湖南省洞口一中高考數(shù)學(xué)二輪專題總復(fù)習 專題9第1課時 矩陣與變換(選修42)課件 理

上傳人:沈*** 文檔編號:51623677 上傳時間:2022-01-27 格式:PPT 頁數(shù):32 大?。?.82MB
收藏 版權(quán)申訴 舉報 下載
湖南省洞口一中高考數(shù)學(xué)二輪專題總復(fù)習 專題9第1課時 矩陣與變換(選修42)課件 理_第1頁
第1頁 / 共32頁
湖南省洞口一中高考數(shù)學(xué)二輪專題總復(fù)習 專題9第1課時 矩陣與變換(選修42)課件 理_第2頁
第2頁 / 共32頁
湖南省洞口一中高考數(shù)學(xué)二輪專題總復(fù)習 專題9第1課時 矩陣與變換(選修42)課件 理_第3頁
第3頁 / 共32頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《湖南省洞口一中高考數(shù)學(xué)二輪專題總復(fù)習 專題9第1課時 矩陣與變換(選修42)課件 理》由會員分享,可在線閱讀,更多相關(guān)《湖南省洞口一中高考數(shù)學(xué)二輪專題總復(fù)習 專題9第1課時 矩陣與變換(選修42)課件 理(32頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題一 函數(shù)與導(dǎo)數(shù)專題九 選考部分1高考考點矩陣與變換主要包括二階矩陣、逆矩陣、二階方陣的特征值和特征向量等,著重考查矩陣的乘法、二階矩陣(對應(yīng)行列式不為零)的逆矩陣,考查二階方陣的特征值和特征向量的求法(只要求特征值是兩個不同實數(shù)的情形),考查矩陣變換的性質(zhì)及其幾何意義,考查平面圖形的變換等2易錯易漏(1)因矩陣乘法不滿足交換律,多次變換對應(yīng)矩陣的乘法順序易錯(2)圖形變換后,所求圖形方程易代錯3歸納總結(jié)2010年著重考查矩陣的乘法、二階矩陣(對應(yīng)行列式不為零)的逆矩陣,考查二階方陣的特征值和特征向量的求法(只要求特征值是兩個不同實數(shù)的情形)考查矩陣變換的性質(zhì)及幾何意義,往后可能考查平面圖形

2、的變換等1000 xABCx 在平面到 軸的投影變換矩陣作用下 變成 軸上線的段【解析】A 4,5B 2,3C(32)ABC10()00A.B.C.D.1.已知,則在矩陣作用下得到的圖形是 點線段直線三角形2.給出五個命題,其中錯誤命題個數(shù)為()(1)連續(xù)兩次反射變換,總的效果相當于一個旋轉(zhuǎn)變換;(2)矩陣的乘法不滿足交換律、消去律,但滿足結(jié)合律;(3)detA0,有AB=AC,推出B=C;(4)已知AX=B,detA0,則X=BA-1;(5)投影變換矩陣有逆矩陣A1個B2個C3個D4個【解析】(1)、(2)正確見課本;(3)由detA0得A是可逆矩陣,兩邊左乘A-1可得B=C;所以(3)正確

3、(4)已知AX=B,detA0,則X=A-1B;所以(4)錯誤(5)投影變換把平面變成一條直線,或把直線變成一個點,因此沒有逆矩陣所以(5)錯誤所以選B102,201_3.PPAA設(shè)矩陣,則點在所對應(yīng)的線性變換的作用下的像的坐標是2102220122( 22)( 22)P A因為,所以,故填,【解析】11111022ababcdcdabcdM設(shè),則有,【解析】(11)2,1( 11)(02)_(2011)_4.MM二階矩陣對應(yīng)的變換將點,與分別變換成點,與,則矩陣為南平質(zhì)檢12012212312.443ababcdcdabcd M所以,且,解得,所以22212-1-3(-1)(2)- 202-

4、 201-2.- 21 - 2【解析】 因為, 由解得,所以特征多項式為,特,征值為13_02_5.矩陣的特征多項式為,特征值為 .cossinsincoscos(2)coscos2sinsin2cos2sin2s1in(2)sin2coscos2s.2.2nsi1ixabxycdyx rrrxyy rrrx旋線性變換矩陣表達式幾種特殊線性變換及轉(zhuǎn)變換的矩陣表達式反射變換線性公其式式矩陣形n2cos2y2222222222222222222222cossin2sincos2sincossincoscossin.sincos0AxBBAABABABABABABABy關(guān)于直線的反射變換的矩陣公式

