金版教程高考數(shù)學(xué) 文二輪復(fù)習(xí)講義:第二編 專題整合突破 專題二 函數(shù)與導(dǎo)數(shù) 第三講 導(dǎo)數(shù)的簡單應(yīng)用 Word版含解析

上傳人:仙*** 文檔編號:45860766 上傳時間:2021-12-09 格式:DOC 頁數(shù):23 大?。?95KB
收藏 版權(quán)申訴 舉報 下載
金版教程高考數(shù)學(xué) 文二輪復(fù)習(xí)講義:第二編 專題整合突破 專題二 函數(shù)與導(dǎo)數(shù) 第三講 導(dǎo)數(shù)的簡單應(yīng)用 Word版含解析_第1頁
第1頁 / 共23頁
金版教程高考數(shù)學(xué) 文二輪復(fù)習(xí)講義:第二編 專題整合突破 專題二 函數(shù)與導(dǎo)數(shù) 第三講 導(dǎo)數(shù)的簡單應(yīng)用 Word版含解析_第2頁
第2頁 / 共23頁
金版教程高考數(shù)學(xué) 文二輪復(fù)習(xí)講義:第二編 專題整合突破 專題二 函數(shù)與導(dǎo)數(shù) 第三講 導(dǎo)數(shù)的簡單應(yīng)用 Word版含解析_第3頁
第3頁 / 共23頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《金版教程高考數(shù)學(xué) 文二輪復(fù)習(xí)講義:第二編 專題整合突破 專題二 函數(shù)與導(dǎo)數(shù) 第三講 導(dǎo)數(shù)的簡單應(yīng)用 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《金版教程高考數(shù)學(xué) 文二輪復(fù)習(xí)講義:第二編 專題整合突破 專題二 函數(shù)與導(dǎo)數(shù) 第三講 導(dǎo)數(shù)的簡單應(yīng)用 Word版含解析(23頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第三講 導(dǎo)數(shù)的簡單應(yīng)用 必記公式] 1.基本初等函數(shù)的八個導(dǎo)數(shù)公式 原函數(shù) 導(dǎo)函數(shù) f(x)=C(C為常數(shù)) f′(x)=0 f(x)=xα(α∈R) f′(x)=αxα-1 f(x)=sinx f′(x)=cosx f(x)=cosx f′(x)=-sinx f(x)=ax(a>0,且a≠1) f′(x)=axln_a f(x)=ex f′(x)=ex f(x)=logax(a>0,且a≠1) f′(x)=logae= f(x)=ln x f′(x)=   2.導(dǎo)數(shù)四則運算法則 (1)f(x)g(x)]′=f′(x)g′(x);

2、 (2)f(x)g(x)]′=f′(x)g(x)+f(x)g′(x); (3)′=(g(x)≠0). 重要概念] 1.切線的斜率 函數(shù)f(x)在x0處的導(dǎo)數(shù)是曲線f(x)在點P(x0,f(x0))處的切線的斜率,因此曲線f(x)在點P處的切線的斜率k=f′(x0),相應(yīng)的切線方程為y-f(x0)=f′(x0)(x-x0). 2.函數(shù)的單調(diào)性 在某個區(qū)間(a,b)內(nèi),如果f′(x)>0(f′(x)<0),那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞增(單調(diào)遞減). 3.函數(shù)的極值 設(shè)函數(shù)f(x)在點x0附近有定義,如果對x0附近所有的點x,都有f(x)

3、數(shù)的一個極大值,記作y極大值=f(x0);如果對x0附近的所有的點都有f(x)>f(x0),那么f(x0)是函數(shù)的一個極小值,記作y極小值=f(x0).極大值與極小值統(tǒng)稱為極值. 4.函數(shù)的最值 將函數(shù)y=f(x)在a,b]內(nèi)的各極值與端點處的函數(shù)值f(a),f(b)比較,其中最大的一個是最大值,最小的一個是最小值. 失分警示] 1.判斷極值的條件掌握不清:利用導(dǎo)數(shù)判斷函數(shù)的極值時,忽視“導(dǎo)數(shù)等于零,并且兩側(cè)導(dǎo)數(shù)的符號相反”這兩個條件同時成立. 2.混淆在點P處的切線和過點P的切線:前者點P為切點,后者點P不一定為切點,求解時應(yīng)先設(shè)出切點坐標(biāo). 3.關(guān)注函數(shù)的定義域:求函數(shù)的單調(diào)區(qū)

