統(tǒng)跨越多各式各樣的初始化條件下,行使的每個函數(shù),請檢查系統(tǒng)反應(yīng),并為事后檢測記錄故障情況分析。
黃英萍、羅斯麥克莫倫、馬克奧克·賽跟:甘王特·戴赫拉沃里克制造集團(tuán),沃里克大學(xué),考文垂工程學(xué)院和國際癌癥研究機(jī)構(gòu),沃里克大學(xué)英國考文垂體育班尼特,捷豹路虎工程中心
關(guān)鍵字:自動測試,信息娛樂系統(tǒng),圖像處理,建模與仿真,回路硬件,魯棒性,變形
簡介 信息娛樂系統(tǒng)提供的各種信息,娛樂和通訊功能的車輛司機(jī)和乘客。典型的職能是路線的指導(dǎo),收音機(jī)和CD播放、視頻等音頻娛樂娛樂電視和移動電話的接口等作為以及對用戶的相關(guān)的接口功能控制系統(tǒng)。一直在這大增長驅(qū)動的消費類電子產(chǎn)品的迅速發(fā)展的領(lǐng)域和客戶期望有這些功能他們的車輛。這是的例子環(huán)繞聲,DVD娛樂系統(tǒng),iPod連接,數(shù)字無線電和電視和語音激活。
與這種增長的功能已在技術(shù)上的復(fù)雜性相應(yīng)增加系統(tǒng)。在當(dāng)前的溢價車輛,信息娛樂系統(tǒng)系統(tǒng)通常實現(xiàn)為一個分布式系統(tǒng)組成的通信通過一個高的模塊數(shù)目高速光纖網(wǎng)絡(luò)等媒體導(dǎo)向系統(tǒng)運輸(大部分)。在此實現(xiàn)信息娛樂系統(tǒng)系統(tǒng)其實是系統(tǒng)的系統(tǒng)(SOS)與個人系統(tǒng)有了自主權(quán),以實現(xiàn)其功能,但共享資源,如Human–Machine接口(HMI),揚(yáng)聲器和通信通道[1]。典型這種SOS的問題是突發(fā)行為作為系統(tǒng)以意外的方式,特別是在期間進(jìn)行交互哪里有可能對一些初始化條件在單個系統(tǒng)中獲取的延誤和失敗。這些可能被行使系統(tǒng)。在汽車的發(fā)展,揚(yáng)天的信息娛樂系統(tǒng)是極其重要和按照慣例進(jìn)行手動的工程師的人可以在客戶層面觀察,但這與限制一方面要測試覆蓋面和有效性。第一次限制是可用來做手動測試的時間,受發(fā)展的時間尺度和工程師的約束工作時間。第二個是測試的在重復(fù)性,這是受人為錯誤。因此,有自動化信息娛樂的要求測試的能力,其中復(fù)制包括有關(guān)人類專家有關(guān)控制感官方式(即,觸摸和聲音)和觀察(即,視線和聲音)下的系統(tǒng)測試。這種測試功能必須能夠刺激各式各樣的初始化條件跨系統(tǒng)包括那些被視為根據(jù)搖、電池電量低或故障條件下,行使的每個函數(shù),請檢查系統(tǒng)響應(yīng)和記錄相關(guān)的數(shù)據(jù),例如,大多數(shù)總線跟蹤,在隨后的分析故障。這文件描述的設(shè)計和發(fā)展這種作為一部分的英國學(xué)術(shù)和工業(yè)collabora-系統(tǒng)本族語的說法到復(fù)雜系統(tǒng)的驗證項目。
在于系統(tǒng)中,硬件-中環(huán)(HIL)平臺受支持的基模型的方法模擬車輛網(wǎng)絡(luò)實時和動態(tài)地提供各類根據(jù)測試的信息娛樂系統(tǒng)的重要信號。自針對某些反映系統(tǒng)的響應(yīng)觸摸屏、機(jī)器視覺系統(tǒng)的顯示是被雇用來監(jiān)測檢驗屏幕圖案、文字和警告燈告訴-故事的正確性。信息娛樂功能的大多數(shù)由訪問通過集成的觸摸屏幕的用戶。為了實現(xiàn)完全自動化的測試,一種新型電阻模擬技術(shù)的目的是要模擬操作的觸摸屏幕。它是已知該電壓瞬變過程,如發(fā)動機(jī)的啟動瞬時電流突可以到達(dá)800A,可能會導(dǎo)致在系統(tǒng)上的一些故障。若要測試針對低電壓瞬變條件下,系統(tǒng)的穩(wěn)定性瞬態(tài)波形發(fā)生器的制定是為了模仿三具體的瞬態(tài)過程。測試自動化軟件集成并控制所有設(shè)備,形成完全自動化測試過程,可以不斷地在天運行或甚至一個星期。不只會讓開發(fā)的測試系統(tǒng)各種測試可能、可重復(fù)的并且非??煽?,而且還大大提高了檢測效率和簡化了的任務(wù)繁瑣的驗證測試。
