《一輪優(yōu)化探究理數蘇教版練習:第一章 第一節(jié) 集 合 Word版含解析》由會員分享,可在線閱讀,更多相關《一輪優(yōu)化探究理數蘇教版練習:第一章 第一節(jié) 集 合 Word版含解析(5頁珍藏版)》請在裝配圖網上搜索。
1、
高考數學精品復習資料
2019.5
一、填空題
1.已知集合U={0,1,2,3,4},M={0,4},N={2,4},則?U(M∪N)=________.
解析:由題意得M∪N={0,2,4},所以?U(M∪N)={1,3}.
答案:{1,3}
2.已知集合A={x|log2x≤2},B=(-∞,a),若A?B,則實數a的取值范圍是(c,+∞),其中c=________.
解析:由log2x≤2得04,∴c=4.
答案:4
3.已知集合A={x|y
2、=log2 (-x2+x+2),x∈R},B={x|y=,x∈R},則A∩B=________.
解析:由-x2+x+2>0得-1
3、則A∩B中的元素的個數為________.
解析:如圖,由U=A∪B可得A∩B中的元素為A∪B中的元素除去(?UA)∪(?UB)中的元素,所以A∩B中的元素個數為m-n.
答案:m-n
6.集合M={x|x=sin ,n∈Z},N={x|x=cos ,n∈Z},則M∩N=________.
解析:由與的終邊位置知M={-,0,},N={-1,0,1},M∩N={0}.
答案:{0}
7.(20xx江西七校聯(lián)考)若集合P={x|3
4、?P,
于是解得6
5、題:①集合S={a+bi|a,b為整數,i為虛數單位}為封閉集;②若S為封閉集,則一定有0∈S;③封閉集一定是無限集;④若S為封閉集,則滿足S?T?C的任意集合T也是封閉集.
其中的真命題是________.(寫出所有真命題的序號)
解析:由題意,①S={a+bi|a,b為整數,i為虛數單位},S為復數集,若x、y∈S,則x+y,x-y及xy仍為復數,故①正確.
②若S為封閉集,且存在元素x∈S,那么必有x-x=0∈S,即一定有0∈S,故②正確.
③因為{0}是封閉集,且是有限集,故③錯誤.
④舉特例,若S={0},T={0,i,-i},顯然,T中i(-i)=1?T,∴T不是封閉集,
6、故④錯誤.
答案:①②
二、解答題
10.已知集合A={x|≥1,x∈R},B={x|x2-2x-m<0},
(1)當m=3時,求A∩(?RB);
(2)若A∩B={x|-1
7、A={(x,y)|y=2x-1,x∈N*},B={(x,y)|y=ax2-ax+a,x∈N*},問是否存在非零整數a,使A∩B≠??若存在,請求出a的值;若不存在,說明理由.
解析:假設A∩B≠?,則方程組有正整數解,消去y,得ax2-(a+2)x+a+1=0(*).
由Δ≥0,有(a+2)2-4a(a+1)≥0,解得-≤a≤.∵a為非零整數,
∴a=1,
當a=-1時,代入(*),解得x=0或x=-1,而x∈N*.故a≠-1.
當a=1時,代入(*),解得x=1或x=2,符合題意.
故存在a=1,使得A∩B≠?,
此時A∩B={(1,1),(2,3)}.
12.對于函數f(x
8、),若f(x)=x,則稱x為f(x)的“不動點”,若f(f(x))=x,則稱x為f(x)的“穩(wěn)定點”,函數f(x)的“不動點”和“穩(wěn)定點”的集合分別記為A和B,即A={x|f(x)=x},B={x|f(f(x))=x}.
(1)求證:A?B.
(2)若f(x)=ax2-1(a∈R,x∈R),且A=B≠?,求實數a的取值范圍.
解析:(1)證明:若A=?,則A?B顯然成立;
若A≠?,設t∈A,則f(t)=t,f(f(t))=f(t)=t,
即t∈B,從而A?B.
(2)A中元素是方程f(x)=x,即ax2-1=x的實根.
由A≠?,知a=0或即a≥-,
B中元素是方程a(ax2-1)2-1=x,
即a3x4-2a2x2-x+a-1=0的實根,
由A?B,知上述方程左邊含有一個因式ax2-x-1,
即方程可化為(ax2-x-1)(a2x2+ax-a+1)=0.
因此,若要A=B,即要方程①a2x2+ax-a+1=0 要么沒有實根,要么實根是方程②ax2-x-1=0的根.
若①沒有實根,則Δ=a2-4a2(1-a)<0,由此解得a<.
若①有實根且①的實根是②的實根,則由②有a2x2=ax+a,代入①有2ax+1=0.
由此解得x=-,再代入②得+-1=0,
由此解得a=.
故a的取值范圍是[-,].