平行四邊形性質(zhì)說課稿
平行四邊形性質(zhì)說課稿鐘祥四中 寧家明我說課的內(nèi)容是人教版八年級下冊第一十九章第一節(jié)平行四邊形的性質(zhì),下面我從教學(xué)背景分析;教學(xué)目標(biāo)設(shè)計(jì);教學(xué)重點(diǎn)難點(diǎn);教法學(xué)法分析;教學(xué)過程;教學(xué)反思六個(gè)方面對本課的設(shè)計(jì)進(jìn)行說明。一. 教學(xué)背景分析(一)教材的地位和作用1平行四邊形的性質(zhì)是學(xué)習(xí)和掌握了圖形的平移與旋轉(zhuǎn)、中心對稱和中心對稱圖形的基礎(chǔ)上編排的.平行四邊形作為中心對稱圖形的一個(gè)典型范例,對它性質(zhì)的研究有利于加深對中心對稱圖形的認(rèn)識.而用中心對稱作為工具,借助圖形的旋轉(zhuǎn)變化來研究平行四邊形性質(zhì),有助于培養(yǎng)學(xué)生以動態(tài)觀點(diǎn)處理靜止圖形的意識和能力,為以后論證幾何的學(xué)習(xí)打好基礎(chǔ).且為下節(jié)學(xué)習(xí)平行四邊形的識別提供了良好的認(rèn)知基礎(chǔ).2教學(xué)內(nèi)容的選擇和處理本節(jié)課所選教學(xué)內(nèi)容是教材中四條性質(zhì)及例題.為了遵循學(xué)生認(rèn)知規(guī)律的循序漸進(jìn)性,探究問題的完整性,培養(yǎng)學(xué)生的學(xué)習(xí)能力,發(fā)展智力.我采取把平行四邊形所有性質(zhì)集中在一課時(shí)中一起研究.(二)學(xué)情分析學(xué)生在小學(xué)階段已對平行四邊形有了初步、直觀的認(rèn)識,為平行四邊形性質(zhì)的研究提供了一定的認(rèn)知基礎(chǔ).八年級學(xué)生正處在試驗(yàn)幾何向論證幾何的過渡階段,對于嚴(yán)密的推理論證,從知識結(jié)構(gòu)和知識能力上都有所欠缺.而利用動手操作來實(shí)現(xiàn)探究活動,對學(xué)生較適宜,而且有一定吸引力,可進(jìn)一步調(diào)動學(xué)生強(qiáng)烈的求知欲.二. 教學(xué)目標(biāo)1知識與技能 使學(xué)生掌握平行四邊形的四條性質(zhì),并能運(yùn)用這些性質(zhì)進(jìn)行簡單計(jì)算.2過程與方法讓學(xué)生體會通過操作,觀察,猜想,驗(yàn)證獲得數(shù)學(xué)知識的方法.注意發(fā)展學(xué)生的分析,歸納能力,提升數(shù)學(xué)思維品質(zhì).3情感態(tài)度與價(jià)值觀注意學(xué)生獨(dú)立探究及合作交流的結(jié)合,促進(jìn)自主學(xué)習(xí)和合作精神.三. 重點(diǎn),難點(diǎn)重點(diǎn): 理解并掌握平行四邊形的性質(zhì).難點(diǎn): 通過探究得到平行四邊形的性質(zhì).四. 教學(xué)方法和教學(xué)手段1教學(xué)方法 采用引導(dǎo)發(fā)現(xiàn)和直觀演示相結(jié)合的方法,并運(yùn)用多媒體輔助開展教學(xué).2教學(xué)手段教學(xué)中鼓勵(lì)學(xué)生自主地進(jìn)行觀察、試驗(yàn)、猜測、推理的數(shù)學(xué)活動,體驗(yàn)平行四邊形是中心對稱圖形,并得出平行四邊形性質(zhì),使學(xué)生在整個(gè)過程中形成對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)策略.五 教學(xué)過程 (一) 創(chuàng)設(shè)情境,導(dǎo)入新課以錄像和照片形式展現(xiàn)平行四邊形在生活中的應(yīng)用,伸縮晾衣架,活動鐵門等,引導(dǎo)學(xué)生回憶起平行四邊形相關(guān)知識,明確平行四邊形的定義,對邊,對角,對角線的概念.教師提出問題:平行四邊形具有什么性質(zhì)呢并板書課題.