泉店煤礦0.9 Mta新井設(shè)計(jì)含5張CAD圖-采礦工程.zip
泉店煤礦0.9 Mta新井設(shè)計(jì)含5張CAD圖-采礦工程.zip,泉店煤礦0.9,Mta新井設(shè)計(jì)含5張CAD圖-采礦工程,煤礦,0.9,Mta,設(shè)計(jì),CAD,采礦工程
對(duì)綜采放頂煤工作面回采率的論述
摘要:綜采放頂煤工作面回采率一直是制約我國(guó)綜放開(kāi)采進(jìn)一步發(fā)展的問(wèn)題之一。本文論述了我國(guó)綜放開(kāi)采回采率現(xiàn)狀,研究了綜放開(kāi)采頂煤損失構(gòu)成和形成機(jī)理,系統(tǒng)地分析了綜放回采工作面的煤炭損失,并在此基礎(chǔ)上,從采煤工藝、設(shè)備等方面提出了提高綜放回采工作面回收率的有效技術(shù)途徑及管理方法,以及回采率的計(jì)算。
關(guān)鍵字:放頂煤 回采率 損失量 措施
一、引言
我國(guó)于1982年引進(jìn)綜采放頂煤工藝技術(shù)以來(lái),取得了較大的經(jīng)濟(jì)效益。經(jīng)過(guò)20年來(lái)的不斷探索、研究和試驗(yàn),我國(guó)綜放開(kāi)采技術(shù)得到了長(zhǎng)足的進(jìn)步,每年綜放開(kāi)采的煤炭產(chǎn)量已占全國(guó)重點(diǎn)國(guó)有煤礦年產(chǎn)量的1/5~1/4。無(wú)疑,綜放開(kāi)采為我國(guó)厚煤層尤其是特厚煤層的開(kāi)采開(kāi)創(chuàng)了一條新路子,成為我國(guó)開(kāi)采厚煤層最有效、經(jīng)濟(jì)效益最好的手段,使我國(guó)厚煤層開(kāi)采技術(shù)和經(jīng)濟(jì)指標(biāo)居于世界領(lǐng)先水平。
現(xiàn)在我國(guó)已經(jīng)充分掌握這種針對(duì)厚煤層的采煤方法。綜采放頂煤技術(shù)在我國(guó)得到了迅速發(fā)展,但是綜放技術(shù)中的瓦斯、煤塵工作面自燃發(fā)火及頂煤回收率等問(wèn)題是制約綜放開(kāi)采技術(shù)發(fā)展的重要因素。然而統(tǒng)計(jì)資料表明,仍有一些礦井綜放回采工作面的回采率較低,有的還不到50%,造成了一定數(shù)量的煤炭資源損失。采煤方法的改革是技術(shù)進(jìn)步的表現(xiàn),是實(shí)現(xiàn)集中生產(chǎn)、高產(chǎn)高效的根本保證。但回采率問(wèn)題是綜放開(kāi)采工藝必須研究解決的最為重要的問(wèn)題之一,研究分析綜放開(kāi)采的煤炭損失的構(gòu)成,計(jì)算回采率以及尋求提高回采率的途徑。
二、放頂煤工作面回采率的計(jì)算
采區(qū)和工作面回采率,是綜采放頂煤的一項(xiàng)重要技術(shù)經(jīng)濟(jì)指標(biāo),也是評(píng)價(jià)綜合機(jī)械化放頂煤開(kāi)采成功與否的重要尺度。在綜采放頂煤工作面,其實(shí)際的開(kāi)采高度一般難以通過(guò)實(shí)測(cè)確定。由于計(jì)算參數(shù)難以準(zhǔn)確測(cè)量,采出煤量的準(zhǔn)確性也就是很差。因此,在無(wú)法測(cè)出實(shí)際采高和采出煤量時(shí),采用改正后的統(tǒng)計(jì)產(chǎn)量來(lái)代替計(jì)算產(chǎn)量是比較切合實(shí)際的計(jì)算方法。
綜采放頂煤工作面回采率的計(jì)算
(1)工作面可采儲(chǔ)量(Qs,t):
式中 a——工作面走向?qū)崪y(cè)長(zhǎng)度(不包括切眼),m;
b——工作面實(shí)測(cè)長(zhǎng)度(不包括上、下巷道寬度),m;
M——工作面實(shí)測(cè)平均厚度,m;
γ——煤的容重,t/m3。
(2)工作面采出煤量的計(jì)算
放頂煤綜采工作面的實(shí)際采出煤量,在不能測(cè)算實(shí)際采出煤量時(shí),可以采用統(tǒng)計(jì)產(chǎn)量代替,但需要進(jìn)行水分、灰分和矸石量改正。
實(shí)際采出煤量(Q1,t):
式中 Q2——統(tǒng)計(jì)產(chǎn)量,t;
y1——煤樣水分,%;
y2——原煤全水分,%;
y3——原煤灰分,%;
y4——煤樣灰分,%;
y5——矸石灰分,%;
y6——原煤含矸率,%。
(3)工作面煤量總損失量(Q3,t):
(4)工作面回采率的計(jì)算
工作面回采率( Sf):
工作面煤炭損失率(Sf`):
放頂煤綜采采區(qū)工作面的煤炭損失主要有:工作面初采、末采損失量,工作面端頭、端尾損失量,支架放煤口脊背損失量以及其他各種工藝過(guò)程中的煤炭損失量等。還有工作面以外的各類(lèi)煤柱損失,其他不可預(yù)見(jiàn)的損失。
在實(shí)際統(tǒng)計(jì)煤量時(shí),往往出現(xiàn)統(tǒng)計(jì)產(chǎn)量與計(jì)算產(chǎn)量間有嚴(yán)重差別,即采出煤量出現(xiàn)漲噸現(xiàn)象,漲噸量抵消回采中的各類(lèi)損失,造成工作面回采率偏高。因此,對(duì)統(tǒng)計(jì)產(chǎn)量一般應(yīng)除以1.1倍的漲噸系數(shù)。
三、綜放開(kāi)采工作面煤炭損失分析及其特點(diǎn)
綜放開(kāi)采時(shí)煤炭回收率偏低主要是由兩方面的因素引起的:
放頂煤開(kāi)采設(shè)計(jì)決定的損失
放煤工藝造成的煤炭損失
而這些損失有的是可以避免和減少的,有的則是不可避免的。
任何井工開(kāi)采方法都不可能將井下煤炭資源百分之百地采出來(lái),總是有一部分損失。采煤方法不同,其損失量的構(gòu)成也不同。綜采放頂煤是一種特殊的采煤工藝,它的損失量的構(gòu)成與傳統(tǒng)的開(kāi)采方法不同,如圖1所示,有以下幾種:
放頂煤開(kāi)采損失
工作面初、末采損失
兩巷不放煤損失
工作面放煤工藝損失
工作面區(qū)段煤柱損失
圖1 放頂煤開(kāi)采損失
采區(qū)煤柱、上、下山及硐室煤柱采區(qū)內(nèi)地質(zhì)構(gòu)造等煤柱損失
大塊煤及大塊煤之間的平衡結(jié)構(gòu)使頂煤不能放出或滯后冒落損失
放煤步距損失
架間損失
當(dāng)前放煤支架的頂煤涌入臨架未被矸石充滿的空間造成的損失
放煤口水平投影長(zhǎng)度小于放煤步距造成的損失
支架后方采空區(qū)的矸石竄入當(dāng)前放煤口
鄰架放煤后矸石竄入當(dāng)前放煤口
放煤口不連續(xù)造成的損失
由于煤矸混合造成“見(jiàn)矸就關(guān)”放煤口的工藝損失
1.初采頂煤損失量
初采損失為頂煤初次垮落以前頂煤無(wú)法回收以及直接頂垮落前頂煤只能回收一部分所造成的損失。初采損失由兩部分組成:一是頂煤在工作面離開(kāi)切眼后不能及時(shí)垮落而丟失的部分;二是頂煤開(kāi)始垮落后、直接頂垮落前有一部分頂煤落在采空區(qū)里無(wú)法回收而丟失的部分。
在頂煤初次垮落以前,高度為h1的頂煤全部丟失。當(dāng)頂煤初次垮落步距為s1時(shí),其損失量按下式計(jì)算:
式中 N1——頂煤初次垮落前的損失量,t;
s1——頂煤初次垮落步距,m;
l——工作面長(zhǎng)度,m;
h1——頂煤厚度,m;
γ——煤體的容重,t/m3。
在頂煤全部垮落而直接頂尚未垮落的情況下,當(dāng)支架移動(dòng)一個(gè)放煤步距s后,高為h1的頂煤,垮落后其橫截面積可以表示為h1*s。由于直接頂尚未垮落,頂煤垮落后按安息角呈自然堆積,此時(shí)冒落的頂煤尚未形成放落漏斗,只能放出堆積體積線以上的落煤,其下部分全部丟失。其損失量按下式計(jì)算:
式中 N2——頂煤初次垮落后至直接頂垮落前的頂煤損失量,t;
s2——直接頂初次垮落步距,m;
b——支架掩護(hù)梁長(zhǎng)度,m;
α——散煤自然安息角。
