目錄第一章 前言 ……………………………………………………………………2第二章 總體方案論證…………………………………………………………42.1 本課題基本前提條件和技術要…………………………………………… 42.2 結構方案確定……………………………………………………………… 4第三章 垃圾車廂體設計………………………………………………………73.1 合理選擇卸料方式 …………………………………………………………73.2 確定廂體設計方案 ………………………………………………………… 83.3 垃圾車廂體成型工藝……………………………………………………… 9第四章 壓縮式垃圾車排出油缸安裝角及排出板斜度取值………… 134.1 排出板的結構及工作情況…………………………………………………134.2 排出板的受力分析…………………………………………………………134.3 取值范圍的探討……………………………………………………………14第五章 液壓系統(tǒng)的設計…………………………………………………… 155.1 確定液壓系統(tǒng)方案…………………………………………………………155.2 液壓缸設計計算……………………………………………………………185.3 油箱的設計…………………………………………………………………285.4 液壓泵的裝置………………………………………………………………295.5 液壓元件的選用……………………………………………………………30第六章 結論…………………………………………………………………… 32參考文獻………………………………………………………………………… 33畢業(yè)設計(論文)1致謝………………………………………………………………………………… 34附錄 1 ………………………………………………………………………………35附錄 2 ………………………………………………………………………………36本科生畢業(yè)設計(論文) 2第一章 前言目前我國城市生活垃圾(MSW) 年總產(chǎn)生量已達1. 8 億噸,而且仍在不斷增長,年增長率為8 %~10 %。隨著城市建設規(guī)模的不斷擴大和人們生活水平的不斷提高,一方面,城市生活垃圾的成份發(fā)生了很大變化,其變化的主要特點是:垃圾密度不斷降低,可壓縮性增加。如果繼續(xù)采用常規(guī)的垃圾運輸方式,容易造成垃圾清運中的虧載,使垃圾轉運效率降低;另一方面,近郊可利用來填埋垃圾的洼地越來越少,人們不得不考慮在遠離市區(qū)的郊區(qū)建立垃圾處理處置場所。 據(jù)統(tǒng)計國內(nèi)幾個大城市的垃圾處理廠距離市區(qū)均在50km 以上,運輸費用占垃圾處理費用的比例較高。 在一些發(fā)達國家運輸費用已占垃圾處理費用的80 %以上。 所以,降低垃圾清運費用是降低整個城市垃圾處理處置費用的關鍵。 垃圾壓縮可以解決垃圾運輸中的虧載問題,降低垃圾的運輸費用,是城市生活垃圾集運的發(fā)展方向。 因此壓縮式垃圾車的優(yōu)勢日漸明顯,高效的垃圾壓縮運輸方式有了長足的發(fā)展。后壓縮式垃圾車便是其中的一種常見結構形式,它由汽車底盤、填料器、上裝廂體和排出板機構等組成。其發(fā)展方向是:提高垃圾的裝載量;改善車輛的密封性;垃圾的分類處理。垃圾的分類越細對于環(huán)境的保護效果就越好,目前城市垃圾主要可以分為4類: a.濕垃圾:主要指廚房產(chǎn)生的廚余、果皮等含水率較高的食物性垃圾。b.干垃圾(可回收利用垃圾):主要指廢紙張、廢塑料、廢金屬、廢玻璃等可用于直接回收利用或再生后循環(huán)使用的含水率較低的垃圾。a. 有害垃圾:指對人體健康或者環(huán)境造成現(xiàn)實危害或者潛在危害的廢棄物,同時也包括對人體健康有害的重金屬或有毒物質(zhì)廢棄物。b. 大件垃圾:指重量超過5千克或體積超過0.2立方米以及長度超過1米的廢舊家具、辦公用具、廢舊電器,以及包裝箱、籮筐等大型的、耐久性的固體廢棄物,是因體積較大等因素混入城市一般生活垃圾一起清運有困難的特殊的生活垃圾。垃圾如何進行分類處理是目前垃圾運輸中急待解決的難題,這對于環(huán)境的保護意義重大。