基于模型的功能的電子測試已以實施控制單元(ECU)使用HIL在過去幾年的汽車制造商[2-5].目前,捷豹路虎(JLR)已通過HIL自動化測試和驗證的電子身體系統(tǒng)、動力總成和底盤控制系統(tǒng)[6,7]。這種技術(shù)的好處包括制造工藝(2010)51:233–246自動化測試,較早前測試物理原型之前車輛生成、魯棒性和動態(tài)執(zhí)行能力測試和減少供應(yīng)商軟件迭代。機(jī)器視覺系統(tǒng)已在許多生產(chǎn)-使用圖靈應(yīng)用程序如汽車[8-10]、機(jī)器人指導(dǎo)[11],和焊接缺陷跟蹤[12,13]。作者還雇用機(jī)器視覺的技術(shù)高級驅(qū)動程序助理系統(tǒng)的障礙檢測[14,15]。然而,沒有研究有報道使用機(jī)器視覺系統(tǒng)的設(shè)計驗證測試。驗證測試在設(shè)計階段是非常不同從測試中制造。首先,設(shè)計驗證測試需要覆蓋了大量不同的測試用例,而不是限制,設(shè)置要證明正確的設(shè)計。的時這輛車是在生成測試用例的必由之路早期發(fā)展階段使用基于模型的測試技術(shù),模擬在車輛運行條件真正的時間。第二,設(shè)計驗證測試要求魯棒性評價,迭代和重復(fù)測試雖然它不需要大批量的零件的進(jìn)行了測試。第三,設(shè)計驗證測試需要頻繁的為不同類型的汽車測試系統(tǒng)的適應(yīng)或為同一輛車不同的發(fā)展階段。其中一個新奇的這篇論文是機(jī)器的集成遠(yuǎn)景和HIL技術(shù)的復(fù)雜設(shè)計驗證測試。此外,本文件提出一種新型的偽─隨機(jī)生成三個電壓瞬變的概念允許模仿隨機(jī)測試的波形進(jìn)程作為在實際情況下,見過,并且還可以對測試重新生成,作進(jìn)一步調(diào)查。此外,共同的辦法來模仿觸摸的操作由一個人類的屏幕是使用機(jī)器人武器。在此設(shè)計中,狡猾的電阻模擬方法替換機(jī)器人要實現(xiàn)這一目標(biāo)的武器。方法可以完全地通過使用HIL模擬器,在軟件中實現(xiàn)因此消除的復(fù)雜機(jī)械的需要設(shè)備,如機(jī)器人武器、氣動/液壓、和電磁致動器。
2系統(tǒng)配置
為測試開發(fā)的系統(tǒng)的配置信息娛樂系統(tǒng)是圖中所示1。該系統(tǒng)由組成六個關(guān)鍵要素包括下測試,HIL股測試儀、機(jī)器視覺(照相機(jī)),觸摸的操作屏幕、瞬態(tài)波形發(fā)生器和自動化測試。
根據(jù)測試的信息娛樂系統(tǒng)包括一個數(shù)包括無線電/CD播放機(jī),模塊的放大器(AMP)、導(dǎo)航系統(tǒng)、藍(lán)色牙/電話USB,車輛安裝程序、輔助音頻接口和氣候控制功能。HMI主要基于7″TFT電阻控制小組(ICP)在中心控制臺和遠(yuǎn)程在方向盤上的控件。音頻輸出是通過DSP放大器。模塊之間的通信是通過執(zhí)行控制、數(shù)據(jù)和音頻最光巴士信息。信息娛樂系統(tǒng)連接到通過模塊稱為ICM作為車輛的其余部分大多數(shù)之間的網(wǎng)關(guān)和車輛控制器地區(qū)網(wǎng)絡(luò)(CAN)總線。值得注意的是ICP和遠(yuǎn)程控制方向盤上駐留在該車輛CAN總線。此外,在連接了大多數(shù)分析儀在測試過程中的最環(huán)。