高中數(shù)學(xué) 第1章 1歸納與類比課時(shí)作業(yè) 北師大版選修22

上傳人:仙*** 文檔編號(hào):42190397 上傳時(shí)間:2021-11-25 格式:DOC 頁(yè)數(shù):8 大?。?22.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
高中數(shù)學(xué) 第1章 1歸納與類比課時(shí)作業(yè) 北師大版選修22_第1頁(yè)
第1頁(yè) / 共8頁(yè)
高中數(shù)學(xué) 第1章 1歸納與類比課時(shí)作業(yè) 北師大版選修22_第2頁(yè)
第2頁(yè) / 共8頁(yè)
高中數(shù)學(xué) 第1章 1歸納與類比課時(shí)作業(yè) 北師大版選修22_第3頁(yè)
第3頁(yè) / 共8頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué) 第1章 1歸納與類比課時(shí)作業(yè) 北師大版選修22》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第1章 1歸納與類比課時(shí)作業(yè) 北師大版選修22(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 2019年北師大版精品數(shù)學(xué)資料 【成才之路】高中數(shù)學(xué) 第1章 1歸納與類比課時(shí)作業(yè) 北師大版選修2-2 一、選擇題 1.下面幾種推理是合情推理的是(  ) ①由圓的周長(zhǎng)為C=πd類比出球的表面積為S=πd2; ②由直角三角形、等腰三角形、等邊三角形的內(nèi)角和是180,歸納出所有三角形的內(nèi)角和都是180; ③某次考試,張軍的成績(jī)是100分,由此推出全班同學(xué)的成績(jī)都是100分; ④三角形的內(nèi)角和是180,四邊形的內(nèi)角和是360,五邊形的內(nèi)角和是540,歸納出n邊形的內(nèi)角和是(n-2)180. A.①② B.①③④ C.①②④ D.②④ [答案] C

2、[解析] 由合情推理的概念知①②④符合題意. 2.根據(jù)給出的數(shù)塔猜測(cè)123 4569+7等于(  ) 19+2=11, 129+3=111, 1239+4=1 111, 1 2349+5=11 111, 12 3459+6=111 111, …… A.1 111 110 B.1 111 111 C.1 111 112 D.1 111 113 [答案] B [解析] 利用歸納推理,由已知可推測(cè)等號(hào)右側(cè)應(yīng)有7個(gè)1. 3.三角形的面積為S=(a+b+c)r,a,b,c為三角形的邊長(zhǎng),r為三角形內(nèi)切圓的半徑,利用類比推理可以得出四面體的體積為(  ) A.V=abc B

3、.V=Sh C.V=(S1+S2+S3+S4)r(S1、S2、S3、S4為四個(gè)面的面積,r為內(nèi)切球的半徑) D.V=(ab+bc+ac)h(h為四面體的高) [答案] C [解析] 設(shè)△ABC的內(nèi)心為O,連接OA、OB、OC,將△ABC分割為三個(gè)小三角形,這三個(gè)小三角形的高都是r,底邊長(zhǎng)分別為a、b、c;類比:設(shè)四面體A-BCD的內(nèi)切球的球心為O,連接OA、OB、OC、OD,將四面體分割為四個(gè)以O(shè)為頂點(diǎn),以原來面為底面的四面體,高都是r,所以有V=(S1+S2+S3+S4)r. 4.已知扇形的弧長(zhǎng)為l,半徑為r,類比三角形的面積公式S=,可推知扇形面積公式S扇等于(  ) A.  

4、 B.   C.   D.不可類比 [答案] C [解析] 由扇形的弧長(zhǎng)與半徑分別類比三角形的底邊與高,可得扇形的面積公式. 5.平面幾何中,有邊長(zhǎng)為a的正三角形內(nèi)任一點(diǎn)到三邊距離之和為定值a,類比上述命題,棱長(zhǎng)為a的正四面體內(nèi)任一點(diǎn)到四個(gè)面的距離之和為(  ) A.a(chǎn)  B.a(chǎn)  C.a(chǎn)  D.a(chǎn) [答案] B [解析] 將正三角形一邊上的高a類比到正四面體一個(gè)面上的高a,由正三角形“分割成以三條邊為底的三個(gè)三角形面積的和等于正三角形的面積”,方法類比為“將四面體分割成以各面為底的三棱錐體積之和等于四面體的體積”證明. 二、填空題 6.(2015陜西文,16)觀察下

