江蘇省2019高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題一 三角函數(shù)與平面向量 第3講 平面向量學(xué)案.doc
《江蘇省2019高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題一 三角函數(shù)與平面向量 第3講 平面向量學(xué)案.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《江蘇省2019高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題一 三角函數(shù)與平面向量 第3講 平面向量學(xué)案.doc(18頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第3講 平面向量 [考情考向分析] 1.江蘇高考對(duì)平面向量側(cè)重基本概念與基本計(jì)算的考查.重點(diǎn)是向量的數(shù)量積運(yùn)算.2.向量作為工具,常與三角函數(shù)、數(shù)列、解析幾何等結(jié)合,考查向量的綜合運(yùn)用.解題時(shí)要注意解析法和轉(zhuǎn)化思想的滲透. 熱點(diǎn)一 平面向量的線(xiàn)性運(yùn)算 例1 (1)如圖,在△ABC中,=,DE∥BC交AC于點(diǎn)E,BC邊上的中線(xiàn)AM交DE于點(diǎn)N,設(shè)=a,=b,用a,b表示向量,則=____________. 答案 (a+b) 解析 因?yàn)镈E∥BC,所以DN∥BM, 則△AND∽△AMB,所以=. 因?yàn)椋?,所以? 因?yàn)镸為BC的中點(diǎn), 所以=(+)=(a+b), 所以==(a+b). (2)(2018江蘇啟東中學(xué)模擬)如圖,在梯形ABCD中,AB∥CD,AB=3CD,點(diǎn)E是BC的中點(diǎn).若=x+y,其中x,y∈R,則x+y的值為_(kāi)_______. 答案 解析 由題意得,=(+)=(+3) =(+3-3)=2-, ∴=+, 故x+y=+=. 思維升華 (1)對(duì)于平面向量的線(xiàn)性運(yùn)算,要先選擇一組基底,同時(shí)注意向量共線(xiàn)定理的靈活運(yùn)用. (2)運(yùn)算過(guò)程中重視數(shù)形結(jié)合,結(jié)合圖形分析向量間的關(guān)系. 跟蹤演練1 (1)已知兩點(diǎn)A(1,0),B(1,1),O為坐標(biāo)原點(diǎn),點(diǎn)C在第二象限,且∠AOC=135,設(shè)=-+λ(λ∈R),則λ的值為_(kāi)_______. 答案 解析 由∠AOC=135知,點(diǎn)C在直線(xiàn)y=-x(x<0)上, 設(shè)點(diǎn)C的坐標(biāo)為(a,-a),a<0, ∵=-+λ(λ∈R),∴有(a,-a)=(-1+λ,λ), 得a=-1+λ,-a=λ,消去a得λ=. (2)如圖,一直線(xiàn)EF與平行四邊形ABCD的兩邊AB,AD分別交于E,F(xiàn)兩點(diǎn),且交對(duì)角線(xiàn)AC于點(diǎn)K,其中,=,=,=λ,則λ的值為_(kāi)_______. 答案 解析 ∵=,=, ∴=,=2. 由向量加法的平行四邊形法則可知,=+, ∴=λ=λ(+) =λ=λ+2λ, 由E,F(xiàn),K三點(diǎn)共線(xiàn),得λ+2λ=1,可得λ=. 熱點(diǎn)二 平面向量的數(shù)量積 例2 (1)(2018江蘇興化一中模擬)在△ABC中,點(diǎn)D,E分別在線(xiàn)段AC,BC上,=,若AE,BD相交于點(diǎn)F,且||=,則=________. 答案 3 解析 如圖,由已知,得-=0, ∴(+)-(+)=0, ∴-=0, ∴(+)=0,即=0, ∴BD⊥AE,在Rt△BEF中,=||2=3. (2)(2018江蘇揚(yáng)州中學(xué)模擬)如圖,已知AC=BC=4,∠ACB=90,M為BC的中點(diǎn),D為以AC為直徑的圓上一動(dòng)點(diǎn),則的最小值是________. 