本次設計的課題為上裝廂體設計,來源于湖北程力汽車有限公司。本次設計主要是針對垃圾車車廂設計和排出機構液壓設計。車廂是垃圾車的重要部件之一,主要起裝載、運輸垃圾之用。在運輸過程中,不得產(chǎn)生飄、灑、漏等現(xiàn)象,避免造成二次污染。根據(jù)設計要求,確定了廂體形狀和主要尺寸參數(shù),重點考慮它的密封性。排出機構主要是用來排卸垃圾以及在垃圾裝載時提供一定的背壓力,使壓縮后的垃圾密度均勻。它采用液壓為動力裝置,實現(xiàn)作業(yè)自動化,大大降低勞動強度,提高工作效率。本課題由多位同學分工協(xié)作完成,在設計過程中,配合總體設計做了方案論證,畢業(yè)設計(論文)3滿足了后壓縮式垃圾車的設計要求。本科生畢業(yè)設計(論文) 4第二章 總體方案論證2.1 本課題基本前提條件和技術要求2.1.1 基本前提條件設計裝運空間為 12m3,設計要求必須符合 QC/T2911-1993《垃圾車技術條件》要求。2.1.2 技術要求a. 滿足裝運空間為 12m3車。b. 結構設計應合理,填料器與箱體應可能連接滿足強度要求,自動鎖、安全棒等可靠。c. 排出機構等運動件工作安全、可靠,且便于維修、調(diào)整。d. 盡量使用通用件,以便降低制造成本。2.2 結構方案確定2.2.1 傳統(tǒng)自卸式垃圾車的結構分析主要采用側翼開啟、頂蓋前后梭動等幾種方式,這種車的主要特點是直接收集、轉運、不壓縮,適用于特定人工方式,操作簡單,成本低。缺點是:裝載量小、自動化程度低、轉運效率低,無法解決轉運中流污水的二次污染問題。2.2.2 本垃圾車的結構特點a.填料器的擺放布置后裝壓縮式垃圾車工作時,填料器有下放和上揚兩種布置形式。下放布置如圖 2-1 所示,填料器與廂體相吻合,底部機構聯(lián)接,以保證密封性能。這樣的布置充分考慮了行駛的平穩(wěn)性和駕駛性能。畢業(yè)設計(論文)5圖 2-1 垃圾車填料器下放布置 填料器上揚布置,整個填料器可以繞軸旋轉上揚 95 ,如圖 2-2 所示,這樣可?以保證廂體內(nèi)的垃圾徹底排出。這種布置在填料器上揚時,整車的重心后移,汽車的行駛性能和爬坡能力降低,在不影響裝載量的情況下,回轉支承應盡量向前布置,使重心前移。這種布置和傳統(tǒng)的卸料方式相比,雖然結構較復雜,但是垃圾的排出比較徹底,同時避免了整車的重心過分后移,而造成翻車事故。圖 2-2 垃圾車填料器上揚布置b. 垃圾排卸方式本科生畢業(yè)設計(論文) 6采用推板推出的方式,和傳統(tǒng)車廂上舉,靠重力卸料的方式相比,可以避免由于過分壓縮的垃圾膨脹堵塞在車廂內(nèi),同時還可以防止卸料時重心過于后移而翻車。2.2.3 垃圾車載質(zhì)量利用系數(shù)的提高載質(zhì)量利用系數(shù)的提高將有助于降低車輛的運行成本。后裝壓縮式垃圾車的載質(zhì)量利用系數(shù)主要由二個方面組成:a. 底盤的載質(zhì)量利用系數(shù)在底盤選型時,選擇技術含量高、動力性好、自重相對較輕的底盤。b. 專用裝置的自重后裝壓縮式垃圾車由于結構復雜,自重較大,在設計時應盡量采用新材料、新技術、新工藝。主要零部件采用高強度鋼板,輔助件(如擋泥板、裝飾件、蓋板等) 采用比重較輕的注塑件。主要構件采用特殊加工工藝方法,如:車廂側板及頂板采用數(shù)控折彎成弧形結構。受力構件采用局部加強法等,從而降低專用裝置的重量。2.2.4 垃圾壓縮比的提高壓縮機構中刮板對垃圾的壓強將直接影響垃圾的壓縮比。當壓強增大時,垃圾的壓縮比將增大;反之則減小。因而在設計壓縮機構時,應努力提高刮板的壓強。影響刮板壓強的因素主要有四個方面:a.刮板的壓縮面積根據(jù)使用場合、投料方式、垃圾投入量來確定,如能滿足使用要求,刮板的面積應盡量小。b.壓縮油缸的安裝形式應能充分利用油缸的最大能力,即在壓縮垃圾過程中應使油缸無桿腔作用。c.滑板與導軌的摩擦力將有助于提高垃圾壓縮力。