則工作面的初采損失為:
;
圖2 頂煤初采損失計(jì)算圖
為了給支架安裝創(chuàng)造條件,防止開(kāi)切眼頂煤冒落,掘進(jìn)時(shí)就鋪設(shè)頂網(wǎng),其長(zhǎng)度等于開(kāi)切眼的長(zhǎng)度,寬度6-7m。這一部分煤由于金屬網(wǎng)的阻擋,不能從天窗放出而丟棄。其損失量占采區(qū)總損失,最大為4.66%,最小為2.48%,平均為4%;占采區(qū)回采率的1%左右。
2.末采頂煤損失量
末采損失量與頂煤的物理特性無(wú)關(guān),只與頂煤的厚度和工作面長(zhǎng)度有關(guān):
式中 s3——工作面停采前不放煤的推進(jìn)距離,m。
工作面到達(dá)停采線以前,為了保證支架拆除時(shí)的頂煤完整性,距停采線12m時(shí),開(kāi)始鋪?lái)斁W(wǎng),不放頂煤,直到停采線止,這一部分煤也不能采出。其損失量占采區(qū)總損失的4.01%,占采區(qū)回采率的1%以上。
3.工作面兩端頂煤損失量
綜放工作面兩端一般各有2架過(guò)渡支架不放煤,所造成的頂煤損失量可按下式計(jì)算:
式中 s0——工作面走向推進(jìn)長(zhǎng)度,;
β——頂煤放落角;
n1——工作面端頭不放煤支架數(shù)。
為維護(hù)工作面上下端頭和運(yùn)輸設(shè)備的安全,工作面兩端各有兩架不放頂煤。按每端2.5m計(jì),共有5m不放頂煤,其損失量平均占采區(qū)總損失的7%左右,占采區(qū)回采率的2%左右。
圖3 端頭損失計(jì)算圖
4.工作面上、下順槽頂煤損失量
為了保持巷道頂板的完整性,掘進(jìn)順槽時(shí),在支架與頂板之間鋪有一層金屬網(wǎng),為強(qiáng)化工作面端頭支架創(chuàng)造條件。因此,兩巷頂煤全部損失。
5.脊背損失量
在相鄰兩支架的天窗之間,有一個(gè)類(lèi)似三角狀的煤帶,煤帶大小與支架結(jié)構(gòu)有關(guān),這部分煤不易從天窗中放出,被遺棄在采空區(qū)中。因放煤工藝,該項(xiàng)損失是不可避免的,其損失量約占采區(qū)總損失的1%左右,占采區(qū)回采率的0.5%。
6.工作面放煤工藝損失量
放煤工藝造成的頂煤損失構(gòu)成比較復(fù)雜,主要有脊背損失、矸石混入過(guò)多而失去采出意義造成的損失、大塊煤矸卡口造成的損失等。其影響因素有煤層硬度、采放比、頂煤節(jié)理裂隙發(fā)育程度、煤層上覆巖層結(jié)構(gòu)、工作面仰俯斜角度、選用架型、循環(huán)放煤步距、放煤方式、后部輸送機(jī)高度、放煤工的熟練程度和責(zé)任心等。這一煤量尚無(wú)辦法計(jì)算,但在某一個(gè)工作面的實(shí)際回采率確定后,工作面總損失量中減去上述幾種損失為工藝損失。
經(jīng)實(shí)際觀測(cè),頂煤在放出過(guò)程中,頂板巖石和煤層接觸面并不總是截然分開(kāi)的,而是發(fā)生了混合,形成了一個(gè)煤、巖混合段。這個(gè)混合段的厚度現(xiàn)還無(wú)法測(cè)定,且與頂煤的可冒性、直接頂?shù)暮穸纫约胺琶翰僮鞣椒ㄓ嘘P(guān)。這項(xiàng)損失量是放頂煤的重要損失量,對(duì)回采率的影響極大。其損失量平均占采區(qū)總損失量的35%左右,占采區(qū)回采率的11%。因此,如何降低工作面放頂煤工藝損失量是提高放頂煤回采率的關(guān)鍵。
四、提高綜放回采工作面回采率的途徑與措施
1.選擇可放性好的煤層或通過(guò)注水軟化等方法提高冒放性,減少初末采損失
煤層具有可放性,是實(shí)現(xiàn)綜放開(kāi)采的先擇條件。一些回收率較低的綜放面都是頂煤冒落滯后或塊度大,即煤層可放性較差。在上綜放以前,應(yīng)對(duì)綜放開(kāi)采的可行性進(jìn)行論證,按煤層可放性分級(jí)方法,確定可放性,對(duì)可放性較差的煤層,應(yīng)采取輔助落煤措施,如厚煤層可在頂層采一層煤體提前高壓注水軟化切眼頂板爆破,即人工切頂?shù)?。在放頂煤開(kāi)采中,初采損失不可避免,雖然損失量不大,但也應(yīng)盡量減少之。減少初采損失比較有效的方法就是采用切頂巷技術(shù)和深孔爆破技術(shù)。
(1)切頂巷技術(shù)
切頂巷技術(shù)是采用減少初采期間頂煤的垮落步距來(lái)提高初采回收率的。其基本原理是:改變初采時(shí)頂煤的受力狀態(tài),使其受力狀態(tài)由兩端嵌入梁改變?yōu)橐欢饲度肓硪欢撕?jiǎn)支架。其中,采取措施后的煤體最大拉應(yīng)力為一般情況下的1.7倍,相應(yīng)地使頂煤破壞的垮度僅為一般情況下的77%。其方法是:在綜采工作面開(kāi)采前,在切眼外上側(cè)沿煤層頂板施工一條與切眼平行的輔助巷道(取各切頂巷),將頂煤沿頂板切斷,工作面安裝完畢后將巷道內(nèi)支護(hù)材料全部回收,為提高效果,巷道回撤時(shí)在切頂巷靠近工作面一側(cè)的煤幫和底板上打眼放炮,將頂煤全部切斷,形成自由面。這種方法在兗州礦業(yè)集團(tuán)鮑店礦已被采用。實(shí)踐證明,這一技術(shù)措施取得了較好的效果,據(jù)該礦觀測(cè),當(dāng)工作面推進(jìn)3.4m時(shí),頂煤開(kāi)始冒落,推進(jìn)7.8 m時(shí),直接頂垮落,比相鄰工作面的垮落步距減少5.2m,使該工作面回收率提高0.31%;又如鶴崗礦業(yè)集團(tuán)南山礦利用切頂巷技術(shù)解決了特厚煤層放頂煤工作面初次來(lái)壓步距增加、壓力集中、頂煤冒落不充分、丟煤嚴(yán)重、工作面回采率低的問(wèn)題。南山礦放頂煤工作面走向長(zhǎng)度為780m,傾斜長(zhǎng)度為60m,煤層厚度為13m,傾角為25度,煤的硬度系數(shù)f=0.8~1.5,頂板為3.5m水平層理灰色細(xì)粉砂巖,再加上0.6m的煤頁(yè)巖互層,以及灰色細(xì)砂巖,頂板為淺灰色細(xì)砂巖。切頂巷的布置為:在中部一號(hào)面沿工作面運(yùn)輸巷外側(cè)開(kāi)門(mén),按30度坡度掘送切頂巷并與上架子道貫通,考慮到切眼外側(cè)的保護(hù)煤柱留設(shè)及放頂煤后煤層垮落情況,切頂巷比切眼內(nèi)錯(cuò)3m。在切頂巷內(nèi)布置挑頂眼,將老頂切開(kāi),布置時(shí)采用楔形對(duì)挑方式,沿工作面傾斜方向布置兩排眼,排距為1.2m,傾斜眼距為1.5m,傾角為75度。由下往上逐段裝藥放炮,將老頂切斷,待老頂全部切開(kāi)后,
開(kāi)始放頂回采。據(jù)觀測(cè),采用此措施后,工作面推過(guò)切頂巷后,頂煤全部垮落,而沒(méi)有采用切頂巷時(shí),采出24m后頂煤才全部冒落;采用后,初次來(lái)壓步距僅為18m,且來(lái)壓不十分明顯,而原來(lái)要推進(jìn)70m老頂才初次來(lái)壓,且來(lái)壓顯現(xiàn)十分明顯。
圖4 綜放工作面初垮時(shí)的受力狀態(tài)示意圖
(2)提高頂煤冒放性的深孔預(yù)裂爆破技術(shù)
經(jīng)綜放面采空區(qū)殘煤分布形態(tài)的研究結(jié)果表明,綜放面采空區(qū)殘煤的賦存高度與頂煤冒落塊度有如圖4殘煤高度與殘煤粒度的關(guān)系。因此,減少綜放面采空區(qū)殘煤損失,提高工作面回采率,必須改善頂煤的破壞破碎條件,提高頂煤的冒放性,減少頂煤的冒落粒度。深孔預(yù)裂爆破是提高頂煤冒放性、減小頂煤冒落塊度的有效方法之一。
圖5 殘煤高度與殘煤粒度
兗州礦業(yè)集團(tuán)鮑店礦采用如圖5所示爆破方法,使工作面回采率由81.7%提高到86.1%,提高了4.4個(gè)百分點(diǎn)。
(3)煤層預(yù)注水,軟化煤體,縮小頂煤塊度,提高回采率