最分析儀是由HIL測試儀通過數(shù)字輸出,以觸發(fā)控制日志記錄的最大跟蹤發(fā)生故障時。HIL測試儀模擬測試系統(tǒng)內(nèi),車輛網(wǎng)絡(luò)和動態(tài)地提供了各種必要根據(jù)測試的信息娛樂系統(tǒng)的信號。它還充當(dāng)若要控制其他設(shè)備的控制中心。例如,它將發(fā)送通過串行端口觸發(fā)相機(jī)和接收命令從照相機(jī),檢查結(jié)果。機(jī)器視覺(照相機(jī))系統(tǒng)檢查對系統(tǒng)的響應(yīng)監(jiān)測觸摸屏等模式的顯示和文本。觸摸屏的操作是通過實現(xiàn)的。使用一種阻力模擬方法,哪個是執(zhí)行-HIL測試儀中的mented。通過使用此方法的測試系統(tǒng)可以獲取大部分的信息娛樂系統(tǒng)功能。瞬態(tài)波形生成器生成電壓信號和通過的信息娛樂系統(tǒng)通電可編程電源產(chǎn)品供應(yīng)商。波形發(fā)生器,模仿三個電壓瞬變過程,用于針對低電壓事件測試系統(tǒng)的穩(wěn)定性。的在要集成的宿主計算機(jī)中運行自動化測試和控制所有設(shè)備,形成一個完全自動化的測試進(jìn)程。另外,已經(jīng)與主機(jī)PC通過TCP/IP以太網(wǎng)通信-機(jī)器視覺系統(tǒng)揚(yáng)天。此鏈接允許存儲的時間戳中的圖像主機(jī)PC這樣的測試下單位的行為可以檢討脫機(jī)的測試結(jié)果。以下各節(jié)描述的各個元素的自動化測試系統(tǒng)包括HIL測試儀、基于視覺檢驗、自動化的觸摸屏操作,瞬變波形發(fā)生器和測試實驗。
3、HIL測試儀
條目模擬器[16]用來形成一個硬件-中-半實物仿真試驗系統(tǒng)。HIL測試系統(tǒng)模擬車輛CAN總線提供電源模式對大多數(shù)網(wǎng)絡(luò)通過大多數(shù)網(wǎng)關(guān)的信號。它此外模擬ICP經(jīng)營的信息娛樂系統(tǒng)。此外,HIL測試儀還提供RS232串行與相機(jī)和瞬態(tài)進(jìn)行通信的接口波形發(fā)生器、電阻模擬操作觸摸屏和A/D接口檢測聲音和聲音頻率測量。
模擬器由仿真模型組成的條目和如圖中所示的擴(kuò)展硬件2。擴(kuò)展框中包括一個處理器板DS1006和一個接口板DS2211。DSP板運行的仿真模型,雖然接口板提供了不同的界面鏈接與其他設(shè)備,如罐頭,抵抗的產(chǎn)出,A/D轉(zhuǎn)換器、模擬/數(shù)字輸入和輸出和RS232來控制機(jī)器視覺系統(tǒng)的串行通信。
在HIL系統(tǒng)中,實現(xiàn)了仿真模型在MATLAB/仿真/Stateflows和已編譯使用自動C代碼生成函數(shù)的Matlab的實時實時執(zhí)行車間。
3.1模擬的電源模式
信息娛樂系統(tǒng)的行為是由一個稱為“電源模式”的罐決定的,例如,指示該車輛的運行狀態(tài)'點火關(guān)閉,''上,點火''發(fā)動機(jī)搖,''引擎運行,'等。若要測試性能的信息娛樂系統(tǒng)系統(tǒng)在搖的條件下,根據(jù)測試車必須是在當(dāng)應(yīng)用搖'引擎搖'的狀態(tài)瞬變電壓到這輛車。此外,任何后續(xù)必須在'引擎運行'進(jìn)行功能測試后搖的狀態(tài)。在真正的賽車,電源模式的消息傳送的身體ECU連接到罐頭。因為我們在測試上一個測試的信息娛樂系統(tǒng)。有時,為了表示真車的平臺生成正確的電源模式行為,我們利用可HIL測試儀來模擬身體ECU的模擬傳輸功率模式消息到大多數(shù)的網(wǎng)關(guān)。
3.2ICP仿真
備信息娛樂系統(tǒng)的集成控件面板為用戶提供了一些硬鍵的操作系統(tǒng)。ICP備控制的職能包括:選擇的音頻源,加載和彈出CD,向上/向下尋找廣播電臺和CD曲目、音量控件,依此類推。若要啟用這些自動化測試必須的檢測中心,由控制職能,ICP備條目實時模擬器。