因而,在選取滑板滑塊與導軌材料時應配對選取相對摩擦系數(shù)較小的材料;減小壓縮油缸軸線與滑板導軌的夾角,以避免由于壓縮油缸安裝不當產(chǎn)生的扭力使N1 、N2增大;減小壓縮油缸軸線與滑塊中心線的平行偏移量,假如油缸軸線上偏于滑塊中心線,將增大N1 、N2的值,如軸線下偏于滑塊中心線,將減小N1 、N2的值,但結構上很難布置,故通常將壓縮油缸置于滑塊中心線上。d.壓縮油缸與地面的水平夾角θ1越小,則壓縮油缸的推力沿車廂長度方向的分力將越大,有利于垃圾填滿整個車廂,提高垃圾壓縮比。2.2.5 車輛密封后裝壓縮式垃圾車由于壓縮力大,經(jīng)壓縮后的垃圾產(chǎn)生大量的污水,如不加以控制,將嚴重影響環(huán)境,因而在設計時應從以下三個方面完善車輛密封,即:在車廂與填塞器之間安裝耐用型密封條,并加以壓縮、鎖緊;車廂底板做成前低后高,將污水控制在車廂內(nèi);在填塞器下部安裝便于清洗的積污水槽,用于車廂與填塞器畢業(yè)設計(論文)7之間滴漏的污水的臨時儲存。第三章 垃圾車廂體設計3.1 合理選擇卸料方式3.1.1 車廂后傾式卸料方式其原理是:在傾卸油缸的作用下,車廂、壓縮機構及車廂內(nèi)的垃圾繞車架尾部的回轉中心旋轉,旋轉至一定角度后車廂內(nèi)的垃圾靠自重下落實現(xiàn)卸料作業(yè)。這種卸料方式的優(yōu)點是結構簡單,但在實際使用時存在許多弊端,如:a. 由于垃圾在車廂內(nèi)被壓實,垃圾與車廂四周存在著較大的膨脹力與磨檫力,垃圾不易倒出,嚴重時垃圾的自重不足以克服摩擦力,產(chǎn)生垃圾脹死現(xiàn)象。b. 在傾翻作業(yè)時,車廂、壓縮機構及垃圾的重心將后移、上升,車輛前橋負荷降低,影響整車縱向穩(wěn)定性。嚴重時,前橋離地,整車傾翻(特別在路基較為松散的填埋場)。c. 傾翻時,所有重量將集中至車廂回轉中心及汽車大梁尾部,將對汽車大梁及后橋產(chǎn)生嚴重的損壞。3.1.2 推板卸料方式其原理是:在車廂內(nèi)設置一塊面板呈鏟形并能沿預定軌道滑行的推板,推板在油缸的推動下,向車廂尾部作水平推擠運動,將垃圾推出車廂,實現(xiàn)卸料作業(yè)。這種卸料方式雖結構較為復雜,但卸料不受垃圾壓縮比的限制,卸料干凈,對車架的載荷分布較為均勻,卸料過程平穩(wěn)、安全。同時,可利用推板的阻力實現(xiàn)壓縮車雙向壓縮。因此,推板卸料是后裝壓縮式垃圾車較為理想的卸料方式。本科生畢業(yè)設計(論文) 83.2 確定廂體設計方案目前市面上最流行的垃圾車車廂是流線型(圖3-1),樣子比較美觀,頂蓋做成弧形結構,可以承受垃圾對它向上的膨脹力。當然也有方型的(圖3-2),此種結構,造型比較笨重,質(zhì)量比較大,無形中增加了汽車發(fā)動機的功率,造成浪費,已逐漸淘汰,在此不作說明。所以我選用圖3-1這種廂體流線型設計方案。圖 3-1 流線型廂體圖 3-2 方形廂體根據(jù)在湖北程力汽車有限公司的實習和現(xiàn)場觀察以及課題要求,所設計的垃圾車的車廂容積為12立方米,所以確定車廂形狀和尺寸如圖3-3。畢業(yè)設計(論文)9圖 3-3 廂體尺寸圖3.3 垃圾車廂體成形工藝3.3.1 概述垃圾車廂體是垃圾車的重要部件之一,主要起裝載、運輸垃圾之用,它由前板、左右側板、頂板、底板等五項主要零件組成。這些零件由于所處位置不同,受力情況各異,因而結構也不相同,選用的材質(zhì)雖一致(Q235) ,但料厚有差異。對這幾項零件的工藝成形方法的選擇也完全不一樣。在此對廂體零件成形的工藝選擇作一分析。3.3.2 影響成形工藝選擇的因素本科生畢業(yè)設計(論文) 10下面分析垃圾車車廂成形工藝選擇的主要因素:a. 產(chǎn)品結構產(chǎn)品結構是決定成形工藝的主要因素。任何一種成形工藝都以滿足設計要求為前提,由于該幾項零件結構不同,因此它們的成形方法也不一樣,如前板為拉伸成形,側板和頂板為彎曲成形等。b. 產(chǎn)量和成本產(chǎn)量和成本是互相聯(lián)系的,降低成本是工藝工作的核心。當一個新產(chǎn)品投入生產(chǎn)前,應根據(jù)該產(chǎn)品的試制總方案設定的批量或年產(chǎn)量,決定該零件的成形方法,工藝裝備的選擇不宜成本過高,否則將加重產(chǎn)品的附加成本,不利市場的銷售。 東風多利卡后壓縮式垃圾車屬中批量生產(chǎn)。