4、間及極(最)值應(yīng)先求定義域. 考點 導(dǎo)數(shù)的幾何意義   典例示法 典例1  (1)20xx山東高考]若函數(shù)y=f(x)的圖象上存在兩點,使得函數(shù)的圖象在這兩點處的切線互相垂直,則稱y=f(x)具有T性質(zhì).下列函數(shù)中具有T性質(zhì)的是(  ) A.y=sinx B.y=ln x C.y=ex D.y=x3 解析] 設(shè)函數(shù)y=f(x)圖象上兩點的橫坐標(biāo)為x1,x2.由題意知只需函數(shù)y=f(x)滿足f′(x1)f′(x2)=-1(x1≠x2)即可.y=f(x)=sinx的導(dǎo)函數(shù)為f′(x)=cosx,f′(0)f′(π)=-1,故A滿足;y=f(x)=ln x的導(dǎo)函數(shù)為f′(x

5、)=,f′(x1)f′(x2)=>0,故B不滿足;y=f(x)=ex的導(dǎo)函數(shù)為f′(x)=ex,f′(x1)f′(x2)=ex1+x2>0,故C不滿足;y=f(x)=x3的導(dǎo)函數(shù)為f′(x)=3x2,f′(x1)f′(x2)=9xx≥0,故D不滿足.故選A. 答案] A (2)20xx陜西高考]設(shè)曲線y=ex在點(0,1)處的切線與曲線y=(x>0)上點P處的切線垂直,則P的坐標(biāo)為________. 解析] y′=ex,則y=ex在點(0,1)處的切線的斜率k切=1,又曲線y=(x>0)上點P處的切線與y=ex在點(0,1)處的切線垂直,所以y=(x>0)在點P處的切線的斜率為-1,設(shè)P

6、(a,b),則曲線y=(x>0)上點P處的切線的斜率為y′|x=a=-a-2=-1,可得a=1,又P(a,b)在y=上,所以b=1,故P(1,1). 答案] (1,1) 1.求曲線y=f(x)的切線方程的三種類型及方法 (1)已知切點P(x0,y0),求y=f(x)過點P的切線方程: 求出切線的斜率f′(x0),由點斜式寫出方程. (2)已知切線的斜率為k,求y=f(x)的切線方程: 設(shè)切點P(x0,y0),通過方程k=f′(x0)解得x0,再由點斜式寫出方程. (3)已知切線上一點(非切點),求y=f(x)的切線方程: 設(shè)切點P(x0,y0),利用導(dǎo)數(shù)求得切線斜率f′(x

7、0),然后由斜率公式求得切線斜率,列方程(組)解得x0,再由點斜式或兩點式寫出方程. 2.利用切線(或方程)與其他曲線的關(guān)系求參數(shù) 已知過某點切線方程(斜率)或其與某線平行、垂直,利用導(dǎo)數(shù)的幾何意義、切點坐標(biāo)、切線斜率之間的關(guān)系構(gòu)建方程(組)或函數(shù)求解. 提醒:求曲線的切線方程時,務(wù)必分清在點P處的切線還是過點P的切線,前者點P為切點,后者點P不一定為切點,求解時應(yīng)先求出切點坐標(biāo). 針對訓(xùn)練 1.20xx重慶巴蜀中學(xué)模擬]已知曲線y=在點P(2,4)處的切線與直線l平行且距離為2,則直線l的方程為(  ) A.2x+y+2=0 B.2x+y+2=0或2x+y-18=0 C.

8、2x-y-18=0 D.2x-y+2=0或2x-y-18=0 答案 B 解析 y′==-,y′|x=2=-=-2,因此k1=-2,設(shè)直線l方程為y=-2x+b,即2x+y-b=0,由題意得=2,解得b=18或b=-2,所以直線l的方程為2x+y-18=0或2x+y+2=0.故選B. 2.20xx江蘇高考]在平面直角坐標(biāo)系xOy中,若曲線y=ax2+(a,b為常數(shù))過點P(2,-5),且該曲線在點P處的切線與直線7x+2y+3=0平行,則a+b的值是________. 答案?。? 解析 ∵y=ax2+,∴y′=2ax-, 由題意可得 解得∴a+b=-3. 考點 利用導(dǎo)數(shù)研究函數(shù)