煤層注水對(duì)軟化煤體,降低煤層硬度,縮小頂煤垮度的塊度,提高回采率有較為明顯的作用,同時(shí),又能減少生產(chǎn)過(guò)程中的煤塵濃度。因此,在放頂煤工作面,煤層硬度較大時(shí),應(yīng)實(shí)行煤層預(yù)注水措施:
非采動(dòng)區(qū)靜壓注水或采動(dòng)影響區(qū)內(nèi)注水。
在煤巖層的生成過(guò)程中,由于各種地質(zhì)力學(xué)和地球化學(xué)的作用,在煤巖體內(nèi)部產(chǎn)生節(jié)理裂隙等許多弱面。煤巖體注水技術(shù)是通過(guò)鉆孔向煤巖體預(yù)注高壓水,壓力水進(jìn)入煤體后沿弱面流動(dòng),起到壓裂和沖刷作用,以及水對(duì)裂隙尖端的楔入作用(水楔作用),使煤巖體擴(kuò)大了原有裂隙,產(chǎn)生了新的裂隙,破壞了煤巖體的整體性,降低了強(qiáng)度,從而改變煤巖體的物理力學(xué)性質(zhì),提高綜放工作面頂煤的冒放性。
圖6 深孔預(yù)裂爆破試驗(yàn)鉆孔布置示意
銅川下石節(jié)煤礦某綜放面采用孔間距為20m、注水量為50m2/孔、壓力為16MPa、大流量往復(fù)式注水方式,使工作面單架放煤時(shí)間由原來(lái)3.4min下降到2.6min,減少0.8min/架,提高了放煤流暢性,工作面回采率由原來(lái)的76.8%提高到79.5%,提高了2.7個(gè)百分點(diǎn)。
2.適當(dāng)加大工作面的幾何尺寸
根據(jù)各煤層的地質(zhì)條件、設(shè)備配備、人員素質(zhì)等情況,適當(dāng)加大工作面的尺寸,可以相對(duì)減少初、末采及端頭損失率,是提高工作面回采率的有效途徑。一般以工作面長(zhǎng)200m,走向長(zhǎng)1500m。也可以適當(dāng)擴(kuò)大。
(1)加長(zhǎng)工作面長(zhǎng)度
在沒(méi)有端頭過(guò)渡支架的綜放面,上下端頭不放煤的架數(shù)是固定的,加長(zhǎng)工作面長(zhǎng)度可以減少丟煤比例。
(2)加長(zhǎng)工作面走向
工作面走向加長(zhǎng)可減少工作面的搬家次數(shù),從增加回采率考慮,可以減小初采和臨采丟煤的比例。大幅度增加工作面連續(xù)推進(jìn)長(zhǎng)度綜采工作面搬家一次費(fèi)時(shí)費(fèi)工,因此,在傾斜長(zhǎng)壁巷道布置時(shí),應(yīng)積極采用跨越式的往復(fù)式回采,從而大幅度增加工作面連續(xù)推進(jìn)的長(zhǎng)度,減少搬家次數(shù)。
3.合理選擇放煤工藝
沿工作面長(zhǎng)度方向上任意處都能夠進(jìn)行放煤,因此存在著放煤順序和放煤口同時(shí)開(kāi)啟的數(shù)目問(wèn)題。一般常用的方式有:?jiǎn)屋?、多口、順序、不等量放煤方法,多輪、分段、順序、等量放煤方法和多輪、間隔、順序、等量放煤方法等幾種。這幾種方法基本上都能使煤巖接觸面保持沉降均勻。最佳的放煤工藝應(yīng)是回采率高、含矸率低,而改進(jìn)放煤工藝使之更合理,可以提高回采率、降低含矸率。
(1)多輪順序均勻放煤
放煤順序按1號(hào)、2號(hào)、3號(hào)、……支架順序進(jìn)行放煤,每次放出頂煤量的1/2~1/3;第一輪放完后,再?gòu)?號(hào)支架開(kāi)始放第二輪,然后放第三輪并把頂煤全部放完。一般情況下,放采比較小時(shí),即小于3時(shí),采用雙輪放完煤即可;當(dāng)放采比較大時(shí),即大于3時(shí),采用三輪放完的較多。這種放煤順序能使煤巖分界面均勻下降,可得到回采率高和含矸少的效果。這種程序要求操作水平高,放煤速度較慢。從目前情況看,主要應(yīng)用于大采高的急傾斜水平分層放頂煤工作面,而緩傾斜厚煤層放頂煤工作面很少采用,主要原因是放煤速度太慢。
(2)單輪間隔順序均勻放煤
放煤順序是按1號(hào)、3號(hào)、5號(hào)……支架順序進(jìn)行放煤,放完后再以2號(hào)、4號(hào)、6號(hào)……支架順序放煤,見(jiàn)矸關(guān)門(mén)。為了加強(qiáng)放煤速度,也可以?xún)蓚€(gè)放煤工相隔一定距離同時(shí)放煤,一人放單號(hào)支架,另一個(gè)人遲后放雙號(hào)支架。這種放煤工藝適用于放采比不大的工作面。由于放煤速度快,回采率較高,矸石混入量也較少,所以實(shí)際采用的較多。
(3)單輪順序放煤
此放煤工藝是放完第1號(hào)支架,再放2號(hào)支架,依次順序?qū)⒚總€(gè)放煤口的煤全部放完。這種工藝放煤速度快,但是有一不足,即不是混矸嚴(yán)重就是丟煤太多。解決的辦法是通過(guò)使用低位放頂煤支架來(lái)改善回采率和矸石的混入狀況,同時(shí)建立洗煤廠來(lái)提高煤質(zhì)。
(4)單輪順序折返補(bǔ)放式放煤
先放第1號(hào)支架,見(jiàn)矸后關(guān)門(mén),改放2號(hào)支架,待見(jiàn)矸后折返回頭補(bǔ)放1號(hào)支架,將1號(hào)支架第一次未放凈的殘留余煤經(jīng)放2號(hào)支架活動(dòng)落下的煤補(bǔ)放干凈,然后跳過(guò)2號(hào)支架而放3號(hào)支架,見(jiàn)矸后關(guān)門(mén)再折返補(bǔ)放2號(hào)支架,將2號(hào)支架第一次未放凈的殘留余煤經(jīng)過(guò)補(bǔ)放1號(hào)和3號(hào)左右兩架松動(dòng)下的2號(hào)支架架頂余煤補(bǔ)放干凈,之后再放4號(hào)支架。這樣依序放4號(hào)、5號(hào)、6號(hào)、……,每向前放一架,即返回補(bǔ)放前一架,使每一架放煤后都進(jìn)行一次補(bǔ)放。如果想加快放煤速度,可兩人或三人分段同時(shí)放煤,這樣做時(shí)有一點(diǎn)需要注意,即輸送機(jī)的運(yùn)輸能力,否則,由于放出煤量太多壓死輸送機(jī)。這種放煤方式集中了單輪放煤與多輪放煤、順序放煤與間隔放煤的優(yōu)點(diǎn),從放煤速度、回采率和混矸率來(lái)看,效果較好。
在選擇放煤方式時(shí)應(yīng)根據(jù)具體條件而定,而主要的是應(yīng)根據(jù)煤層的厚度來(lái)確定:一般情況下,煤層較薄時(shí),采用單輪放煤;煤層較厚時(shí),采用多輪放煤;間隔放煤較順序放煤效果好。單輪放煤工藝簡(jiǎn)單,易于操作;多輪放煤工藝復(fù)雜,操作技術(shù)要求較高。放煤工藝應(yīng)采取單輪間隔放煤的方法,這種方法工人既比較容易掌握,脊背損失相對(duì)又小。
實(shí)踐證明,綜采放頂煤是一種復(fù)雜的綜合采煤技術(shù),不是有了放頂煤支架就可以獲得高回采率的高產(chǎn)高效,因?yàn)樵黾拥姆琶汗ば虻囊淮尾扇卟擅悍▽?dǎo)致的回收率、含矸率、煤塵、煤層自燃等問(wèn)題,使采煤工藝及技術(shù)比一次采全高和分層開(kāi)采在一定程度上是復(fù)雜化了??傊?,應(yīng)把綜采放頂煤當(dāng)做綜合采煤技術(shù)才是正確的。從礦壓觀點(diǎn)出發(fā),必須解決綜采放頂煤工作面煤巖的可控性、可冒性和可放性,否則將不會(huì)獲得好效果。
4.合理選擇放煤步距