c. 研制周期研制周期也是決定零件成形工藝的主要因素,為適應市場經(jīng)濟,一般要求研制周期越短越好。這就給選擇成形工藝帶來諸如模具制造、展開件試制等困難。東風多利卡后壓縮式垃圾車從方案論證到樣車鑒定,研制周期較短。選擇工藝成形方法時,就不能選用制造周期長的模具,而選擇那種既能保證零件成形質(zhì)量,制造周期又短的模具。d. 設備工廠現(xiàn)有的工藝設備和工藝水平也是選擇成形工藝必須考慮的因素。e. 人員技術水平操作者的技術水平也是影響成形的因素之一,在考慮工藝方案時需結合本廠操作人員的技術水平。f. 拼料狀態(tài)由于東風多利卡后壓縮式垃圾車車廂尺寸為 4360、2015、1645mm(長、寬、高),超過一般板料幅面,而大幅面板料的訂貨又因用量有限受到制約,因而需進行拼焊,拼焊中因設備原因不能都采用對接鎢極自動氬弧焊。有的采用墊板接觸焊,由于各板焊接方法不同,因此在選擇零件成形工藝時還需考慮拼料狀態(tài)。3.3.3 成形工藝的選擇幾種工藝的比較及選擇:a. 采用帶壓邊裝置的拉伸模拉伸成形,生產(chǎn)的零件尺寸準確,表面質(zhì)量好,但模具制造成本高,模具毛坯需外協(xié)加工,制造周期長,模具結構較復雜,維修困難。該工藝方法實用于大批量生產(chǎn)。b. 采用鉛鋅合金模落壓成形,模具制造方便,費用較低,制造周期也短。缺畢業(yè)設計(論文)11點是模具壽命短,零件外觀質(zhì)量較差,人工修整工作量大,工作環(huán)境太差。該方法適宜試制或小批量生產(chǎn)。c. 采用鋼下模、鉛上模結構的沖壓模,模具制造時按鋼模澆鑄,模具吻合較好,零件的質(zhì)量得到保證,制造成本相對較低。缺點是因無壓邊裝置,零件成形過程中有起皺現(xiàn)象,需在轉角處增開缺口,成形后采用人工補焊。該方法適于中批量生產(chǎn)。根據(jù)以上幾種工藝方法的比較,結合東風多利卡后壓縮式垃圾車的中批量生產(chǎn)模式,決定選用最后一種方法作為前板零件的成形工藝方法,做出合格的開口展開件。這樣既有利于零件的成形,又避免成形后過多的人工打磨。左右側板也采用相同的成形工藝方法,頂板采用壓制槽形件,然后在平板上進行焊接的方法成形。3.3.4 拼焊工藝東風多利卡后壓縮式垃圾車車廂尺寸為 4360、2015、1645mm,超過一般板料的幅面尺寸,大幅面板料的訂貨因受用量限制而制約,因此尋求一種適于不同加工成形的焊接方法是拼焊的關鍵。由于受成形方法和料厚的影響,拼焊工藝各異,具體方法簡述如下:a. 前板的拼焊前板零件的成形是拉伸成形,因此焊接滲透性要求較高,又考慮到在拉伸過程中焊縫對模具的影響,要求焊縫光順平滑無明顯的凸起,因此只能選擇成本相對高的鎢極自動氬弧焊,從而滿足了該零件的拼焊需要。采用該工藝拼焊的板料,滿足了零件成形的需要。b. 側板、頂板、底板的拼焊 側板、頂板、底板的拼焊選用加墊塊的點焊、滾焊工藝。由于這幾塊板在零件的成形中僅有彎曲成形(側板)或不需成形(底板) ,材料的受力狀態(tài)較前板好,加之該幾項零件都超過了鎢極自動氬弧焊的軌道,采用 CO2 焊因熱影響區(qū)較大,零件的變形也大,需大量手工較形,且不能滿足設計要求,因此選用影響區(qū)小的點焊、滾焊工藝是較合適的,它既克服了大量的人工勞動,又能滿足設計要求。具體拼接如圖 3-4,選用同牌號同料厚并與焊縫等長的墊板,采用先點焊后滾焊接融焊工藝。后裝壓縮式垃圾車由于壓縮力大,經(jīng)壓縮后的垃圾產(chǎn)生大量的污水,如不加以控制,將嚴重影響環(huán)境,所以為了滿足設計要求,不產(chǎn)生飄、灑、漏等問題,焊前涂點焊密封膠劑,以提高其密封性。 本科生畢業(yè)設計(論文) 12圖 3-4 拼焊圖3.3.5 結果分析經(jīng)過以上的成形工藝選擇和拼焊工藝選擇,滿足了設計要求,大大縮短了新產(chǎn)品開發(fā)研制周期。由于選用的工藝裝備合適,不僅滿足了工廠的生產(chǎn)需要,而且降低了研制費用。在拼焊中,由于合理選擇拼焊工藝,減少了大量人工較形,不僅保證了產(chǎn)品的質(zhì)量,而且降低了成本,節(jié)約了資金??