ICP備電子控制單元與車輛的接口通過車輛罐頭。因此,模擬ICP單位通過使用的條目模擬器可以模擬。圖所示的ICP備仿真模型
3.3.3聲音檢測
一個簡化的版的仿真模型RS232串行通信是圖中所示5。A傳輸?shù)南⒁曰剀嚪Y(jié)束和有10個字節(jié)的最大長度。已收到的郵件8個字節(jié)的固定的長度。第一次3個字節(jié)給出的結(jié)果雖然以下5個字節(jié)指示結(jié)果名稱值。例如,積極跟蹤號碼是縮寫形式4基于視覺檢查完善的檢測包含兩個方面即檢測聲音打開或關(guān)閉和檢測的頻率(統(tǒng)治)聲音。聲音信號的采樣從揚(yáng)聲器作為結(jié)束圖中所示1,并轉(zhuǎn)換成數(shù)字信號的AD內(nèi)的條目模擬器的轉(zhuǎn)換器。打開/關(guān)閉聲音確定檢查信號的振幅。的聲音頻率由特定電路的檢測模擬器。檢測聲音頻率的目的,是若要確定聲音源和積極裁談會跟蹤。
3.4模擬的串行通信
RS232串行通信用來建立HIL測試儀與相機(jī)之間的聯(lián)系和因此,關(guān)閉循環(huán)測試的瞬態(tài)波形發(fā)生器可以執(zhí)行。在測試期間,HIL測試儀是控制中心指揮相機(jī)和瞬變波形發(fā)生器和以獲得檢驗結(jié)果從他們。例如,相機(jī)需要若要選擇特定的圖像處理作業(yè)所吩咐為特定的測試文件。生成的檢查結(jié)果相機(jī)需要返回到HIL測試儀。瞬態(tài)波形發(fā)生器需要com扔下去砸到生成特定啟動波形特定的測試。參數(shù)的波形造成故障需要返回到HIL測試人員以便可以在中重復(fù)此特定的測試以后的分析階段。
4.1機(jī)器視覺系統(tǒng)
機(jī)器視覺系統(tǒng)包括一臺相機(jī),照明、光學(xué)和圖像處理軟件??的鸵曇暰€彩色視覺傳感器[17]被選擇的圖像采集和加工,其中提供640×480像素的分辨率和32MB的閃存。采集速率的視覺傳感器是60全幀每秒。圖像采集是通過逐行掃描。圖像提供了處理軟件(視線在資源管理器Ver4.2.0)寬庫的視覺工具用于特征識別核查、測量和測試應(yīng)用程序。PatMaxTM技術(shù)的一部分夾具和先進(jìn)閱讀的光學(xué)字符識(OCR)工具文[17]可在軟件中。主照明的來源是從光與LED環(huán)定向的前臺照明,提供了高對比度之間的對象和背景。所選的內(nèi)容光學(xué)鏡頭取決于字段的視圖和工作距離。在該設(shè)置下,鏡頭焦距為8毫米使用。圖像處理任務(wù)可以被分配到在攝像機(jī)閃存中存儲的不同的作業(yè)文件。在中組織這項工作,圖像處理的工作了根據(jù)系統(tǒng)功能與五個作業(yè)文件相對應(yīng)的五個顯示頁面。每個作業(yè)的文件進(jìn)行所有視覺檢查所需的測試頁規(guī)格。在這次的視覺巡查工作可以分為三類,如下所示。
4.2檢查的模式
絕大多數(shù)信息娛樂功能用戶可以通過觸摸屏操作。因此,大部分的功能測試是檢查是否屏幕給出正確像預(yù)期的那樣顯示。例如,我們需要檢查頁,溫度格式,時鐘格式,收音機(jī)/CD的來源,等等。這種檢查可以通過檢測在特定的屏幕區(qū)域中的模式。圖6給檢查的主頁上顯示的示例。最初,主頁的左上方模式被訓(xùn)練使用PatMaxTM工具和主控形狀圖案作為存儲。在測試期間,捕獲映像從測試下股與受過訓(xùn)練的模式進(jìn)行比較。頁的認(rèn)識到基于模式匹配返回積分從PatMaxTM工具。如圖中所示6首頁頁有99.9,而其他匹配的得分最高頁"音頻"、"氣候"和"通訊"還有更低匹配的分?jǐn)?shù)。作者也適用帕特MaxTM工具檢測的車輛儀器群集。有關(guān)如何更詳細(xì)信息PatMaxTM工具介紹工作[7].