放煤步距是兩次放煤之間綜采工作面向前推進(jìn)的距離。合理地選擇放煤步距,對(duì)提高回采率、降低含矸率十分重要。它與頂煤厚度、破碎質(zhì)量、松散程度及放煤口的位置有關(guān),還與頂煤冒落時(shí)的垮落角有關(guān)。最佳的放煤步距應(yīng)是頂煤垮落后能從放煤口全部放出的距離。若放煤步距太大,遺留在采空區(qū)的脊背煤炭損失就多,回采率低,但煤質(zhì)好含矸率少;若放煤步距太小,則回采率高,混矸嚴(yán)重。據(jù)統(tǒng)計(jì),在頂煤垮落角為60~90度時(shí)的條件下,達(dá)到合理回收率大于80%和含矸率小于15%的最佳綜合效益時(shí)的放煤步距應(yīng)是1.2~1.8m,也就是采煤機(jī)每割2~3刀(截深為0.6m左右)放一次頂煤為宜。所以要根據(jù)煤層條件破碎松散程度、垮落角等有關(guān)因素,通過(guò)試驗(yàn)來(lái)最終確定合理的放煤步距。另外,在架型確定以后,放煤步距應(yīng)當(dāng)與支架放煤口的縱向尺寸相一致。對(duì)于綜采放頂煤工作面而言,放煤步距應(yīng)與移架步距(或采煤機(jī)截深)成倍數(shù)關(guān)系,即割一刀、兩刀或三刀煤放一次頂煤。也就是說(shuō),支架放煤口的縱向尺寸亦應(yīng)與采煤機(jī)循環(huán)進(jìn)刀量成倍數(shù)關(guān)系,否則,若放煤步距大于支架放煤口的縱向尺寸,則會(huì)有一部分冒落的頂煤留在支架放煤口的后方而丟到采空區(qū);如果放煤步距小于支架放煤口的縱向尺寸,則必然有一部分矸石處于放煤口的上方,放煤時(shí)這部分矸石被一并放出,增加了含矸率。
所以放煤步距應(yīng)根據(jù)煤層厚度、放煤窗口的幾何尺寸及選煤、排矸能力確定。煤層較厚、窗口較大時(shí),放煤步距就可適當(dāng)加大,否則應(yīng)適當(dāng)縮小。選煤系統(tǒng)若采用洗選加工,排矸能力較大,則適當(dāng)縮小放煤步距,可以提高回采率,又不至于影響煤質(zhì)。
從目前綜采放頂煤工作面的情況看,所用采煤機(jī)的截深一般是0.6m,由于一刀一放(放煤步距為0.6m)或三刀一放(放煤步距為1.8m)其放煤步距不是小就是大,因此大部分工作面采用兩刀一放(放煤步距為1.2m)。而從實(shí)際情況來(lái)看,放煤步距為1.2m并非對(duì)每一個(gè)工作面都是一個(gè)合理值。一般情況下,頂煤高度大時(shí),放煤步距則偏大,反之則偏小。潞安礦業(yè)集團(tuán)王莊礦的某綜放工作面所采用的采煤機(jī)將0.6m的截深改為0.8m的截深,該工作面采用一刀一放,單輪順序放煤,放煤步距為0.8m,滯后機(jī)組30m追機(jī)放煤,各項(xiàng)指標(biāo)均創(chuàng)好水平。一般情況下,在緩傾斜厚煤層中,放煤步距應(yīng)控制在1.2~1.8m之間。
5.優(yōu)化綜放設(shè)備選型配套,合理選擇液壓支架放煤口的高度
綜采放頂煤開(kāi)采的放煤口高度由選用的液壓支架決定,不同類(lèi)型的液壓支架有著不同的放煤高度。放煤口位置低的,放煤量多,回采率高,如插板式低位放頂煤支架;掩護(hù)梁上開(kāi)天窗的中位放頂煤支架,放煤口位置較高,相對(duì)降低了放煤漏斗的高度,使低于放煤口底部邊緣的煤無(wú)法進(jìn)入放煤口,從而影響回采率的提高;單輸送機(jī)高位放頂煤支架,其放煤口設(shè)在掩護(hù)梁上,屬于開(kāi)天窗式,放煤口位置最高,底部邊緣距底板高度1.5m左右,放煤體積減少了三分之一,遺留在采空區(qū)的浮煤太厚,增加了煤炭損失,易造成自然發(fā)火。
推廣低位放頂煤液壓支架,是提高綜放回采率的關(guān)鍵途徑推廣低位放頂煤液壓支架是提高綜放回采率的關(guān)鍵途徑。低位放頂煤液壓支架放煤速度快、煤塵小、回收率高已為公認(rèn)。低位放頂煤比高位放頂煤高出3.36個(gè)百分點(diǎn)。但在設(shè)計(jì)與選型時(shí),其支架的尾梁擺動(dòng)幅度、插板的伸縮范圍、后部空間、后立柱工作阻力要有充分的余地,以便充分發(fā)揮放煤機(jī)構(gòu)效能。進(jìn)一步開(kāi)發(fā)配套綜放端頭支架如果綜放工作面兩端頭配置支架,則可增加回采工作面 2 架~4 架支架的放煤長(zhǎng)度,實(shí)現(xiàn)多回收煤炭而提高回收率。
6.合理選擇放頂煤的高度
確定合理的放頂煤高度對(duì)于順利放落頂煤,提高煤炭的回收率和技術(shù)效益至關(guān)重要。理想狀態(tài)是頂煤充分松散后所增加的高度等于底層工作面采高。一般綜放面放煤厚度均大于割煤厚度,放煤量大于割煤量,后部運(yùn)輸機(jī)能力應(yīng)大于前部運(yùn)輸機(jī),否則出現(xiàn)割煤后等放煤,不僅制約回采工作面推進(jìn)速度,又易造成頂煤放不凈,后部運(yùn)輸機(jī)能力小而造成壓溜、斷鏈等事故。
因此,放煤厚度與采高之比為3~6.5:1為宜。如采高為2. 5 m,則合理的頂煤厚度為7.5~16m,最佳頂煤厚度可取7.5~10m。我國(guó)實(shí)際采放比一般為1:2.6~6.5。在緩傾斜厚煤層中,除了褐煤礦床以外,目前開(kāi)采的煤層厚度大都在10m以下,在進(jìn)行放頂煤開(kāi)采時(shí)都是一次采全高,如兗州礦區(qū)、潞安礦區(qū)及陽(yáng)泉礦區(qū)等。因此,放頂煤高度即為煤層厚度與機(jī)采高度之差,無(wú)所謂合理的問(wèn)題。但是在急傾斜特厚煤層水平分層放頂煤開(kāi)采中或緩傾斜特厚(超過(guò)15m)煤層中,合理的分層高度的確定則是必須要解決的問(wèn)題。從目前放頂煤的實(shí)踐來(lái)看,最大分層高度達(dá)30多米,當(dāng)然,放頂煤高度與煤層硬度、節(jié)理發(fā)育狀況、煤層結(jié)構(gòu)、夾矸的層數(shù)及硬度等有直接的關(guān)系。從特厚煤層水平分層綜采放頂煤開(kāi)采的實(shí)踐來(lái)看,綜合效果較好的分層厚度以10m為宜,若分層厚度太大,回采率降低或混矸嚴(yán)重。若按采放比考慮,則采放比以1:4左右為宜。
7.?dāng)U大端頭放煤范圍
目前,為了保護(hù)安全出口的支架,一般都留有3~5架不放煤,煤量損失比較嚴(yán)重。而且原能源部1990年制定的《煤礦綜采工作面安全技術(shù)規(guī)定》中,有“在工作面上下端頭留5架支架不放煤,以維護(hù)上下兩巷的安全出口”的明確規(guī)定,這樣,其損失將更為嚴(yán)重。就現(xiàn)在的條件,端頭各留一架不放煤即可。盡管如此,研制有效的端頭支架,完善支架配套,實(shí)施端頭全部放煤,仍是亟待解決的問(wèn)題。
8.搞好工作面的頂板管理、保證巷道掘進(jìn)與支護(hù)必須質(zhì)量
由于管理不善,工作面出現(xiàn)冒頂而迫使局部中止放煤的情況,在放頂煤工作面時(shí)有發(fā)生,對(duì)回采率影響甚大。因此,加強(qiáng)頂板管理,對(duì)于放頂煤工作面來(lái)說(shuō),意義更為重大。
巷道掘進(jìn)與支護(hù)對(duì)工作面回采率看似關(guān)系不大,實(shí)際生產(chǎn)中往往因掘進(jìn)與支 護(hù)質(zhì)量造成工作 面開(kāi)采煤量損失。 如因巷道支護(hù)質(zhì)量差,特別是鄰近采空區(qū)時(shí)巷道極易壓垮,給工 作面回采造成困難,推進(jìn)速度慢,易引發(fā)煤層自燃產(chǎn)生有害氣體。此時(shí),現(xiàn)場(chǎng)多采 用快速推進(jìn)不放頂煤的辦法來(lái)解決,以避免造成更大的自燃事故。當(dāng)掘進(jìn)巷道不 直,中線偏差大等,同樣會(huì)給工作面回采造成困難。另外,巷道掘進(jìn)時(shí)個(gè)別區(qū)域因 某些原因而丟底煤,工作面回采過(guò)程中個(gè)別區(qū)域也被迫丟底煤而影響回采率。
9.遇構(gòu)造盡量不終止或少終止放煤
遇構(gòu)造而終止放煤,旨在頂板管理。實(shí)踐證明,這種方式不但造成煤量損失,而且不利于管理頂板。所以,遇類(lèi)似情況盡量不終止或少終止放煤。
10.實(shí)行綜放無(wú)煤柱開(kāi)采
實(shí)行綜放無(wú)煤柱開(kāi)采是解決綜放開(kāi)采回采率低的途徑之一?,F(xiàn)應(yīng)進(jìn)行綜放無(wú)煤柱開(kāi)采沿空送巷的試驗(yàn),重點(diǎn)研究解決沿空送巷的巷道掘進(jìn)和維護(hù)技術(shù),防漏風(fēng)和防老空區(qū)發(fā)火技術(shù)。