傊诶囓噹某尚畏椒ㄟx擇中,由于本著從實際出發(fā),結合現(xiàn)狀進行了認真選擇,因此所選工藝方法是成熟的,可行的,真正做到了投資少,見效快。 畢業(yè)設計(論文)13第四章 壓縮式垃圾車排出油缸安裝角及排出板斜度取值4.1 排出板的結構及工作情況目前,國內(nèi)生產(chǎn)的垃圾車主要是后壓縮式,垃圾裝滿后,填料器舉升,排出機構將垃圾推出車廂。后壓縮式垃圾車的排出機構均采用直面折彎形狀結構,便于垃圾推卸干凈。排出機構與排出油缸一端固定,排出機構兩端各裝兩個滑塊。推卸垃圾時,油缸推動排出機構前移,排出機構滑塊沿導軌滑動。排出油缸的安裝角度和排出機構折彎斜度各廠取值不同,教科書中也未給出取值范圍, 取值大小有何利弊? 現(xiàn)對排出機構進行受力分析,確定其取值。4.2 排出機構的受力分析圖 4-1 受力分析示意圖排出機構在推卸垃圾過程中, 受到排出油缸的推力 、壓縮的垃圾在車廂四tF壁產(chǎn)生的摩擦阻力 、排出板上方垃圾對排出板的作用力 、排出機構的重力 、T 'TW垃圾重量和排出機構重量在底板上產(chǎn)生的摩擦力 以及導軌對排出板機構的法向作f用力 , 的作用。排出油缸的布置和排出板折彎斜度的不同,排出機構的受力狀1N2況也不同。剛開始移動前的平衡方程為:本科生畢業(yè)設計(論文) 14(4-????????0coscos0' ft TFX??1)(4-??????0)(sini021' NWYt2)式中: ——推卸油缸的安裝角度,?——為 的傾斜角度 ?'T從圖中看, 、 均有水平分力 、 和向下的垂直分力 、tF' ?costF?s'T?sintF,水平分力推卸垃圾,向下的垂直分力以及排出機構的重力W , 三個力使排出sin'T機構滑塊緊壓在導軌上, 產(chǎn)生阻止排出機構前進的摩擦阻力 。'f由(4-2) 式可得: ?sini'21TWNt???即 ='fT)(21'= (4-)ii'' ?Ft3)式中: ——滑動摩擦系數(shù)。'f排出油缸所需的最小推力,由4-1式得:(4-??cos' ft TF??4)4.3 取值范圍的探討由(4-3) (4-4)式知, 排出油缸的推力主要用于克服推卸垃圾的摩擦阻力, 而摩擦阻力基本是水平力。排出油缸的安裝角 越大, 推力的水平分力越小, 垂直?分力越大,即摩擦阻力越大, 滑塊的磨損越快, 排出機構移動所需的最小推力也越大, 油缸缸徑越大。排出板折彎斜度越大,垃圾對排出板的垂直分力越小,而排出板對垃圾反作用力的垂直分力(向上) 小, 頂蓋的受力情況改善;但垃圾對排出板的水平分力增加。此外,開始裝垃圾時,當滑板上移,刮板反轉,滑板下移,垃圾掉下來的多。但排出板折彎斜度也不要小于38°,否則垃圾卸不干凈。為了整車垃圾壓縮后密度均勻,延長油鋼的使用壽命,根據(jù)5.1節(jié)的分析,排出油缸的安裝角度應近可能大一點。無論怎樣,排出油缸的安裝角 和排出板折彎?斜度只要合理取值,垃圾均能全部卸干凈,不會增加成本和重量,還可延長滑塊的使用壽命。因此, 根據(jù)實習時的現(xiàn)場觀察和結構設計,排出油缸的安裝角度取62°。畢業(yè)設計(論文)15排出板折彎斜度不要太大,否則開始填裝垃圾時, 垃圾掉下的多, 填裝效率不高, 過小時垃圾卸不干凈, 一般應在38°~45°之間,因此決定取45°。此外,為使頂蓋能承受垃圾對它向上的膨脹力,頂蓋應做成弧形結構。第五章 液壓系統(tǒng)設計5.1 確定液壓系統(tǒng)方案眾所周知,后裝壓縮式垃圾車主箱中的推板(排出板)油缸有兩個作用:垃圾壓縮過程中提供背壓力,而卸載垃圾時提供推力。目前市場上的產(chǎn)品,油缸的擺放有兩種方式:平置(圖5-1) 和斜置(圖5-2) 。表面上看這兩種方式在功能上沒有什么區(qū)別,但認真分析,卻存在很大的差異。圖 5-1 推板油缸平置示意圖圖 5-2 推板油缸斜置示意圖5.1.1 垃圾收集時壓縮原理本科生畢業(yè)設計(論文) 16如圖5-3 ,推板推置主箱末端。通過填塞箱后壓縮機構的提升,垃圾不斷地被壓送到主箱中。