9、的單調(diào)性   典例示法 題型1 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(單調(diào)區(qū)間) 典例2  20xx重慶高考]已知函數(shù)f(x)=ax3+x2(a∈R)在x=-處取得極值. (1)確定a的值; (2)若g(x)=f(x)ex,討論g(x)的單調(diào)性. 解] (1)對f(x)求導(dǎo)得f′(x)=3ax2+2x, 因為f(x)在x=-處取得極值,所以f′=0, 即3a+2=-=0,解得a=. (2)由(1)得g(x)=ex, 故g′(x)=ex+ex =ex=x(x+1)(x+4)ex. 令g′(x)=0,解得x=0,x=-1或x=-4. 當(dāng)x<-4時,g′(x)<0,故g(x)為減函數(shù);

10、 當(dāng)-40,故g(x)為增函數(shù); 當(dāng)-10時,g′(x)>0,故g(x)為增函數(shù). 綜上知g(x)在(-∞,-4)和(-1,0)內(nèi)為減函數(shù),在(-4,-1)和(0,+∞)內(nèi)為增函數(shù). 題型2 根據(jù)函數(shù)的單調(diào)性求參數(shù)的范圍 典例3  20xx西安質(zhì)檢]已知函數(shù)f(x)=mx2-x+ln x. (1)若在函數(shù)f(x)的定義域內(nèi)存在區(qū)間D,使得該函數(shù)在區(qū)間D上為減函數(shù),求實數(shù)m的取值范圍; (2)當(dāng)0

11、解] (1)f′(x)=2mx-1+=,即2mx2-x+1<0在(0,+∞)上有解. 當(dāng)m≤0時顯然成立; 當(dāng)m>0時,由于函數(shù)y=2mx2-x+1的圖象的對稱軸x=>0,故需且只需Δ>0,即1-8m>0,故0

12、. 則g′(x)=2mx-1+-2m== . 當(dāng)m=時,g′(x)≥0,又g(x)不是常數(shù)函數(shù),故g(x)在(0,+∞)上單調(diào)遞增. ∴函數(shù)g(x)有且只有一個零點x=1,滿足題意. 當(dāng)01,由g′(x)>0,得0; 由g′(x)<0,得1

13、∴g>0,故在上,函數(shù)g(x)又有一個零點,不符合題意. 綜上所述,m=. 1.導(dǎo)數(shù)與單調(diào)性之間的關(guān)系 (1)導(dǎo)數(shù)大(小)于0的區(qū)間是函數(shù)的單調(diào)遞增(減)區(qū)間. (2)函數(shù)f(x)在D上單調(diào)遞增??x∈D,f′(x)≥0且f′(x)在區(qū)間D的任何子區(qū)間內(nèi)都不恒為零; 函數(shù)f(x)在D上單調(diào)遞減??x∈D,f′(x)≤0且f′(x)在區(qū)間D的任何子區(qū)間內(nèi)都不恒為零. 2.根據(jù)函數(shù)的單調(diào)性求參數(shù)取值范圍的思路 (1)求f′(x). (2)將單調(diào)性轉(zhuǎn)化為導(dǎo)數(shù)f′(x)在該區(qū)間上滿足的不等式恒成立問題求解. 考點 利用導(dǎo)數(shù)研究函數(shù)的極值與最值 

14、  典例示法 題型1 求函數(shù)的極值(最值) 典例4  20xx合肥質(zhì)檢]已知函數(shù)f(x)=e1-x(2ax-a2)(其中a≠0). (1)若函數(shù)f(x)在(2,+∞)上單調(diào)遞減,求實數(shù)a的取值范圍; (2)設(shè)函數(shù)f(x)的最大值為g(a),當(dāng)a>0時,求g(a)的最大值. 解] (1)由f(x)=e1-x(2ax-a2), 得f′(x)=(e1-x)′(2ax-a2)+2ae1-x=e′(2ax-a2)+2ae1-x=-e1-x(2ax-a2)+2ae1-x=-e1-x(2ax-a2-2a)=0,又a≠0,故x=1+, 當(dāng)a>0時,f(x)在上為增函數(shù),在上為減函數(shù),∴1+≤2