總之,工作面回采率的高低,并不完全決定于放頂煤開(kāi)采方法本身,而是由其設(shè)備配套、操作程序、工作面布置、管理及放煤工藝等諸多人為因素所決定。事實(shí)證明,就目前的條件,在緩傾斜厚煤層中,放頂煤綜采工作面回采率一般都能達(dá)到80%以上。只要不斷完善其技術(shù),積極采取各種有效措施,回采率還可得到進(jìn)一步提高。
11建立健全科學(xué)合理的通風(fēng)與瓦斯排放系統(tǒng)
建立健全科學(xué)合理的通風(fēng)與瓦斯排放系統(tǒng)有利于回采率的提高由于綜放裝備與工藝的使用,礦井瓦斯涌出規(guī)律發(fā)生了 較大的變化,瓦斯涌出量明顯增加,礦井瓦斯等級(jí)普遍升級(jí),如陽(yáng)泉礦務(wù)局 15#煤 層礦井均由原來(lái)的低瓦斯礦井升為高瓦斯礦井,給通風(fēng)瓦斯管理與安全生產(chǎn)帶來(lái) 新的困難。如果通風(fēng)瓦斯問(wèn)題得不到科學(xué)合理的解決,工作面就不能實(shí)現(xiàn)正常推進(jìn),一是易引發(fā)自燃發(fā)火造成資源損失;二是引發(fā)瓦斯事故,造成資源損失。所以要保證工作面安全生產(chǎn)和回采率的提高,必須建立健全與綜放相套的科學(xué)合理的 通風(fēng)與瓦斯管理系統(tǒng),這方面仍然需要進(jìn)行深入研究。
12健全計(jì)量管理,加強(qiáng)監(jiān)督檢查
放頂煤的計(jì)量管理是提高采出率途徑的重要部分,也是難度大、人為因素多的一項(xiàng)工作。 因?yàn)槠鋵?shí)際采高與儲(chǔ)量無(wú)法丈量,頂煤是否放凈又看不見(jiàn),所以健全 計(jì)量管理、加強(qiáng)監(jiān)督檢查尤為重要。
1)要有健全的準(zhǔn)確探煤厚度。陽(yáng)泉礦務(wù)局的做法是掘進(jìn)順槽巷道時(shí),10 m~15 m 探一次煤厚,工作面每推進(jìn)10 m~ 15 m 再探一次,以確定真實(shí)儲(chǔ)量,為回采率計(jì)量提供依據(jù)。
2)采出量在丈量進(jìn)度測(cè)算的同時(shí),使用核子稱(chēng)和出車(chē)數(shù)計(jì)量,三個(gè)方面的結(jié) 合,能有效保證采出量的真實(shí)性。
3)放煤管理方面,一是地測(cè)部門(mén)配備專(zhuān)人現(xiàn)場(chǎng)跟班監(jiān)督檢查;二是制定調(diào)動(dòng) 放煤工積極性的經(jīng)濟(jì)政策,如以放煤量計(jì)算工資等;三是配備高素質(zhì)的放煤工。
4)加強(qiáng)回采率的測(cè)算與分析管理,保證回采率數(shù)據(jù)的真實(shí)性,并及時(shí)發(fā)現(xiàn)問(wèn)題,予以糾正。
5)制定回采率考核制度,做到責(zé)任明確,獎(jiǎng)罰分明,促進(jìn)綜放回采率的管理工作。
13工作面調(diào)斜與旋轉(zhuǎn)
圖7 工作面調(diào)斜、旋轉(zhuǎn)示意圖
如圖7,通過(guò)工作面調(diào)斜和旋轉(zhuǎn),可以再一定程度上較少三角煤的損失,增加可采資源量,從而提高回采率,此外還可進(jìn)一步提高綜放工作面的適用范圍。在工作面調(diào)斜和旋轉(zhuǎn)時(shí)要注意以下幾點(diǎn):
1) 合理選擇旋轉(zhuǎn)中心位置,平巷折線段要有合理長(zhǎng)度。
2) a¢不能過(guò)大,過(guò)大易損設(shè)備,一般1°~1.5° 。
3) 要嚴(yán)格掌握進(jìn)度,巷道中要標(biāo)出。
4) 保證煤壁、輸送機(jī)和支架在直條線上。
5) 防止輸送機(jī)上竄下滑。
6) 最好以輸送機(jī)機(jī)頭為中心,旋轉(zhuǎn)機(jī)尾 。
五、結(jié)束語(yǔ)
通過(guò)對(duì)綜放工作面開(kāi)采丟煤構(gòu)成分析認(rèn)為,綜放開(kāi)采丟煤由初采丟煤、工作面丟煤和臨近停采丟煤三大部分構(gòu)成。巷道丟煤的合理放煤也可增加回收率。在實(shí)際生產(chǎn)過(guò)程中,可以選擇可放性好的煤層,合理確定放煤步距和放煤順序,合理確定采放厚度,增大割煤高度、加大工作面長(zhǎng)度和工作面推進(jìn)長(zhǎng)度,采用放煤端頭過(guò)渡支架,選取低位放煤支架等途徑,提高綜放開(kāi)采回采率。為高產(chǎn)高效(雙高)建設(shè)兩巷采用大斷面,機(jī)頭、尾在兩巷、采機(jī)自開(kāi)出口,連續(xù)化生產(chǎn)端頭放煤工藝。實(shí)行綜放無(wú)煤柱開(kāi)采是解決綜放開(kāi)采回采率問(wèn)題的根本途徑。
參考文獻(xiàn)
[1] 杜計(jì)平,采礦學(xué).徐州:中國(guó)礦業(yè)大學(xué)出版社,2009
[2] 陳昌榮,地質(zhì)學(xué)基礎(chǔ).中國(guó)礦業(yè)大學(xué)出版社.1994
[3] 徐永圻,煤礦開(kāi)采學(xué)(修訂本) .徐州:中國(guó)礦業(yè)大學(xué)出版社.1999 [4] 戴紹城,高產(chǎn)高效綜合機(jī)械化采煤技術(shù)與裝備.煤炭工業(yè)出社.1997 [5] 陳炎光,徐永祈.中國(guó)采煤方法.中國(guó)礦業(yè)大學(xué)出版社.1991
[4] 馮昌榮,煤礦礦井采礦設(shè)計(jì)手冊(cè).煤炭工業(yè)出版社.1984
[5] 錢(qián)鳴高,劉庭成.礦山壓力及控制.煤炭工業(yè)出版社.1991
[6] 于海勇,放頂煤開(kāi)采的基礎(chǔ)理論.煤炭工業(yè)出版社.1995
[7] 王省身,礦井災(zāi)害防治理論與技術(shù).中國(guó)礦業(yè)大學(xué)出版社.1989
[8] 馮昌榮,采礦工程專(zhuān)業(yè)畢業(yè)設(shè)計(jì)指導(dǎo).中國(guó)礦業(yè)大學(xué)出版社.1996
[9] 岑傳鴻,采場(chǎng)頂板控制與檢測(cè)技術(shù).中國(guó)礦業(yè)大學(xué)出版社.1998
[10] 林在康,左秀峰,礦業(yè)信息及計(jì)算機(jī)應(yīng)用.2000
英文原文
The optimal support intensity for coal mine roadway tunnels in soft rocks
C. Wang*
Mining Engineering Program, Western Australian School of Mines, PMB 22, Kalgoorlie WA6430, Australia
1. Introduction
The essence of underground roadway support is to provide the surrounding rocks of an underground roadway with assistance to help them achieve stress and strain equilibrium and ultimately stability of deformation.The approaches to this goal are either to reinforce the rock mass by rock bolting or injection(internal rock stabilization) or to provide the surrounding rocks with a support resistance with a magnitude being described as the support intensity (external rock stabilization).