在提升垃圾的過程中,刮板提升壓力作為背壓回路遠端控制信號通過油口Pil 將先導閥B 打開,使得推板油缸無桿腔回油路與背壓閥A 相通,當且僅當垃圾擠壓力超過推板油缸的背壓閥A 調(diào)定的預壓力(圖中為2 MPa) 時,推板油缸無桿腔內(nèi)的液壓油通過背壓閥A 一部分回油箱。一部分通過單向閥補入有桿腔,從而垃圾和推板向主箱前端移動,直到推板油缸完全收回,垃圾充滿整個主箱。5.1.2 排出板油缸推力排出板油缸是多級油缸,在收縮過程中,推力會因為活塞截面積的不同發(fā)生階段性的變化。而且在實際工作中,在垃圾擠壓的情況下,油缸活塞桿由小到大順序收回,所以推力 變化的趨勢是由小到大。以三級油缸為例 , 推力變化趨勢與推板后退行油 缸F程L 的關系見圖5-4 。= P·Si (5-油 缸F1)式中: ——排出板油缸推力油 缸P ——背壓值Si ——活塞的作用面積圖 5-3 背壓油路原理圖 圖 5-4 F 油箱與推板 L 的關系5.1.3 背壓力a. 平置油缸當油缸平置時(圖5-5) , = ,推力 變化的趨勢是由小到大,從而導背 壓F油 缸 油 缸致背壓力的變化,這與用戶追求的整車垃圾壓縮后密度均勻的效果是向背的,意味著被壓縮的垃圾是前松后緊,而且滿載時也會造成整車后橋過重。畢業(yè)設計(論文)17b. 斜置油缸在推板油缸斜置的情況下,隨著推板向主箱前端移動,θ的增大, 背壓力( ) 背 壓F逐漸減小(圖5-6) , = 。但同時,因為活塞截面積階段性的增大,又背 壓F油 缸 ?cos會在一定程度上彌補因角度變化引起的背壓力損失。圖5-5 平置油缸背壓力 圖5-6 斜置油缸背壓力5.1.4 兩種方式的比較通過對比,我們可以發(fā)現(xiàn)排出板油缸斜置方式比較平置方式有以下優(yōu)點:a. 節(jié)省安裝空間,提高主箱容積利用率。b. 有利于垃圾在壓縮過程中密度均勻。c. 利于油缸的保護,避免主箱內(nèi)污水損害油缸體,保證使用壽命。d. 有利于排出機構平穩(wěn)移動(防偏轉) 。所以,決定選用油缸斜置式放置。5.1.5 液壓系統(tǒng)工況分析亙據(jù)設計要求,在排卸垃圾時,液壓系統(tǒng)能發(fā)出足夠的力使垃圾排出;在裝載垃圾時,為了使壓縮后的垃圾密度均勻,提高其裝載量,液壓系統(tǒng)要提供一定的背壓力,使其滿足設計要求。所以,液壓原理圖如圖5-7本科生畢業(yè)設計(論文) 18圖 5-7 液壓原理圖5.2 液壓缸的設計計算5.2.1 計算工作循環(huán)中的最大載荷A. 對排出機構進行受力分析,見圖 4-1可得如下方程:(5-????????0coscos0' ft TFX??2)(5-??????0)(sini021' NWYt3)式中: ——推卸油缸的推力 ,也就是液壓缸的最大載荷tF——推卸油缸的安裝角度 ???62?——壓縮的垃圾在車廂四壁產(chǎn)生的摩擦阻力T——排出板上方垃圾對排出板的作用力 '——為 的傾斜角度 ?' ?45?畢業(yè)設計(論文)19——排出板機構的重力W——垃圾重量和排出板機構重量在底板上產(chǎn)生的摩擦力fT, ——為導軌對排出板機構的法向作用力1N2由 5-2 式得,( 5-??cos' ft TF??4)B. 排出機構的重量計算底部鋼管: LsAsWLm)854.2(0157.1 ???824.1)3.7.3??9.2?kg式中: ——方管邊長 ( )m——方管壁厚 ( )s——每米鋼管重量 ( )k——方管長 ( )L頂部鋼管: 68.1)23854.7(2.30157.2 ?????m9?kg側部鋼管: 7.0).(326k側部鋼管1: 365.)2854.7(.057.4 ?????m?kg側部鋼管2: 0.1).(2.31.59k側部鋼管3: 725.)3854.27(.07.6 ?????m15?kg此鋼板的理論重量為 [1],所以,此鋼板重量為:0.1mkg)06(8247 ?0k排出板前板: 本科生畢業(yè)設計(論文) 2098.124.05.18??m6?kg所以,排出機構重量 7654321 )(mmM???8.201.39.29??58kg因為,一些小零件采取估算的方式以及計算誤差所以,最后取 0?kgC. 壓縮的垃圾在車廂四壁產(chǎn)生的摩擦阻力 的計算TpfabcT)2(?? 