5、22222222222222222222010003400010kkkkklAxByBABxxyABABABAyxyABABBABABABABAABAB 位似變換的矩陣,伸縮變換的矩陣或平面到直線 :的投影變換的線性公式對應(yīng)矩陣110113.4.s01aTaMMTMTsyx平面上繞原點旋轉(zhuǎn)角 的變換 與繞原點旋轉(zhuǎn)角的變換的效果正好互相抵消,旋轉(zhuǎn)角互為相反數(shù),即,則稱為 的逆變換矩陣表示的變換平面圖形上的點的橫坐標不變,沿 方向切變;矩陣表示的變換平面圖形上的點的縱坐標不變,沿 方向切變5.定理1矩陣等式(1)A(tX1)=t(AX1);(2)AX1+AX2=A(X1+X2);(3)A(tX1+

6、kX2)=tAX1+kAX2.定理2可逆的線性變換具有如下性質(zhì):(1)將直線變成直線;(2)將線段變成線段;(3)將平行四邊形變成平行四邊形212 12 12122112211212 12 121222222222226“”00.a ab ca bb dababcdcdc ad cc bd dabababababbabaababaBABAAB復(fù)合變換,滿足 穿脫原理 ,先穿襪,再穿鞋,這是先施行變換 ,二階矩陣乘法法;則后施行變換20bab其中 、 不全為 ;矩陣的乘法不滿足交換律、消去律,但滿足結(jié)合律 11det0.det07.8. 1deta badbcc ddbdetdetcadetde

7、tdbadbcca AAAAAAAAAA解二元一次方程組的定理可逆的充要條件是:,且:寫成矩陣等式,計算行列式,判斷;利用矩陣求逆公式,記,求步驟出逆矩陣; 12.()()(2)Xxya babc dcdlabadbccdadadcAblA BAA進而用,求出 、:由矩陣得矩陣為特征矩陣口訣:各項取相反數(shù), 加主對角線 ;求特征矩陣的行列式,即是 的二次計多項式,稱為矩陣的特征多項式;求特征多算矩陣 的特征向量的項式的根,步驟即特征值;將求出的每一個特征值代入特征方陣,得到不可逆矩陣,解以它為系數(shù)矩陣的二元一次方程組,得到的非零解對應(yīng)的向量就是矩陣A的特征向量題型一 驗證矩陣的乘法不滿足消去律

8、、交換律,但滿足結(jié)合律121011030400ABCACBCABBAAB CA BC已知:,求:,從中你能得到什【例1】么結(jié)論?121111030000101111040000121018101212;03040 1204030 12ACBCABABBA 但 【解析】 181111();0120000101111()040000()()AB CAB CA BCCA B ;因此 1 11 20 10 10001 00 00 00 1ACBCABABACBCABABABAB點評故不能從必然推出;但可推出;但并非所有的矩陣乘法都不滿足交換律, 如,; 也不能由必然推出或, 如, 【】 題型二 伸縮變

9、換在橢圓中的應(yīng)用22412001xOyxyFFA【例2】在平面直角坐標系中,設(shè)橢圓在矩陣對應(yīng)的變換下得到曲線 ,求 的方程000000000000000000220022()()()22020141()()11.P xyP xyP xyxxxxxxyyyyyyPxyxyFxyA【解析】設(shè),是橢圓上任意一點,點,在矩陣 對應(yīng)的變換下變?yōu)辄c,則有 即,所以 又因為點 在橢圓上,故,從而,所以,曲線 的方程為【點評】本題主要考查曲線在伸縮變換矩陣作用下的變換特點,考查運算求解能力題型三 求逆矩陣12343A求的【例 】逆矩陣【分析】 用待定系數(shù)法求解-111-().1210.34013130-224

10、-2131-20241132.1-221abcdabcdabcdaabcdbcdAAAAI : 待定矩陣法 設(shè), 由定義知: 所以得到兩個方程組: 解,解得,所以法【解析】-1-1-1-1()-223134-22-21.31-222xxAyyxxyyxxyxxyyxyyxy AAAAA: 解方程組的方法表示的線性變換 :,而表示的線性變換:因此,由解出得故逆變換的矩陣解法-1-1()(det-0)-detdet.-detdet1234-21313-22det-2.adbcdbAAcaAAabcd AAAAA解法 : 公式法 由,得這里,所以 -1-1-1,2222-22222222-22221

11、020202102111-1.0101123 AAAAAA有的矩陣還可以根據(jù)變換的幾何意義求矩陣【的逆如,;,;,點評】題型四 矩陣綜合應(yīng)用 122134 (211120112).31adCxyC MeMM已知二階矩陣有特征值及對應(yīng)的一個特征向量求矩陣;設(shè)曲線 在矩陣的【例 】作用下得到的方程為,求寧德質(zhì)曲線檢的方程【分析】先用特征值及對應(yīng)的一個特征向量,求出a,d的值,再求曲線C的方程 221221.30111113333312.3330()()21230321adaaddA xyCA xyxxxxyyyyxxy MM,所以,解得所以設(shè)點,為曲線 上的任一點,它在矩陣的作用下得到的點為,則,所以,代入得【解析】2222224.22311xxxyyyx ,所以所求的曲線方程為ad正確求出 , 的值【點評】是關(guān)鍵

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!