When an underground roadway is located in soft rocks which are too soft to be reinforced by bolting and/or unsuitable for rock injection because of restraints imposed by either the rock mass impermeability or rock mass deterioration when water is encountered, external rock support, such as steel sets, therefore becomes the only option for the stability control of the roadway. Under this circumstance, the support intensity means a support force acting per unit surface area of the surrounding rocks of the roadway. In soft rock engineering practice, the design of a support pattern for a roadway in underground coal mining is normally based on rules of thumb. In most cases, heavy support measures are adopted to secure a successful roadway.
Fig. 1(a) demonstrates the excellent condition of a sub-level roadway within soft rocks at an underground coal mine in north China, where an excessive capital cost was applied for the achievement of roadway stability. In some cases, such as a service roadway driven in soft rocks at the same mine (Fig. 1(b)), insufficient support intensity was specified as a result of a lack of relevant experience and design codes. Consequently, failure of the roadway stability was inevitable and an extra cost was incurred when the subsequent roadway repair or rehabilitation was undertaken.
The critical issue in both cases lies in the determination of an optimal support intensity which is the function of the geometry and dimension of a roadway and its geotechnical conditions including rock mass properties, stress conditions and hydrological status.
Physical modelling using simulated materials based on the theory of similarity provides a direct perceptional methodology for mining geomechanics study [1-6].Using simulated materials of the same composition to construct a roadway and its soft surrounding rocks, applying a certain magnitude of simulated support intensity to the surface of a roadway under simulated stress conditions, the three-dimensional physical modelling method depicted in this Note emonstrates a quantitative solution for strategic design of roadway support concerned with soft rocks. A relation between the support intensity and deformation of the surrounding rocks of a roadway has been established after a series of simulation tests had been conducted. A discussion on the optimal support intensity for a roadway in soft rocks is also given.
Fig. 1. Examples of successful and unsuccessful support of underground roadways within soft rocks: (a) Good condition of a sublevel roadway, (b) Unsuccessful support of a service roadway.
2. Features of the three-dimensional physical modelling
A physical modelling study of the interaction between support intensity and roadway deformation was carried out using the three dimension physical modelling system (see Fig. 2) at the Central Laboratory of Rock Mechanics and Ground Control, China University of Mining and Technology. Features of this system are described in the following sub-sections.
Fig. 2.Three-dimensional loaded physical modelling system at the Central Laboratory of Rock Mechanics and Ground Control, China University of Mining and Technology.2.1. Size of the physical model
The effective size of a physical model is 1000 mm wide, 1000 mm high and 200 mm thick.
2.2. Three dimensional active loading capability
Six flatjacks are used to apply loads to the six sides of the physical model in the form of a rectangular prism. Each flatjack was designed to cover the full area of one of the six sides and be capable of applying a pressure of up to 10 MPa on to the surface of the simulated rock mass. This means that the flatjacks are capable of applying an active load of up to 1000 tonnes and 200 tonnes simultaneously on the front and back facets, the top and bottom, and the two side facets of a model, respectively.
2.3. Long-term continuous loading capability
A high-pressure, nitrogen-operated, hydraulic pressure stabilising unit was employed to maintain a consistent magnitude of load applied to the model so that the physical modelling test is able to last continuously for weeks, months or even years without interruption. This feature ensures that the study of the long-term rheological behaviour of soft rocks can be carried out.
3. Physical modelling tests
Physical modelling of an underground roadway/ tunnel within soft rocks with a hydrostatic stress condition was carried out. The same simulated materials were repeatedly used six times to construct six physical models. Each roadway model was provided with a different magnitude of support intensity.
3.1. Geotechnical conditions for the prototype and the modelling scale
A specified underground roadway within soft rocks was assumed to be the prototype for the modelling study. Detailed geotechnical conditions of the roadway and its surrounding rocks are:
circular roadway with a diameter (D) of 4.5 m and cross-sectional area of 16 m2;
UCS (Rc ) of the surrounding rock was 20 MPa;
bulk density of the surrounding rock was 2500 kg/m3;
depth of the roadway location was 500 m below surface;
rock mass stress (s0 ) was 12.5 MPa in all directions;
support intensity(pa) to be applied to the roadway was 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 MPa, respectively.
The geotechnical modelling scale (Cl ) determined was 1 : 25. The bulk density (gm ) of the simulated rock mass materials was 1600 kg/m3.Therefore, all the related simulation constants are:
similarity constant for bulk density: Cg ? 1600/2500=0.64;
similarity constant for strength: Cs ? ClCg ? 0:256;
similarity constant for load: CF ? CgC1 ? 4:096 10?5 ;
similarity constant for time: Ct ? C l:5 ? 0:2:
Geotechnical conditions of the simulated rock mass
and roadway were derived from those of the prototype rock mass as presented below:
strength of the simulated rock mass: Rm=RcCs=0.512;
diameter of the simulated roadway: Dm=DCl=180 mm;
load intensity on the facets of the model: pm=s0Cs=0.32 MPa;
Simulated support intensity: pam=paCs=0.00256, 0.00516, 0.00768, 0.01024, 0.0128 and 0.01536 MPa; respectively.
3.2. Realization of support intensity in physical modelling
Due to the restraints of the small dimensions of the model roadway on the simulation of support structure, the support pattern and structure were unable to be simulated. Instead, an equivalent support intensity was simulated and applied to the surface of the surrounding
rock of the model roadway. A Static Water Support and Deformation Measurement System (SWSDMS) was designed specially. Fig. 3 illustrates the SWSDMS being installed in the model roadway. The mechanism of SWSDMS is to use 4 separate water capsules to apply a support intensity to the surface of the roadway roof, two side walls and floor. Four rubber tubes, each of which was linked to a water capsule and filled with water, were used to generate a water pressure at the capsule/rock interface and measure it through the water level reading.
A certain constant simulated support intensity was achieved by applying a certain height of static water pressure. A change to support intensity could be made by changing the water height in the rubber tube. The volume change of each of the four water capsules was measured at the due time by collecting
and weighing the water overflow. The volume of water coming from each of the four water capsules was used to calculate the radial deformation of roadway surrounding rock, i.e., roof subsidence, wall-to-wall closure and floor heave. The proposed simulated support intensities, i.e., Pam ? 0:00256, 0.00516, 0.00768, 0.01024, 0.0128 and 0.01536 MPa, were achieved by adjusting the static water level to 256, 516, 768, 1024, 1280 and 1536 mm high, respectively.
Fig. 3. Static Water Support and Deformation Measurement System (SWSDMS) being accommodated in a roadway model in the real 3-D loaded physical modelling system.
3.3. Construction of physical model
The compositions and properties of materials to be used for the construction of physical models were studied prior to the physical model construction. Given the significant rheological deformation of roadways excavated in soft rock, sand and paraffin wax were chosen for the simulated soft rock. The properties of a series of sand/paraffin wax mixtures were studied in laboratory and are presented in Table 1.
Table 1 Compositions and properties of sand/paraffin wax mixtures
According to the geotechnical conditions of the prototype rock mass and the model scale, a mixture of sand/paraffin wax of 100 : 3 was selected to construct the rock mass model. The procedures involved in the model construction include cold mixing of the sand and paraffin wax, oven heating the sand/wax mixture and constructing the physical model using the hot sand/wax mixture.
3.4. Process of physical modelling
The real process of an underground roadway excavation, support installation and deformation of the surrounding rocks with time was simulated in the laboratory physical modelling. After the model had cooled down, prestressing the model, excavation of the roadway under pressure, installation of the SWSDMS device and measurement of the roadway deformation were carried out step by step. The whole process of modelling was strictly conducted according to the time similarity constant. Each physical modelling step lasted for 10-25 days in the laboratory, which were equivalent to a real time period of 50-125 days approximately.
4. Relations between support intensity and roadway deformation
Comparable results of the six physical modelling tests conducted with the identical materials and geotechnical conditions revealed the significance of the support intensity in underground roadway/tunnel support.
4.1. Effect of support intensity on the deformation characteristics of a roadway
The deformation characteristics of an identical roadway with different support intensity is graphically presented in Fig. 4(a) and (b). It can be seen that the influence of support intensity on the deformation characteristics is significant. With a support intensity of 0.1 MPa, the roadway experienced a large eformation for a period of 118 days after the roadway excavation and the provision of support intensity. During this period, an average of 828 mm deformation was accumulated. Following this period, the wall-to-wall closure and roof-to-floor convergence stayed steady at a level of 4.4 mm/day. By contrast, when a support intensity of 0.6 MPa was provided to the identical roadway, its post-excavation deformation merely lasted for 36 days with an accumulative closure/convergence of 40 mm, followed by a rheological deformation of 0.08 mm/day, which was continuously reducing with
Fig. 4. Deformation of roadway with a series of support intensities:
(a) Deformation of roadway with time, (b) Deformation rate of roadway with time.
time. The comparison shows that the deformation magnitude of the latter was only 4.8% that of the former.