1.07482)15.46.35.146.3???79?N式中: ——廂體的有效長度 (m——廂體的有效寬度 b)——廂體的有效高度 c——垃圾壓縮后對廂體的壓力 ,垃圾的單位膨脹力為 6235 ,那p )(Pa3mPa其對廂體的壓力 7482016235??——垃圾與車廂壁之間的動摩擦系數(shù),查表取f 1.0?fD. 排出板上方垃圾對排出板的作用力 的計算'T0'rbcLgT?24508.96.45.1.2??768?N式中: ——排出板機構底部長度 )(m——重力加速度 g.(2取s——垃圾壓縮后的密度 0r 3450kgE. 垃圾重量和排出板機構重量在底板上產(chǎn)生的摩擦力 的計算fTgfVrMfTf 0'??1.8912.892??54N式中: ——廂體的容積 3mV?——排出板機構與導軌之間的動摩擦系數(shù),查表取 'f 1.0'?fF. 將上述數(shù)據(jù)代入式(5-4)中畢業(yè)設計(論文)21則, ????62cos5487.5481.379tF0.?N5.2.2 確定液壓缸參數(shù)a. 此液壓缸為三級液壓缸,各級壓力和速度可按活塞式液壓缸有關公式來計算。??????????????????????211211 4DppFDcmt?????????????26 7.049.07.24.334m0.?式中: ——一級液壓缸內(nèi)徑,1D——二級活塞桿尺寸,2——三級活塞桿尺寸3—— 液壓缸工作壓力,初算時取系統(tǒng)工作壓力 12.7MPa;1p—— 液壓缸回油腔背壓力;為2 41p—— 活塞桿與液壓缸內(nèi)徑之比,液壓缸采用差動連接;比值取 0.71D—— 工作循環(huán)中最大的外負載;tFη cm —— 液壓缸的機械效率,一般 η cm=0.9~0.97;標準的液壓缸直徑系列取 [2]。根據(jù)mD201?127.0D?4027.02??計算的結果在活塞尺寸系列之中,所以取 m42依此類推: 98.3標準的活塞桿尺寸系列圓整為 [2]103?根據(jù)已取的缸徑和活塞桿直徑,計算液壓缸實際有效工作面積,無桿腔面積A1,有桿腔面積 A2、 A3分別為:221404mD???? 222 106.).0(1)( ????3233 54.7.4.4A?本科生畢業(yè)設計(論文) 22b. 計算液壓缸的流量 vDvDq)(4)(42321??????310).20(7.4??3.18?minL式中: —— 排出機構的速度 7.7vminc. 液壓泵流量,壓力的計算 液壓泵向液壓缸輸入的最大流量為:若取回路泄漏系數(shù) K=1.1,則泵的流量: q=1.1×181.3=199.43L/min。液壓缸的最大工作壓力為 =12.7MPa,在進油路上的壓力損失一般為1p0.5~1.5MPa,現(xiàn)取 0.8MPa。則液壓泵的最高工作壓力: MPap5.3)8.0712(0???根據(jù)計算出的泵的流量和工作壓力,由作總體設計人員參考。d. 計算電動機的驅動功率(5-5)?310pq?式中:p —— 液壓泵的出口壓力(Pa) ,其值等于液壓缸的進口壓力與泵到液壓缸這段管路壓力損失之和,壓力損失取 ;Pap5102???q —— 液壓泵輸出流量( ),q=199.43L/min=3.32×10 -3m3/s;sm/3—— 液壓泵的效率,取 [3]?8.0??所以: ??KwpN5.6.1125.3335????e. 液壓缸的設計計算 fct FpDFpD????22112 )(44??(5-????121fct6)+ = (5-7)fcFtcmt?畢業(yè)設計(論文)23式中: —— 液壓缸密封處摩擦力fcF由式 5-6 和式 5-7 可求得 為1D(5-??????????????????????211211 4DppFcmt??8)詳細計算見 5.2.2 節(jié), , ,D201?402?m03?5.2.3 確定管道直徑管道的材料一般推薦采用 10 號、20 號的薄壁無縫鋼管、和拉制紫銅管。鋼管承受的工作壓力較高,價廉,所以本系統(tǒng)主要采用鋼管。