Int J Adv Manuf Technol (2010) 51:233–246
DOI 10.1007/s00170-010-2626-2
ORIGINAL ARTICLE
Development of an automated testing system
for vehicle infotainment system
Yingping Huang & Ross McMurran & Mark Amor-Segan & Gunwant Dhadyalla &
R. Peter Jones & Peter Bennett & Alexandros Mouzakitis & Jan Kieloch
Received: 18 December 2009 / Accepted: 12 March 2010 / Published online: 15 April 2010
# Springer-Verlag London Limited 2010
Abstract A current premium vehicle is implemented with
a variety of information, entertainment, and communication
functions, which are generally referred as an infotainment
system. During vehicle development, testing of the info-
tainment system at an overall level is conventionally carried
out manually by an expert who can observe at a customer
level. This approach has significant limitations with regard
to test coverage and effectiveness due to the complexity of
the system functions and human’s capability. Hence, it is
highly demanded by car manufacturers for an automated
infotainment testing system, which replicates a human
expert encompassing relevant sensory modalities relating
to control (i.e., touch) and observation (i.e., sight and
sound) of the system under test. This paper describes the
design, development, and evaluation of such a system that
consists of simulation of vehicle network, vision-based
inspection, automated navigation of features, random
cranking waveform generation, sound detection, and test
automation. The system developed is able to: stimulate a
vehicle system across a wide variety of initialisation
conditions, exercise each function, check for system
responses, and record failure situations for post-testing
analysis.
Y. Huang (*) : R. McMurran : M. Amor-Segan : G. Dhadyalla
Warwick Manufacturing Group, University of Warwick,
Coventry CV4 7AL, UK
e-mail: yingping.huang@warwick.ac.uk
R. P. Jones
School of Engineering and IARC, University of Warwick,
Coventry, UK
P. Bennett : A. Mouzakitis : J. Kieloch
Jaguar Land Rover, Engineering Centre,
Coventry, UK
Keywords Automatic testing . Infotainment .
Image processing . Modeling and simulation .
Hardware-in-the-loop . Robustness . Validation
1 Introduction
An infotainment system provides a variety of information,
entertainment, and communication functions to a vehicle’s
driver and passengers. Typical functions are route guidance,
audio entertainment such as radio and CD playback, video
entertainment such as TV and interface to mobile phones, as
well as the related interface functions for the users to
control the system. There has been a large growth in this
area driven by rapid developments in consumer electronics
and the customer expectations to have these functions in
their vehicles. Examples of this are surround sound, DVD
entertainment systems, iPod connectivity, digital radio and
television, and voice activation.