A negative exponential relation between the deformation rate and support intensity can also be deduced from the curve of deformation rate vs. support intensity presented in Fig. 5 and be mathematically expressed as: v ? 0:023pa2:4 :
where v is the rheological deformation rate of the surrounding rock of a roadway in mm/day, pa is the support intensity in MPa provided to the surrounding rock.
Fig.5 Relations between rheological deformation rate and support intensity of a roadway in soft rocks.
4.2. Optimal support intensity for a roadway in soft rocks
Requirements on the control of roadway deformation depend on the usage and service life of the roadway. It is known that a zero deformation rate is impossible practically to target in supporting a roadway in soft rocks. A wise approach is to exercise a design principle that the roadway deformation is allowed to take place to a degree within an acceptable limit. Physical modelling results indicated that an increase of support intensity from 0.1 to 0.5 MPa can markedly reduce the deformation rate of the surrounding rocks. A further increase of support intensity from 0.5 to 0.6 MPa, however, did not bring about as much reduction of deformation rate as that created by the support intensity increase of from 0.1 to 0.2 MPa or from 0.3 to 0.4 MPa. This means that a reasonable range of support intensity exists and an increase of support intensity can be rewarded with a significant reduction of roadway deformation if the actual support intensity is within this range.Further increases of support intensity can only cause less reduction of roadway deformation. Therefore, if both technical and economical considerations are taken into account, a support intensity of from 0.3 to 0.5 MPa would be appropriate for most temporary tunnels such as roadways in underground coal mining. With this support intensity, the rheological deformation rate of the surrounding rocks can be controlled within a range of from 0.1 to 0.4 mm/day, with which an ordinary temporary roadway can be maintained safely for years to one decade.
5. Conclusions
The three-dimensional physical modelling method provides a ‘conceptual approach to quantitative design’of roadway support associated with soft rocks. With lack of knowledge of the constitutive relations, especially for the rheological mechanisms, in rock engineering practice, the modelling results could serve as a foundation on which a scientific design of underground roadway/tunnel support is developed, particularly when a large amount of rock mass deformation is concerned.
The experimental study conducted with a series of support intensities revealed that a reasonable support intensity exists. Its value depends on the geotechnical and geometric conditions of the underground roadway/tunnel concerned and the requirements applied by the roadway/tunnel safe use specifications and the roadway/tunnel service life span. The results indicate that a support intensity of 0.3 to 0.5 MPa can securely control the closure rate for the conditions tested within a magnitude of 0.1 to 0.4 mm/day for a medium size underground roadway/tunnel driven in soft rocks of around 20 MPa at a depth of about 500 m below surface.
References
[1] Internal Research Report. Study on the technology of large deformation control for roadways within soft rocks. China University of Mining and Technology, 1995 [in Chinese].
[2] Wang C. Study on the supporting mechanism and technology for roadways in soft rocks. PhD thesis, China University of Mining and Technology, 1995 [in Chinese].
[3] Internal reference (1993). Properties of simulated materials for physical geomechanical modelling. The Central Laboratory of Rock Mechanics and Ground Control, China University of Mining and Technology [in Chinese].
[4] Lin Y. Simulated materials and simulation for physical modelling. Publishing House of China Metallurgy Industry, Beijing, China, 1986 [in Chinese].
[5] Durove J, Hatala J, Maras M, Hroncova E. Support’s design based on physical modelling. Proceedings of the International Conference of Geotechnical Engineering of Hard Soils } Soft Rocks. Rotterdam: Balkema, 1993.
[6] Singh R, Singh TN. Investigation into the behaviour of a support system and roof strata during sub-level caving of a thick coal seam. Int J Geotech Geol. Engng. 1999;17:21-35.
中文譯文
煤礦軟巖巷道支護(hù)強(qiáng)度優(yōu)化
C. Wang
采礦工程專(zhuān)業(yè),西澳礦業(yè)學(xué)校,港口及航運(yùn)局22卡爾古利WA6430,澳大利亞
1引言
地下巷道支護(hù)的實(shí)質(zhì)是給巷道圍巖提供支撐以實(shí)現(xiàn)應(yīng)力應(yīng)變平衡,并最終使變形穩(wěn)定。為達(dá)到這一目標(biāo),需通過(guò)錨桿支護(hù)加固巖體或注漿(內(nèi)部巖石穩(wěn)定)或?yàn)閲鷰r提供被描述為支撐強(qiáng)度的具有有一定數(shù)量級(jí)的支撐阻力(外部巖石穩(wěn)定)。
當(dāng)?shù)叵孪锏捞幱谒绍泿r石中,巖石過(guò)于松軟以致錨桿加固或不適合注漿加固。這是因?yàn)橛龅剿畷r(shí)巖體滲透性或巖體惡化施加的限制。因此,外部巖石支護(hù)如鋼棚支護(hù),成為了巷道穩(wěn)定控制的唯一選擇。在這種情況下,支護(hù)強(qiáng)度是指單位巷道圍巖表面積的支撐力。在軟巖工程實(shí)踐中,地下煤礦巷道支護(hù)模式設(shè)計(jì)通常是基于經(jīng)驗(yàn)法則。在大多數(shù)情況下,采用支護(hù)強(qiáng)度大的支護(hù)措施,確保巷道穩(wěn)定。圖1(a)展示了在中國(guó)北方一煤礦為實(shí)現(xiàn)巷道穩(wěn)定投入過(guò)多資金成本的煤礦井下軟巖分段巷道的良好條件。在某些情況下,例如在同一煤礦軟巖中開(kāi)掘的服務(wù)巷道(如圖1(b)),支撐力不足被指定為缺乏相關(guān)經(jīng)驗(yàn)和設(shè)計(jì)規(guī)范所致。因此,巷道失穩(wěn)是必然的。在隨后進(jìn)行巷道維修或重建時(shí),又需支出額外的費(fèi)用。