5、列等式 1-= 1-+-=+ 1-+-+-=++ …… 據(jù)此規(guī)律,第n個(gè)等式可為____________________________________________. [答案] 1-+-+…+-=++…+ [解析] 觀察等式知:第n個(gè)等式的左邊有2n個(gè)數(shù)相加減,奇數(shù)項(xiàng)為正,偶數(shù)項(xiàng)為負(fù),且分子為1,分母是1到2n的連續(xù)正整數(shù),等式的右邊是++…+.故答案為1-+-+…+-=++…+. 7.觀察下列等式: ①cos2α=2cos2α-1; ②cos4α=8cos4α-8cos2α+1; ③cos6α=32cos6α-48cos4α+18cos2α-1; ④cos8α=1

6、28cos8α-256cos6α+160cos4α-32cos2α+1; ⑤cos10α=mcos10α-1 280cos8α+1 120cos6α+ncos4α+pcos2α-1. 可以推測(cè),m-n+p=________. [答案] 962 [解析] 觀察每一個(gè)等式中最高次冪的系數(shù):2,8,32,128,m,構(gòu)成一個(gè)等比數(shù)列,公比為4,故m=1284=512. 觀察每一個(gè)等式中cos2α的系數(shù):2,-8,18,-32,p,規(guī)律是12,-24,36,-48,故p=510=50. 每一個(gè)式子中的系數(shù)和為1,故m-1 280+1 120+n+p-1=1, 代入m和p,可求得n=-40

7、0, 故m-n+p=512+400+50=962. 8.設(shè)函數(shù)f(x)=(x>0),觀察: f1(x)=f(x)=, f2(x)=f(f1(x))=, f3(x)=f(f2(x))=, f4(x)=f(f3(x))=, …… 根據(jù)以上事實(shí),由歸納推理可得: 當(dāng)n∈N*且n≥2時(shí),fn(x)=f(fn-1(x))=________. [答案]  [解析] 本題主要考查了歸納推理及分析解決問題的能力. 依題意:f1(x)==, f2(x)==, f3(x)==, f4(x)==. ∴當(dāng)n∈N*且n≥2時(shí),fn(x)=. 三、解答題 9.已知Sn=+++…+,寫出

8、S1,S2,S3,S4的值,并由此歸納出Sn的表達(dá)式. [分析] 在Sn中分別令n=1,2,3,4,可以求得S1,S2,S3,S4的值,再進(jìn)行歸納推測(cè). [解析] S1==1-=; S2=+=(1-)+(-)=1-=; S3=++=(1-)+(-)+(-)=1-=; S4=+++=(1-)+(-)+(-)+(-)=1-=; 由此猜想:Sn=(n∈N+). [點(diǎn)評(píng)] 本題利用歸納猜想的思想求得了Sn的表達(dá)式,有兩點(diǎn)應(yīng)注意:①正確理解與把握數(shù)列求和中Sn的含義;②在對(duì)特殊值進(jìn)行規(guī)律觀察時(shí),有時(shí)需要將所得結(jié)果作變形處理,以顯示隱藏的規(guī)律性. 10.在△ABC中,余弦定理可敘述為a2=

9、b2+c2-2bccosA,其中a、b、c依次為角A、B、C的對(duì)邊,類比上述定理,給出空間四面體性質(zhì)的猜想. [解析]  如圖,S1,S2,S3,S分別表示△PAB,△PBC,△PCA,△ABC的面積,α、β、γ依次表示平面PAB與平面PBC、平面PBC與平面PCA、平面PCA與平面ABP之間所成二面角的大?。什孪胗嘞叶ɡ眍惐韧评淼饺S空間的表現(xiàn)形式為: S2=S+S+S-2S1S2cosα-2S2S3cosβ-2S2S1cosγ. [點(diǎn)評(píng)] 我們常將空間幾何體與平面圖形之間的性質(zhì)進(jìn)行類比:如四面體?三角形,長(zhǎng)方體?矩形,圓?球.注意:線?面,平面角?空間角,面積?體積之間具有類

10、比關(guān)系. 一、選擇題 1.(2014三峽名校聯(lián)考)觀察式子:1+<,1++<,1+++<,…,則可歸納出第n-1個(gè)式子為(  ) A.1+++…+< B.1+++…+< C.1+++…+< D.1+++…+< [答案] C [解析] 觀察可得第n-1個(gè)式子中不等式的左邊為數(shù)列{]的前n項(xiàng)的和,右邊為分式. 2.如圖,坐標(biāo)紙上的每個(gè)單元格的邊長(zhǎng)為1,由下往上的六個(gè)點(diǎn):1,2,3,4,5,6的橫、縱坐標(biāo)分別對(duì)應(yīng)數(shù)列{an}(n∈N+)的前12項(xiàng)(即橫坐標(biāo)為奇數(shù)項(xiàng),縱坐標(biāo)為偶數(shù)項(xiàng)),按如此規(guī)律下去,則a2 009+a2 010+a2 011等于(  ) A.1 003