15、,即a≤2, ∴00時,f(x)max=f=2ae 即g(a)=2ae. 則g′(a)=(2-a)e=0,得a=2, ∴g(a)在(0,2)上為增函數(shù),在(2,+∞)上為減函數(shù), ∴g(a)max=g(2)=. 題型2 知極值的個數(shù)求參數(shù)范圍 典例5  20xx沈陽質(zhì)檢]已知函數(shù)f(x)=xln x-x2-x+a(a∈R)在其定義域內(nèi)有兩個不同的極值點. (1)求a的取值范圍; (2)記兩個極值點為x1,x2,且x10,若不等式e1+λ

16、 解] (1)依題,函數(shù)f(x)的定義域為(0,+∞), 所以方程f′(x)=0在(0,+∞)上有兩個不同的根, 即方程ln x-ax=0在(0,+∞)上有兩個不同的根. 解法一:可以轉(zhuǎn)化為函數(shù)y=ln x與函數(shù)y=ax的圖象在(0,+∞)上有兩個不同的交點,如圖. 可見,若令過原點且與函數(shù)y=ln x圖象相切的直線斜率為k,只需0

17、′(x)>0, 當(dāng)x>e時,g′(x)<0, 所以g(x)在(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減.從而g(x)極大值=g(e)=. 又g(x)有且只有一個零點是1,且在x→0時,g(x)→-∞,在x→+∞時,g(x)→0, 所以g(x)的草圖如圖所示, 可見,要想函數(shù)g(x)=與函數(shù)y=a的圖象在(0,+∞)上有兩個不同交點,只需00), 若a≤0,可見g′(x)>0在(0,+∞)上恒成立,所以g(x)在(0,+∞)上單調(diào)遞增,此時g(x)不可能有

18、兩個不同零點. 若a>0,當(dāng)00,當(dāng)x>時,g′(x)<0,所以g(x)在上單調(diào)遞增,在上單調(diào)遞減,從而g(x)極大值=g=ln -1. 又因為在x→0時,g(x)→-∞,在x→+∞時,g(x)→-∞,于是只需: g(x)極大值>0,即ln-1>0,所以00,0

19、于a>. 又由ln x1=ax1,ln x2=ax2作差得,ln =a(x1-x2),即a=. 所以原式等價于>, 因為00,所以h(t)在(0,1)上單調(diào)遞增,又h(1)=0, h(t)<0在(0,1)上恒成立,符合題意. 當(dāng)λ2<1時,可見t∈(0,λ2)時,h′(t)>0,t∈(λ2,1)時,h′(t)<0, 所以h(t)在(0,λ2)上單調(diào)遞增,在

20、(λ2,1)上單調(diào)遞減,又h(1)=0, 所以h(t)在(0,1)上不能恒小于0,不符合題意,舍去. 綜上所述,若不等式e1+λ0,所以λ≥1. 利用導(dǎo)數(shù)研究函數(shù)極值與最值的步驟 (1)利用導(dǎo)數(shù)求函數(shù)極值的一般思路和步驟 ①求定義域; ②求導(dǎo)數(shù)f′(x); ③解方程f′(x)=0,研究極值情況; ④確定f′(x0)=0時x0左右的符號,定極值. (2)若已知函數(shù)極值的大小或存在情況,求參數(shù)的取值范圍,則轉(zhuǎn)化為已知方程f′(x)=0根的大小或存在情況來討論求解. (3)求函數(shù)y=f(x)在a,b]上最大值與最小值的步驟 ①求函數(shù)y

21、=f(x)在(a,b)內(nèi)的極值; ②將函數(shù)y=f(x)的各極值與端點處的函數(shù)值f(a),f(b)比較,其中最大的一個是最大值,最小的一個是最小值. 提醒:(1)求函數(shù)極值時,一定要注意分析導(dǎo)函數(shù)的零點是不是函數(shù)的極值點; (2)求函數(shù)最值時,務(wù)必將極值點與端點值比較得出最大(小)值; (3)對于含參數(shù)的函數(shù)解析式或區(qū)間求極值、最值問題,務(wù)必要對參數(shù)分類討論. 全國卷高考真題調(diào)研] 1.20xx全國卷Ⅱ]設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(-1)=0,當(dāng)x>0時,xf′(x)-f(x)<0,則使得f(x)>0成立的x的取值范圍是(  ) A.(-∞,