With this growth in features there has been a
corresponding increase in the technical complexity of
systems. In a current premium vehicle, the infotainment
system is typically implemented as a distributed system
consisting of a number of modules communicating via a high
speed fiber optic network such as Media Orientated Systems
Transport (MOST). In this implementation the infotainment
system is in fact a System of Systems (SOS) with individual
systems having autonomy to achieve their function, but
sharing resources such as the Human–Machine Interface
(HMI), speakers, and communication channel [1]. Typical
issues with such SOS are emergent behavior as systems
interact in an unanticipated manner particularly during
some initialisation conditions where it may be possible to
get delays and failures in individual systems. These may
not be readily observable until the particular part of the
234
system is exercised. During vehicle development, valida-
tion of the infotainment system is extremely important and
is conventionally carried out manually by engineers who
can observe at a customer level but this has limitations with
regard to test coverage and effectiveness. The first
limitation is the time available to do manual tests, which
is constrained by the development time scale and engineer’s
working hours. The second is in the repeatability of the test,
which is subject to human error. Hence, there is a
requirement for an automated infotainment test capability,
which replicates a human expert encompassing relevant
sensory modalities relating to control (i.e., touch and voice)
and observation (i.e., sight and sound) of the system under
test. This test capability must be able to stimulate the
system across a wide variety of initialisation conditions
including those seen under cranking, low battery or fault
conditions, exercise each function, check for system
responses, and record related data, e.g., MOST bus trace,
in the case of a malfunction for subsequent analysis. This
paper describes the design and development of such a
system as part of a UK academic and industrial collabora-
tive project into the validation of complex systems.
In the system, a Hardware-in-the-Loop (HIL) platform
supported by a model-based approach simulates the vehicle
network in real time and dynamically provides various
essential signals to the infotainment system under test. Since
the responses of the system are majorly reflected in the
display of the touch screen, a machine vision system is
employed to monitor the screen for inspection of the
correctness of the patterns, text, and warning lights/tell-tales.
The majority of infotainment functions are accessed by the
user through an integrated touch screen. In order to achieve a
fully automated testing, a novel resistance simulation
technique is designed to simulate the operation of the touch
screen. It is known that voltage transient processes, such as
engine start where an instantaneous current inrush can reach
800 A, may result in some failures on the system. To test the
system robustness against low voltage transient conditions, a
transient waveform generator is developed to mimic three
specific transient processes. A testing automation software
integrates and controls all devices to form a fully automated
test process, which can be run continuously over days or
even weeks. The developed testing system not only makes
various testing possible, repeatable, and robust, but also
greatly improves testing efficiency and eases the task of
tedious validation testing.
Model-based testing of functionality of an Electronic
Control Unit (ECU) using HIL has been implemented by
automotive manufacturers over the last few years [2–5].
Currently, Jaguar Land Rover (JLR) has adopted the HIL
technology for automated testing and validation of elec-
tronic body systems, powertrain, and chassis control
systems [6, 7]. The benefits of this technology include
Int J Adv Manuf Technol (2010) 51:233–246
automated testing, earlier testing before physical prototype
vehicle build, ability to perform robustness and dynamic
testing, and reduction of supplier software iterations.
Machine vision systems have been used in many manufac-
turing applications such as automotive [8–10], robotic
guidance [11], and tracing soldering defects [12, 13]. The
author also employed machine vision technology for
obstacle detection in advanced driver assistant systems
[14, 15]. However, no research has been reported using a
machine vision system for design validation testing.
Validation testing in the design stage is very much different
from testing in manufacturing. Firstly, design validation
testing requires diverse test cases covering a large number
of, rather than a restricted, set to prove proper design. The
only way to generate the test cases when the car is in the
early development phases is using model-based testing
techniques, which simulate vehicle-operating conditions in
real time. Secondly, design validation testing requires
iterative and repeated tests for robustness evaluation,
although it does not require a high volume of parts to be
tested. Thirdly, design validation testing needs frequent
adaptation of the testing system for different types of cars
or for different development stages of the same car. One
novelty of this paper is the integration of the machine
vision and HIL techniques for complex design validation
testing. In addition, the paper proposes a novel pseudo-
random concept for generating three voltage transient
waveforms, which allows the testing to mimic the random
process as seen in real cases, and also enables the testing to
be regenerated for further investigations. Furthermore, a
common approach to mimic the operation of the touch
screen by a human is by using robot arms. In this design, a
crafty resistance simulation approach replaces the robot
arms to achieve the goal. The approach can be completely
implemented in software by using the HIL simulator,
therefore eliminating the need of complicated mechanical
devices such as robot arms, pneumatic/hydraulic, and
solenoid actuators.
2 System configurations
The configuration of the system developed for testing the
infotainment system is shown in Fig. 1. The system consists
of six vital elements including the unit under test, HIL
tester, machine vision (camera), operation of the touch
screen, transient waveform generator, and test automation.