這兩種情況的關(guān)鍵問(wèn)題在于最佳的支護(hù)強(qiáng)度,與巷道的斷面形狀和巖土工程條件,包括巖性,應(yīng)力條件和水文狀況呈函數(shù)關(guān)系。
基于相似理論的相似材料的物理模擬為礦山地質(zhì)力學(xué)研究提供了直接感知的方法。[1-6]
利用組成相同的相似材料來(lái)模擬巷道及周?chē)泿r,模擬應(yīng)力條件下施加一定的支護(hù)強(qiáng)度到巷道表面。在這份說(shuō)明中描述的三維實(shí)體建模方法,展示了軟巖巷道支護(hù)戰(zhàn)略設(shè)計(jì)方面定量計(jì)算的方案。通過(guò)一系列相似實(shí)驗(yàn)的結(jié)果,支護(hù)強(qiáng)度和巷道圍巖變形間的關(guān)系建立。關(guān)于軟巖巷道最佳支護(hù)強(qiáng)度的討論也由此展開(kāi)。
圖1 地下軟巖巷道支護(hù)成功和失敗的例子
a分段巷道的良好條件 b服務(wù)巷道支護(hù)失效
2.三維實(shí)體模型的特征
在中國(guó)礦業(yè)大學(xué)巖土力學(xué)與地面控制中心實(shí)驗(yàn)室進(jìn)行的關(guān)于支護(hù)強(qiáng)度和巷道圍巖變形間關(guān)系的物理模擬研究采用了三維實(shí)體模型系統(tǒng)(見(jiàn)圖2)。該系統(tǒng)的特征描述如下:
圖2 中國(guó)礦業(yè)大學(xué)巖土力學(xué)與地面控制中心實(shí)驗(yàn)室三維加載實(shí)體模型系統(tǒng)
2.1實(shí)體模型尺寸
物理模型的有效尺寸為1000毫米寬,1000毫米高,200毫米厚。
2.2三維實(shí)時(shí)加載能力
六個(gè)千斤頂用于向長(zhǎng)方體形式的物理模型的六個(gè)面加載。六個(gè)千斤頂設(shè)計(jì)能夠各自覆蓋一個(gè)面,并能夠向模擬巖石表面施加10MPa的壓力。這意味著千斤頂能夠同時(shí)在前后上下左右六個(gè)面動(dòng)態(tài)施加1000 t到2000 t的力。
2.3長(zhǎng)期連續(xù)加載能力
高壓氮?dú)獠僮鞯囊簤悍€(wěn)定單元是用來(lái)保持相同負(fù)載應(yīng)用到模型上,使物理模型試驗(yàn)?zāi)軌虺掷m(xù)數(shù)周,數(shù)月甚至數(shù)年連續(xù)無(wú)間斷。此功能確保了軟巖長(zhǎng)期流變行為研究的進(jìn)行。
3物理模型測(cè)試
地下軟巖巷道或隧道的物理模擬在靜水條件下進(jìn)行,同樣的模擬材料重復(fù)使用六次來(lái)興建六個(gè)物理模型。對(duì)每個(gè)巷道模型提供不同程度的支護(hù)強(qiáng)度。
3.1原型和模型比例的巖土工程條件
為進(jìn)行模擬研究,假定一個(gè)指定的軟巖巷道為原型。巷道和圍巖詳細(xì)的巖土工程條件有:
圓形巷道,直徑4.5 m,截面積16 m2;
圍巖單向抗壓強(qiáng)度為20 MPa;
巖石體積密度為2500 kg/m3;
巷道位于地面以下500 m;
巖石各向壓力為12.5 MPa;
巷道支護(hù)強(qiáng)度分別為:0.1,0.2,0.3,0.4,0.5,0.6 Mpa。
巖土模擬比例定為1:25。模擬巖體材料的容重(gm)為1600 kg/m3,因此,所有相關(guān)模擬常數(shù)為:
容重相似不變:Cg ? 1600/2500=0.64;
強(qiáng)度相似不變:Cs ? ClCg ? 0:256;
負(fù)載相似不變 CF ? CgC1 ? 4:096 10?5 ;
時(shí)間相似不變 Ct ? C l:5 ? 0:2:
模擬巖體和巷道的地質(zhì)條件依據(jù)如下所示的原巖:
模擬巖體強(qiáng)度 Rm=RcCs=0.512;
模擬巷道直徑: Dm=DCl=180 mm;
模型各面加載強(qiáng)度 pm=s0Cs=0.32 MPa;
模擬支護(hù)強(qiáng)度: pam=paCs=0.00256, 0.00516, 0.00768, 0.01024, 0.0128 0.01536 MPa;
3.2物理模型支護(hù)強(qiáng)度的實(shí)現(xiàn)
由于小尺寸模擬巷道在支護(hù)結(jié)構(gòu)上的限制,支護(hù)模式和結(jié)構(gòu)不能被模擬。相反,相同的支護(hù)強(qiáng)度被模擬并施加到模擬巷道圍巖。專(zhuān)門(mén)設(shè)計(jì)了一種靜水支撐和變形測(cè)量系統(tǒng)(SWSDMS)。圖3說(shuō)明了SWSDMS被安裝在模型巷道。SWSDMS的機(jī)制是用4個(gè)單獨(dú)的水膠囊向巷道頂板,兩幫和底板的表面提供支護(hù)強(qiáng)度。連接膠囊的并充滿水的四個(gè)橡膠管用在水膠囊和巖石界面生成水壓,并通過(guò)讀取水位來(lái)測(cè)量水壓大小。
圖3靜水支撐和變形測(cè)量系統(tǒng)(SWSDMS)被安置在真實(shí)三維物理模擬加載系統(tǒng)下的巷道模型
施加一定的靜水壓高度可以獲得某一數(shù)值的模擬支護(hù)強(qiáng)度,通過(guò)改變橡膠管水的高度來(lái)實(shí)現(xiàn)模擬支護(hù)強(qiáng)度的變化。每個(gè)水膠囊的體積變化可以通過(guò)在適當(dāng)時(shí)候收集并測(cè)量溢出水量來(lái)獲得。來(lái)自每個(gè)水膠囊的水的體積用來(lái)計(jì)算巷道圍巖的徑向變形,即頂板下沉,兩幫移近和底板臌起。通過(guò)調(diào)節(jié)靜水位至256, 516, 768, 1024, 1280, 1536 mm 高度來(lái)實(shí)現(xiàn)建議的支護(hù)強(qiáng)度? 0:00256, 0.00516, 0.00768, 0.01024, 0.0128, 0.01536 MPa。
3.3物理模型的構(gòu)建
用于構(gòu)建物理模型的材料組成和性質(zhì)的研究?jī)?yōu)先于物理模型的構(gòu)建。鑒于軟巖巷道出現(xiàn)的顯著流變,沙子和石蠟被用于模擬軟巖。在研究實(shí)驗(yàn)室得出沙子石蠟混合物的一系列特性,列于表1。
表1 沙子石蠟混合物的組成和性質(zhì)
配比(質(zhì)量)
沙子:石蠟
單軸抗壓強(qiáng)度(MPa)
試樣1
試樣2
試樣3
平均
100:2
0.033
0.030
0.029
0.307
100:3
0.0554
0.053
0.053
0.0538
100:4
0.0864
0.0842
0.0852
0.0853
100:5
0.10
0.107
0.112
0.106
100:6
0.128
0.1304
0.124
0.1275
100:7
0.1386
0.1380
0.1424
0.1397
根據(jù)巖體的原型和模型比例的巖土工程條件,選用配比為100:3的沙子石蠟混合物構(gòu)造巖體模型。模型的建設(shè)所涉及的程序包括冷混合沙子和石蠟,烘箱加熱沙子石蠟混合物,使用熱沙子石蠟混合物構(gòu)建物理模型。
3.4物理模擬過(guò)程
地下巷道掘進(jìn),支護(hù)安裝和圍巖隨時(shí)間變形的真實(shí)過(guò)程是在實(shí)驗(yàn)室物理模型中模擬的。模型冷卻后,預(yù)加應(yīng)力到模型上,帶壓掘進(jìn)巷道,安裝SWSDMS設(shè)備,測(cè)量巷道圍巖變形。建模的全過(guò)程嚴(yán)格按照時(shí)間相似常數(shù)進(jìn)行,每個(gè)物理建模步驟在實(shí)驗(yàn)室持續(xù)10-25天,相當(dāng)于約50-125天的真實(shí)時(shí)間。
4支護(hù)強(qiáng)度和巷道變形的關(guān)系
比較相同材料和巖土條件下進(jìn)行的六個(gè)物理模型實(shí)驗(yàn)結(jié)果表明,支護(hù)強(qiáng)度在地下巷道或隧道支護(hù)中的重要性。
4.1支護(hù)強(qiáng)度對(duì)巷道變形特征的影響
相同巷道不同支護(hù)強(qiáng)度下的巷道變形特性以圖的形式展現(xiàn)在圖4(a)和(b)??梢钥闯?,支護(hù)強(qiáng)度對(duì)巷道變性特性的影響很大。在0.1 MPa的支護(hù)強(qiáng)度下,巷道開(kāi)掘完成并提供支護(hù)強(qiáng)度后118天,巷道經(jīng)歷了大的變形。在此期間,累計(jì)變形828 mm。此后,兩幫收縮和頂?shù)装迨諗糠€(wěn)定在4.4 mm/d 的水平。與此相反,當(dāng)提供給同一巷道0.6 MPa的支護(hù)強(qiáng)度時(shí),開(kāi)挖后變形僅僅持續(xù)了36天,累計(jì)收斂40 mm,緊接著是0.08 mm/d的流變,且隨時(shí)間不斷減少。比較結(jié)果顯示后者的變形程度僅僅是前者的4.8%。
變形速率和支護(hù)強(qiáng)度的負(fù)指數(shù)關(guān)系可以從圖5中所示變形速率和支護(hù)強(qiáng)度曲線推導(dǎo)出來(lái),數(shù)學(xué)表達(dá)為:v ? 0:023, pa 2.4 :
其中v指巷道圍巖變形速率,mm/day;pa指提供給圍巖的支護(hù)強(qiáng)度,MPa。
圖4 一系列支護(hù)強(qiáng)度下的巷道變形
(a) 巷道變形隨時(shí)間的變化 (b)巷道變形速率隨時(shí)間的變化
圖5 軟巖巷道流變速率和支護(hù)強(qiáng)度的關(guān)系
4.2軟巖巷道支護(hù)強(qiáng)度優(yōu)化
對(duì)巷道變形控制的要求取決于巷道用途和服務(wù)年限。眾所周知,支護(hù)軟巖巷道達(dá)到零變形速率是幾乎不可能的。明智的做法是行使此種設(shè)計(jì)原則,在允許范圍內(nèi)巷道發(fā)生一定程度的變形。物理模擬結(jié)果表明:支護(hù)強(qiáng)度從0.1增加到0.5 MPa,可以顯著減少?lài)鷰r變形速率。
支護(hù)強(qiáng)度進(jìn)一步增加至0.5到0.6 MPa,巷道變形速率并沒(méi)有像在0.1到0.2 MPa或0.3到0.4 MPa時(shí)大幅減少。這意味著合理支護(hù)強(qiáng)度范圍的存在,若實(shí)際支護(hù)強(qiáng)度在這個(gè)范圍內(nèi),支護(hù)強(qiáng)度的增加會(huì)帶來(lái)巷道變形的顯著減少。進(jìn)一步增加支護(hù)強(qiáng)度,只會(huì)帶來(lái)極少的變形減少。
因此,從技術(shù)和經(jīng)濟(jì)兩方面進(jìn)行考慮, 0.3到0.5 MPa的支護(hù)強(qiáng)度范圍適合大多數(shù)臨時(shí)隧道如煤礦巷道。在這個(gè)支護(hù)強(qiáng)度范圍內(nèi),圍巖流變速率能夠控制在0.1到0.4 mm/d,普通巷道能夠安全維持?jǐn)?shù)年到十年。
5總結(jié)
三維物理模擬方法為軟巖巷道支護(hù)提供了“定量化設(shè)計(jì)相關(guān)方法”。由于缺乏本構(gòu)關(guān)系的知識(shí),特別是流變機(jī)制,在巖土工
收藏