22、-1)∪(0,1) B.(-1,0)∪(1,+∞) C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞) 答案 A 解析 令F(x)=,因為f(x)為奇函數(shù),所以F(x)為偶函數(shù),由于F′(x)=,當(dāng)x>0時,xf′(x)-f(x)<0,所以F(x)=在(0,+∞)上單調(diào)遞減,根據(jù)對稱性,F(xiàn)(x)=在(-∞,0)上單調(diào)遞增,又f(-1)=0,f(1)=0,數(shù)形結(jié)合可知,使得f(x)>0成立的x的取值范圍是(-∞,-1)∪(0,1),故選A. 2.20xx全國卷Ⅲ]已知f(x)為偶函數(shù),當(dāng)x≤0時,f(x)=e-x-1-x,則曲線y=f(x)在點(1,2)處的切線方程是_

23、_______. 答案 y=2x 解析 當(dāng)x>0時,-x<0,f(-x)=ex-1+x,而f(-x)=f(x),所以f(x)=ex-1+x(x>0),點(1,2)在曲線y=f(x)上,易知f′(1)=2,故曲線y=f(x)在點(1,2)處的切線方程是y-2=f′(1)(x-1),即y=2x. 其它省市高考題借鑒] 3.20xx四川高考]已知a為函數(shù)f(x)=x3-12x的極小值點,則a=(  ) A.-4 B.-2 C.4 D.2 答案 D 解析 由題意可得f′(x)=3x2-12=3(x-2)(x+2), 令f′(x)=0,得x=-2或x=2, 則f′(x),f(

24、x)隨x的變化情況如下表: x (-∞,-2) -2 (-2,2) 2 (2,+∞) f′(x) + 0 - 0 + f(x)  極大值  極小值  ∴函數(shù)f(x)在x=2處取得極小值,則a=2.故選D. 4.20xx北京高考]設(shè)函數(shù)f(x)=xea-x+bx,曲線y=f(x)在點(2,f(2))處的切線方程為y=(e-1)x+4. (1)求a,b的值; (2)求f(x)的單調(diào)區(qū)間. 解 (1)因為f(x)=xea-x+bx,所以f′(x)=(1-x)ea-x+b. 依題設(shè),即 解得a=2,b=e. (2)由(1)知f(x)=xe2-x

25、+ex. 由f′(x)=e2-x(1-x+ex-1)及e2-x>0知,f′(x)與1-x+ex-1同號. 令g(x)=1-x+ex-1,則g′(x)=-1+ex-1. 所以當(dāng)x∈(-∞,1)時,g′(x)<0,g(x)在區(qū)間(-∞,1)上單調(diào)遞減; 當(dāng)x∈(1,+∞)時,g′(x)>0,g(x)在區(qū)間(1,+∞)上單調(diào)遞增. 故g(1)=1是g(x)在區(qū)間(-∞,+∞)上的最小值, 從而g(x)>0,x∈(-∞,+∞). 綜上可知,f′(x)>0,x∈(-∞,+∞). 故f(x)的單調(diào)遞增區(qū)間為(-∞,+∞). 一、選擇題 1.20xx鄭州質(zhì)檢]函數(shù)f(x)=excos

26、x的圖象在點(0,f(0))處的切線方程是(  ) A.x+y+1=0 B.x+y-1=0 C.x-y+1=0 D.x-y-1=0 答案 C 解析 依題意,f(0)=e0cos0=1,因為f′(x)=excosx-exsinx,所以f′(0)=1,所以切線方程為y-1=x-0,即x-y+1=0,故選C. 2.20xx山西忻州四校聯(lián)考]設(shè)函數(shù)f(x)=xsinx+cosx的圖象在點(t,f(t))處切線的斜率為k,則函數(shù)k=g(t)的部分圖象為(  ) 答案 B 解析 f′(x)=(xsinx+cosx)′=xcosx,則k=g(t)=tcost,易知函數(shù)g(t)為奇函