(教師直接提出問題,提供給學(xué)生較大的探究空間,為發(fā)現(xiàn)法學(xué)習(xí)創(chuàng)建情景.) (二) 自主探究,發(fā)現(xiàn)性質(zhì)組織學(xué)生以小組為單位,充分利用手中的工具,通過觀察,測量等方法進(jìn)行大膽猜測,盡可能多的尋找,發(fā)現(xiàn)平行四邊形的有關(guān)性質(zhì). (幾分鐘后,揭示研究結(jié)果)平行四邊形對邊相等;平行四邊形對角相等;平行四邊形鄰角互補(bǔ)等.對于學(xué)生的結(jié)論,不論正確與否,鼓勵(lì)學(xué)生對猜想進(jìn)行探討,加以證明,并對錯(cuò)誤結(jié)論進(jìn)行調(diào)整,得出性質(zhì)一:平行四邊形對邊相等.性質(zhì)二:平行四邊形對角相等.此時(shí),教師提問;除了測量方法,還可以用怎樣的圖形變換?學(xué)生在嘗試翻折,旋轉(zhuǎn)后,發(fā)現(xiàn)圖形旋轉(zhuǎn)180度以后重合,于是又有新發(fā)現(xiàn):性質(zhì)三:平行四邊形對角線互相平分.性質(zhì)四:平行四邊形是中心對稱圖形,兩條對角線交點(diǎn)是對稱中心. (讓學(xué)生自己獨(dú)立或以小組形式合作學(xué)習(xí)探究平行四邊形性質(zhì)后,使學(xué)生在親身體驗(yàn)中獲得知識,使學(xué)生對知識的發(fā)生發(fā)展過程有了一個(gè)清晰的了解.) (三) 歸納交流,形成概念以小組為單位,請學(xué)生交流平行四邊形性質(zhì),并用規(guī)范語言描述.請學(xué)生總結(jié)整個(gè)探究的過程:提出問題試驗(yàn)操作猜想驗(yàn)證歸納總結(jié).若驗(yàn)證后發(fā)現(xiàn)不合理,則重新探索,不斷往復(fù),形成新知. (四) 性質(zhì)應(yīng)用,形成技能問題一: 平行四邊形ABCD中,A比B大40度,AB=8,周長等于24.從這些信息中你能得到哪些結(jié)論。(提供了開放的情景,可讓學(xué)生充分運(yùn)用已有的性質(zhì)1,2,加強(qiáng)了對新知識的應(yīng)用意識.)問題二: 將問題一中"周長等于24"改為"對角線AC,BD交于O,AOB的周長為24", 求AC與BD的和是多少 . (此題為課本例題的變形,進(jìn)一步加強(qiáng)了對平行四邊形性質(zhì)的運(yùn)用.)(五) 歸納小結(jié),鞏固提高讓學(xué)生談?wù)劚竟?jié)課的收獲及在知識獲得過程中的體驗(yàn)和感受. (六) 分層作業(yè),發(fā)展深化1. 必做題:課本P62練習(xí)1,2, 習(xí)題1,2,32. 選做題:在直角坐標(biāo)平面內(nèi),平行四邊形ABCD有三個(gè)頂點(diǎn)的坐標(biāo)分別為(0,0),(5,0),(2,2).求第四個(gè)頂點(diǎn)的坐標(biāo).六 教學(xué)反思1.本節(jié)課貫徹了以教師為主導(dǎo),以學(xué)生為主體的原則.以學(xué)生動手操作,獨(dú)立思考,合作交流貫穿始終.2.從問題的提出,引導(dǎo)學(xué)生觀察,動手操作,猜想,驗(yàn)證,歸納,整個(gè)過程讓學(xué)生充分感受到知識的產(chǎn)生和發(fā)展過程,促使學(xué)生積極思維,主動探索,勇于發(fā)現(xiàn).3.平行四邊形性質(zhì)的表述不是由教師直接給出,而是在教師指導(dǎo)下由學(xué)生歸納,交流,最后達(dá)成共識,形成規(guī)范的語言描述四條性質(zhì),有助于提高學(xué)生的概括表達(dá)能力.4.根據(jù)學(xué)生的個(gè)體差異,遵循因材施教的原則,設(shè)計(jì)分層作業(yè),分必做題和選做題,使不同層次的學(xué)生都能通過作業(yè)有所收獲.附板書設(shè)計(jì):一平行四邊形的定義 問題: 例1: 例2:對邊,對角,對角線的概念二、平行四邊形性質(zhì)三平行四邊形性質(zhì)應(yīng)用友情提示:部分文檔來自網(wǎng)絡(luò)整理,供您參考!文檔可復(fù)制、編制,期待您的好評與關(guān)注!3 / 3