答案 8-4 解析 以AC的中點(diǎn)O為原點(diǎn),AC所在直線(xiàn)為x軸,建立如圖所示的平面直角坐標(biāo)系,則A(-2,0),C(2,0),O(0,0),M(2,-2), 設(shè)D(2cos α,2sin α), ∴=(4,-2), =(2-2cos α,-2sin α), ∴=4(2-2cos α)+4sin α =8+4sin(α-θ), 其中tan θ=2, ∵sin(α-θ)∈[-1,1],∴()min=8-4. 思維升華 (1)數(shù)量積的計(jì)算通常有三種方法:數(shù)量積的定義、坐標(biāo)運(yùn)算、數(shù)量積的幾何意義,特別要注意向量坐標(biāo)法的運(yùn)用. (2)求解幾何圖形中的數(shù)量積問(wèn)題,把向量分解轉(zhuǎn)化成已知向量的數(shù)量積計(jì)算是基本方法,但是如果建立合理的平面直角坐標(biāo)系,把數(shù)量積的計(jì)算轉(zhuǎn)化成坐標(biāo)運(yùn)算,也是一種較為簡(jiǎn)捷的方法. 跟蹤演練2 (1)如圖,在梯形ABCD中,AB∥CD,AB=4,AD=3,CD=2,=2.若=-3,則=________. 答案 解析 方法一 設(shè)=4a,=3b, 其中|a|=|b|=1, 則=2a,=2b. 由=(+)(+)=-3, 得(3b+2a)(2b-4a)=-3, 化簡(jiǎn)得ab=, 所以=12ab=. 方法二 以點(diǎn)A為坐標(biāo)原點(diǎn),AB所在直線(xiàn)為x軸,建立平面直角坐標(biāo)系(圖略),則A(0,0),B(4,0), 設(shè)D(3cos α,3sin α), 則C(3cos α+2,3sin α),M(2cos α,2sin α). 由=-3, 得(3cos α+2,3sin α)(2cos α-4,2sin α)=-3, 化簡(jiǎn)得cos α=, 所以=12cos α=. (2)如圖,已知在△ABC中,AB=AC=4,∠BAC=90,D是BC的中點(diǎn),若向量=+m,且的終點(diǎn)M在△ACD的內(nèi)部(不含邊界),則的取值范圍是________. 答案 (-2,6) 解析 =(+) = =-16+16m2 =16m2-3, 由平行四邊形法則可得m∈, 所以的取值范圍是(-2,6). 熱點(diǎn)三 平面向量的綜合問(wèn)題 例3 (1)已知正實(shí)數(shù)x,y滿(mǎn)足向量a=(x+y,2),b=(xy-2,1)共線(xiàn),c=,且a(a-c)≥0恒成立,則實(shí)數(shù)m的取值范圍是________. 答案 解析 由a=(x+y,2),b=(xy-2,1)共線(xiàn)得x+y=2(xy-2), 則x+y+4=2xy≤, 即(x+y)2-2(x+y)-8≥0, 當(dāng)且僅當(dāng)x=y(tǒng)時(shí)等號(hào)成立. 又由x,y是正實(shí)數(shù),得x+y≥4. 不等式a(a-c)≥0, 即a2≥ac, 所以(x+y)2+4≥m(x+y)+3, 即(x+y)2-m(x+y)+1≥0,令x+y=t,t≥4, 則t2-mt+1≥0,t∈[4,+∞).(*) 對(duì)于方程t2-mt+1=0,當(dāng)Δ=m2-4≤0, 即-2≤m≤2時(shí),(*)式恒成立; 當(dāng)m<-2時(shí),相應(yīng)二次函數(shù)y=t2-mt+1的對(duì)稱(chēng)軸t=<-1,(*)式恒成立; 當(dāng)m>2時(shí),由相應(yīng)二次函數(shù)y=t2-mt+1的對(duì)稱(chēng)軸t=<4,且16-4m+1≥0, 得2- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 江蘇省2019高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題一 三角函數(shù)與平面向量 第3講 平面向量學(xué)案 江蘇省 2019 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 專(zhuān)題 三角函數(shù) 平面 向量
鏈接地址:http://ioszen.com/p-3921483.html