27、數(shù),其圖象關(guān)于原點對稱,排除A、C.當(dāng)00,所以排除D,故選B. 3.20xx廣西質(zhì)檢]若函數(shù)f(x)=(x2-cx+5)ex在區(qū)間上單調(diào)遞增,則實數(shù)c的取值范圍是(  ) A.(-∞,2] B.(-∞,4] C.(-∞,8] D.-2,4] 答案 B 解析 f′(x)=x2+(2-c)x-c+5]ex,因為函數(shù)f(x)在區(qū)間上單調(diào)遞增,等價于x2+(2-c)x-c+5≥0對任意x∈恒成立,即(x+1)c≤x2+2x+5,c≤對任意x∈恒成立,∵x∈,∴=(x+1)+≥4,當(dāng)且僅當(dāng)x=1時等號成立,∴c≤4. 4.20xx沈陽質(zhì)檢]已知函數(shù)y=x2的圖象

28、在點(x0,x)處的切線為l,若l也與函數(shù)y=ln x,x∈(0,1)的圖象相切,則x0必滿足(  ) A.0

29、-=,所以g(x)在(1,+∞)上單調(diào)遞增,又g(1)=-ln 2 <0,g()=1-ln 2 <0,g()=2-ln 2>0,從而

30、別式Δ=4a2+12>0恒成立,故f′(x)=0必有兩個不等實根,不妨設(shè)為x1,x2,且x10,得xx2,令f′(x)<0,得x1

31、,所以f+f=2f,所以函數(shù)f(x)的圖象關(guān)于點成中心對稱,故C選項的結(jié)論正確;對于D選項,令a=c=0得f(x)=x3-x,f(x)在(0,0)處切線方程為y=-x,且有唯一實數(shù)解,即f(x)在(0,0)處切線與f(x)圖象有唯一公共點,所以D不正確,選D. 6.已知函數(shù)f(x)=(a-2)x-ax3在區(qū)間-1,1]上的最大值為2,則a的取值范圍是(  ) A.2,10] B.-1,8] C.-2,2] D.0,9] 答案 B 解析 f′(x)=-3ax2+a-2.(1)當(dāng)a=0時,f′(x)=-2<0,f(x)在-1,1]上為減函數(shù),所以f(x)max=f(-1)=2,符

32、合題意.(2)當(dāng)02時,由f′(x)=0,解得x= .①當(dāng)- ≤-1,即 ≥1,即-1≤a<0時,函數(shù)f(x)在-1,1]上單調(diào)遞減,所以此時函數(shù)在定義域內(nèi)的最大值為f(-1)=2,滿足條件;②當(dāng)- >-1,即 <1,即a<-1或a>2時,若a<-1,函數(shù)f(x)在與上單調(diào)遞增,在上單調(diào)遞減,所以此時函數(shù)在定義域內(nèi)的最大值為f(1)=-2或f,而f>f(-1)=2,不滿足條件,若a>2,函數(shù)f(x)在與上單調(diào)遞減,在上單調(diào)遞增,所以此時函數(shù)在定義域內(nèi)的最大值為

33、f(-1)=2或f,則必有f≤2,即(a-2) -a3≤2,整理并因式分解得(a-8)(a+1)2≤0,所以由a>2可得2

34、)=3x2+2ax+3,由題意知x=-3為方程3x2+2ax+3=0的根,所以3(-3)2+2a(-3)+3=0,解得a=5. 9.20xx石家莊一模]設(shè)過曲線f(x)=-ex-x(e為自然對數(shù)的底數(shù))上任意一點處的切線為l1,總存在過曲線g(x)=ax+2cosx上一點處的切線l2,使得l1⊥l2,則實數(shù)a的取值范圍為________. 答案?。?≤a≤2 解析 函數(shù)f(x)=-ex-x的導(dǎo)數(shù)為f′(x)=-ex-1,設(shè)曲線f(x)=-ex-x上的切點為(x1,f(x1)),則l1的斜率k1=-ex1-1.函數(shù)g(x)=ax+2cosx的導(dǎo)數(shù)為g′(x)=a-2sinx,設(shè)曲線g(x)

35、=ax+2cosx上的切點為(x2,g(x2)),則l2的斜率k2=a-2sinx2.由題設(shè)可知k1k2=-1,從而有(-ex1-1)(a-2sinx2)=-1,∴a-2sinx2=,對?x1,?x2使得等式成立,則有y1=的值域是y2=a-2sinx2值域的子集,即(0,1)?a-2,a+2],∴-1≤a≤2. 三、解答題 10.20xx石景山區(qū)高三統(tǒng)測]已知函數(shù)f(x)=x-aln x,g(x)=-(a>0). (1)若a=1,求函數(shù)f(x)的極值; (2)設(shè)函數(shù)h(x)=f(x)-g(x),求函數(shù)h(x)的單調(diào)區(qū)間; (3)若存在x0∈1,e],使得f(x0)