11、B.1 005 C.1 006 D.2 011 [答案] B [解析] 觀察點(diǎn)坐標(biāo)的規(guī)律可知,偶數(shù)項(xiàng)的值等于其序號(hào)的一半. 則a4n-3=n,a4n-1=-n,a2n=n. 又2 009=4503-3,2 011=4503-1, ∴a2 009=503,a2 011=-503,a2 010=1 005, ∴a2 009+a2 010+a2 011=1 005. 3.?dāng)?shù)列,,2,,…的一個(gè)通項(xiàng)公式是(  ) A.a(chǎn)n= B.a(chǎn)n= C.a(chǎn)n= D.a(chǎn)n= [答案] B [解析] 因?yàn)閍1=,a2=,a3=,a4=,…,所以an=. 4.(2014湖北理,8)《算數(shù)

12、書》竹簡(jiǎn)于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國(guó)現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍,其中記載有求“囷蓋”的術(shù):置如其周,令相乘也.又以高乘之,三十六成一.該術(shù)相當(dāng)于給出了由圓錐的底面周長(zhǎng)L與高h(yuǎn),計(jì)算其體積V的近似公式V≈L2h.它實(shí)際上是將圓錐體積公式中的圓周率π近似取為3.那么,近似公式V≈L2h相當(dāng)于將圓錐體積公式中的π近似取為(  ) A. B. C. D. [答案] B [解析] 設(shè)圓錐的底面圓半徑為r,則L=2πr,由L2h≈sh,代入s=πr2化簡(jiǎn)得π≈3;類比推理,若V≈L2h時(shí),π≈.本題的關(guān)鍵是理解“若V≈L2h,π近似取為3”的意義,類比求解,這是高考考查新

13、定義型試題的一種常見模式,求解此類試題時(shí),關(guān)鍵是要理解試題所列舉的例子. 二、填空題 5.在平面幾何里有射影定理:設(shè)△ABC的兩邊AB⊥AC,D是A點(diǎn)在BC上的射影,則AB2=BDBC.拓展到空間,在四面體A-BCD中,DA⊥平面ABC,點(diǎn)O是A在平面BCD內(nèi)的射影,類比平面三角形射影定理,△ABC、△BOC、△BDC三者面積之間關(guān)系為________. [答案] S=S△OBCS△DBC [解析] 將直角三角形的一條直角邊長(zhǎng)類比到有一側(cè)棱AD與一側(cè)面ABC垂直的四棱錐的側(cè)面ABC的面積,將此直角邊AB在斜邊上的射影及斜邊的長(zhǎng),類比到△ABC在底面的射影△OBC及底面△BCD的面積可得

14、S=S△OBCS△DBC. 6.(2014陜西理,14)觀察分析下表中的數(shù)據(jù): 多面體 面數(shù)(F) 頂點(diǎn)數(shù)(V) 棱數(shù)(E) 三棱柱 5 6 9 五棱錐 6 6 10 立方體 6 8 12 猜想一般凸多面體中F,V,E所滿足的等式是________. [答案] F+V-E=2 [解析] 5+6-9=2, 6+6-10=2, 6+8-12=2, ∴F+V-E=2. 三、解答題 7.把下面在平面內(nèi)成立的結(jié)論類比推廣到空間中,并判斷類比的結(jié)論是否成立; (1)如果一條直線與兩條平行線中的一條相交,則必與另一條相交; (2)如果兩條直線同時(shí)垂直

15、于第三條直線,則這兩條直線互相平行. [解析] 平面幾何與空間幾何的類比中,點(diǎn)的類比對(duì)象是線,線的類比對(duì)象是面,面的類比對(duì)象是體. (1)的類比結(jié)論為:如果一個(gè)平面與兩個(gè)平行平面中的一個(gè)相交,則必與另一個(gè)相交.由空間幾何的知識(shí)易得此結(jié)論成立. (2)的類比結(jié)論為:如果兩個(gè)平面同時(shí)垂直于第三個(gè)平面,則這兩個(gè)平面互相平行.由空間幾何的知識(shí)易得此結(jié)論不成立,如果兩個(gè)平面同時(shí)垂直于第三個(gè)平面,這兩個(gè)平面還可能相交. 8.(2014洛陽(yáng)市高二期中)觀察等式: sin50+sin20=2sin35cos15 sin66+sin32=2sin49cos17 猜想符合以上兩式規(guī)律的一般結(jié)論,并進(jìn)行證明. [解析] 猜想:sinα+sinβ=2sincos. 下面證明: 左邊=sin(+)+sin(-) =(sincos+cossin)+(sincos-cossin) =2sincos=右邊. 所以原等式成立.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!