The infotainment system under test consists of a number
of modules including the radio/CD player, amplifier
(AMP), navigation system, blue tooth/telephone/USB,
vehicle setup, auxiliary audio interface, and climate control
functions. The HMI is based primarily on a 7″ TFT resistive
touch screen with additional hard keys on an Integrated
Int J Adv Manuf Technol (2010) 51:233–246
Images (referenced to test)
Ethernet
RS232 Serial
Camera
235
Vision Test
Trigger
Test
Results
Control Parameters
HIL Tester
Resistive control of touch screen
Host
PC
Optical
CAN
Touch
Screen
Capture Data
Test Automation
scripts
Test Script
Precondition….test….post condition
Precondition….test….post condition
Trigger Low
Voltage test
profile
RS232
ICP &
Remote Cont
Climate/Setu
p/Interface
ICM
gateway
Precondition….test….post condition
Precondition….test….post condition
Precondition….test….post.test….post condition
……………………….
Precondition .test….post condition
Precondition .test….post condition
Precondition .test….post condition
Power
Supply
Radio/CD
player
MOST
Ring
Optolyser
analyzer
Precondition .test….post condition
…………………….…
Blue tooth/
MOST Analyzer
trigger
Fig. 1 System configuration
Transient waveform
generator
Audio output monitoring
Navigation
AMP
Phone/USB
Control Panel (ICP) in the center console and remote
controls on the steering wheel. Audio output is via a DSP
amplifier. Communication between the modules is through
a MOST optical bus carrying control, data, and audio
information. The infotainment system is connected to the
rest of the vehicle via a module called ICM acting as a
gateway between MOST and a vehicle Controller Area
Network (CAN) bus. It is worth noting that the ICP and the
remote controls on the steering wheel reside in the vehicle
CAN bus. In addition, a MOST analyzer was connected in
the MOST ring during the testing. The MOST analyzer was
controlled by the HIL tester via digital outputs to trigger the
logging of the MOST traces when a failure occurs.
Within the testing system, the HIL tester simulates the
vehicle network and dynamically provides various essential
signals to the infotainment system under test. It also acts as a
control center to control other devices. For example, it sends
commands via a serial port to trigger the camera and receive
the inspection results from the camera. The machine vision
system (camera) checks the responses of the system by
monitoring the display of the touch screen such as patterns
and text. The operation of the touch screen is achieved by
using a resistance simulation approach, which is imple-
mented in the HIL tester. By using this approach, the testing
system can get access to the majority of infotainment
functions. The transient waveform generator produces
voltage signals and powers up the infotainment system via
a programmable power supplier. The waveform generator,
mimicking three voltage transient processes, is used for
testing system robustness against low voltage events. The
test automation is running in the host computer to integrate
and control all devices to form a fully automated test
process. In addition, the host PC has been linked with the
machine vision system via a TCP/IP Ethernet communica-
tion. This link allows the storage of time-stamped images in
the host PC so that the behavior of the unit under test can be
reviewed offline in terms of the test results. The following
sections describe the individual elements of the automated
testing system including the HIL tester, vision-based
inspection, automated touch screen operation, transient
waveform generator, and test experiments.
3 HIL tester
A dSPACE simulator [16] was used to form a hardware-in-
the-loop simulation test system. The HIL test system
simulates the vehicle CAN bus to provide power mode
signals to the MOST Network via the MOST gateway. It
also simulates the ICP to operate the infotainment system.
Test Results
condition
…
…
…
MOST
…
236
Int J Adv Manuf Technol (2010) 51:233–246
Fig. 2 dSPACE real-time simulator
Simulation Models
Expansion box
Simulation of Power Mode and
integrated control panel - CAN
Digital signal
processor
Power supply control
Simulation of touch Screen operation
and On/Off Switches -resistance
outputs
Sound detection and measuring
sound frequency – A/D inputs
Serial communications RS232
Real-time simulator
Standard I/O
Interface
CAN
I/O RS232
In addition, the HIL tester also provides RS 232 serial
interfaces to communicate with the camera and transient
waveform generator, resistance simulation to operate the
touch screen, and an A/D interface for detecting sound and
measuring sound frequency.