36、求a的取值范圍. 解 (1)f(x)=x-aln x的定義域為(0,+∞). 當(dāng)a=1時,f′(x)=. 由f′(x)=0,解得x=1. 當(dāng)01時,f′(x)>0,f(x)單調(diào)遞增; 所以當(dāng)x=1時,函數(shù)f(x)取得極小值,極小值為f(1)=1-ln 1=1; (2)h(x)=f(x)-g(x)=x-aln x+,其定義域為(0,+∞). 又h′(x)==. 由a>0可得1+a>0,在x∈(0,1+a)上h′(x)<0,在x∈(1+a,+∞)上h′(x)>0, 所以h(x)的遞減區(qū)間為(0,1+a);遞增區(qū)間為(1+a,

37、+∞). (3)若在1,e]上存在一點x0,使得f(x0). 因為>e-1,所以a>; ②當(dāng)1<1+a

38、02,即h(1+a)>2不滿足題意,舍去. 綜上所述:a∈. 11.已知函數(shù)f(x)=ln x+ax-a2x2(a≥0). (1)若x=1是函數(shù)y=f(x)的極值點,求a的值; (2)若f(x)<0在定義域內(nèi)恒成立,求實數(shù)a的取值范圍. 解 (1)函數(shù)的定義域為(0,+∞), f′(x)=. 因為x=1是函數(shù)y=f(x)的極值點, 所以f′(1)=1+a-2a2=0, 解得a=-(舍去)或a=1. 經(jīng)檢驗,當(dāng)a=1時,x=1是函數(shù)y=f(x)的極值點,所以a=1. (2)當(dāng)a=0時,f(x)=ln x,顯然在定義

39、域內(nèi)不滿足f(x)<0; 當(dāng)a>0時,令f′(x)==0,得 x1=-(舍去),x2=, 所以f′(x),f(x)的變化情況如下表: x f′(x) + 0 - f(x)  極大值  所以f(x)max=f=ln <0, 所以a>1. 綜上可得a的取值范圍是(1,+∞). 12.20xx廣西質(zhì)檢]已知函數(shù)f(x)=+aln x(a≠0,a∈R). (1)若a=1,求函數(shù)f(x)的極值和單調(diào)區(qū)間; (2)若在區(qū)間(0,e]上至少存在一點x0,使得f(x0)<0成立,求實數(shù)a的取值范圍. 解 (1)當(dāng)a=1時,f′(x)=-+=, 令f′(x

40、)=0,得x=1, 又f(x)的定義域為(0,+∞),由f′(x)<0得00得x>1, 所以當(dāng)x=1時,f(x)有極小值1. f(x)的單調(diào)遞增區(qū)間為(1,+∞),單調(diào)遞減區(qū)間為(0,1). (2)f′(x)=-+=,且a≠0,令f′(x)=0,得到x=, 若在區(qū)間(0,e]上存在一點x0,使得f(x0)<0成立,即f(x)在區(qū)間(0,e]上的最小值小于0. 當(dāng)<0,即a<0時,f′(x)<0在(0,e]上恒成立,即f(x)在區(qū)間(0,e]上單調(diào)遞減, 故f(x)在區(qū)間(0,e]上的最小值為f(e)=+aln e=+a, 由+a<0,得a<-,即a∈. 當(dāng)>0,即a>0時, ①若e≤,則f′(x)≤0對x∈(0,e]成立,所以f(x)在區(qū)間(0,e]上單調(diào)遞減, 則f(x)在區(qū)間(0,e]上的最小值為f(e)=+aln e=+a>0, 顯然,f(x)在區(qū)間(0,e]上的最小值小于0不成立. ②若0<時,則有 x f′(x) - 0 + f(x)  極小值  所以f(x)在區(qū)間(0,e]上的最小值為f=a+aln, 由f=a+aln=a(1-ln a)<0,得1-ln a<0,解得a>e, 即a∈(e,+∞). 綜上,由①②可知:a∈∪(e,+∞)符合題意.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!