The dSPACE Simulator consists of simulation models and
expansion hardware as shown in Fig. 2. The expansion box
includes one processor board DS1006 and one interface
board DS2211. The DSP board runs the simulation models,
while the interface board provides various interface links
with other devices, such as CAN, resistance outputs, A/D
converters, analog/digital input and output, and RS 232
serial communication to control the machine vision system.
In the HIL system, simulation models are implemented
in MATLAB/Simulink/Stateflows and compiled using the
auto-C-code generation functions of Matlab’s Real-Time
Workshop for real-time execution.
3.1 Simulation of power mode
The behavior of the components of the Infotainment system
is determined by a CAN signal known as ‘Power mode,’
which indicates the operational state of the vehicle e.g.,
‘ignition off,’ ‘ignition on,’ ‘engine cranking,’ ‘engine
running,’ etc. To test the performance of the infotainment
system under cranking conditions, the car under test must be
in the ‘engine-cranking’ state when applying cranking
transient voltages to the car. Moreover, any subsequent
functional tests must be conducted in the ‘engine-running’
state after the cranking. In a real car, power mode messages
are transmitted by the body ECU connected to the CAN.
Since we were testing the infotainment system on a test
platform representing a real car sometimes, in order to
generate the correct power mode behavior, we utilized CAN
simulation of the HIL tester to simulate the body ECU to
transmit power mode messages to the MOST gateway.
3.2 ICP simulation
The Integrated Control Panel of the infotainment system
provides users with a number of hard keys for operating the
system. The functions controlled by the ICP include
selection of the audio sources, loading and ejecting CDs,
seeking up/down for radio stations and CD tracks, volume
controls, and so on. To enable an automated testing of these
functions, the ICP must be controlled by the test center, the
dSPACE real-time simulator.
The ICP electronic control unit interfaces with a vehicle
via the vehicle CAN. Therefore, the ICP unit was simulated
by using the CAN simulation of the dSPACE simulator.
The models of ICP simulation are shown in Fig. 3.
3.3 Sound detection
Sound detection contains two aspects i.e., detecting sound
on or off and detecting the frequency (dominant) of the
sound. The sound signal is sampled from the speaker end as
shown in Fig. 1, and converted into digital signal by an A/D
converter within the dSPACE simulator. The sound on/off
is determined by checking the amplitude of the signal. The
frequency of the sound is detected by the specific circuit of
the simulator. The purpose of detecting sound frequency is
to identify a sound source and active CD track. The model
is shown in Fig. 4.
Int J Adv Manuf Technol (2010) 51:233–246
Fig. 3 Model of ICP simulation
3.4 Simulation of serial communications
The RS232 serial communication is used to establish
the link between the HIL tester with the camera and the
transient waveform generator so that closed loop testing
can be performed. During the test, the HIL tester is the
control center to command the camera and the transient
waveform generator and to obtain the inspection results
from them. For example, the camera needs to be
commanded to select a specific image processing job
file for specific testing. The checking results generated
by the camera need to be returned to the HIL tester.
The transient waveform generator needs to be com-
237
manded to generate a specific cranking waveform for
specific testing. The parameters of the waveform
resulting in a failure need to be returned to the HIL
tester so that this specific testing can be duplicated in
the later analysis stages.
A simplified version of the simulation models of the
RS232 serial communication is shown in Fig. 5. A
transmitted message is ended with a carriage return and
has a maximum length of 10 bytes. A received message has
a fixed length of 8 bytes. The first 3 bytes gives the result
name while the following 5 bytes indicates the result
values. For example, the active track number is abbreviated
as the result name ATN.
238
Fig. 4 Model of sound detection
4 Vision-based inspection
4.1 Machine vision system
The machine vision system consists of a camera, lighting,
optics, and image processing software. A Cognex In-sight
color vision sensor [17] was selected for image acquisition
and processing, which offers a resolution of 640×480 pixels
and a 32-MB flash memory. The acquisition rate of the
vision sensor is 60 full frames per second. The image
acquisition is through progressive scanning. The image
processing software (In-sight Explorer Ver 4.2.0) provides a
wide library of vision tools for feature identification,
verification, measurement, and testing applications. The
PatMaxTM technology for part fixturing and advanced
Optical Character Recognition (OCR) tools for reading
texts [17] are available within the software. The primary
source of illumination is
收藏