油管直徑尺寸一般可參照選用的液壓元件接口尺寸而定,也可按管路允許流速進行計算。 油管的內(nèi)徑 d 按下式進行計算:(5-vq61.4?9)式中: d—— 管道直徑(mm) ;q —— 液體流量(L/min) ; v —— 允許流速,按金屬管內(nèi)油液推薦流速值選用,吸油管路取v ≤ 0.5~2m/s,壓油管路取 v≤2.5~6m/s。 管道的壁厚可根據(jù)工作壓力由下式計算得出:(5-????2pd?10)式中:p —— 工作壓力,取工作壓力為 12.7MPa;d —— 油管內(nèi)徑(mm) ;—— 許用應力(MPa) ,對于鋼管 ≤98.1MPa,對于銅管 ≤25Mpa。?????????本系統(tǒng)主油路流量取差動連接時流量 q = 181.3 L/min,允許流速按壓油管路取v = 4m/s, 則管道內(nèi)徑為:mvqd0.314.86.1.4??油管的壁厚: ??pd0.21.9872????本科生畢業(yè)設計(論文) 24可選用外徑 D 為 34mm[3]的 10 號冷拉無縫鋼管。吸油管按式 5-8、式 5-9 計算可得: mvqd1.623.81.46. ??壁厚: ??mp0.98271?????故可選用外徑 D 為 65mm 的 10 號冷拉無縫鋼管。鋼管彎曲半徑不能太小,其最小曲率半徑 R≥3D,油管經(jīng)彎曲后,彎曲處側壁厚的減薄不應超過油管壁厚的 20%,彎曲處內(nèi)側不應有明顯的鋸齒行波紋、扭傷或壓壞,彎曲處的橢圓度不應超過 15%。5.2.4 液壓油的選擇該系統(tǒng)為一般液壓傳動,所以在環(huán)境溫度為-5°C~35°C 之間時,一般選用 20號或 30 號液壓油.冷天用 20 號機械油,熱天用 30 號機械油。由與本系統(tǒng)容量較大,故不必進行系統(tǒng)溫升的驗算。5.2.5 液壓缸壁厚、外徑及工作行程的計算a. 中低壓液壓系統(tǒng)中,液壓缸的壁厚 一般不做計算,按經(jīng)驗選取,則缸筒?外徑(5-210??D11)按標準 JB1068-67 系列選取液壓缸的外徑為 240mm[4]。缸筒壁厚的校核,液壓缸的內(nèi)徑( )與其壁厚m1( =0.5×40=20mm)的比值 =10,故可用薄壁圓筒的壁厚計算公式進行校核??1(5-???21Dpy?12)式中: —— 液壓缸壁厚(mm) ;?—— 試驗壓力,一般取最大工作壓力的(1.25~1.5)倍(MPa) ;yp—— 缸筒材料的許用應力,無縫鋼管 =100~110MPa。??????= =19.05mm≤20mm???21Dy?027.5?所以所選壁厚滿足要求。b. 液壓缸工作行程長度,可根據(jù)執(zhí)行機構實際工作的最大行程來確定,所選的執(zhí)行機構即液壓滑臺的工作行程為 3410.5mm,結合液壓缸活塞行程參數(shù)系列確定畢業(yè)設計(論文)25液壓缸的工作行程為 3600mm。5.2.6 液壓缸缸底和缸蓋的計算在中低壓系統(tǒng)中,液壓缸的缸底和缸蓋一般是根據(jù)結構需要進行設計,不需進行強度計算。5.2.7 液壓缸進出油口尺寸的確定液壓缸的進出油口尺寸,是根據(jù)油管內(nèi)的平均速度來確定的,要求壓力管路內(nèi)的最大平均流速控制在 4~5m/s 以內(nèi),過大會造成壓力損失劇增,而使回路效率下降,并會引起氣蝕、噪音、振動等,因此油口不宜過小,一般可按文獻[2]選用,本系統(tǒng)選用進出油口 M48×2 的螺紋接頭。根據(jù)以上計算及選用的參數(shù)綜合為表 5-1。5.2.8 液壓缸結構設計 (1)缸體與缸蓋的連接形式 .法蘭連接優(yōu)點:(1)結構簡單,成本低 (2)強度較大,能承受高壓缺點:(1)徑向尺寸較大 (2)用鋼管焊上法蘭,工藝過程復雜螺紋連接 優(yōu)點:(1)外型尺寸?。?)重量較輕缺點:端部結構復雜,工藝要求較高外半環(huán)連接優(yōu)點:(1)結構較簡單(2)加工裝備方便缺點:(1)外型尺寸較大(2)缸筒開槽,削弱了強度,需增加缸筒壁厚內(nèi)半環(huán)連接優(yōu)點:(1)外型尺寸?。?)結構緊湊,重量較輕缺點:(1)缸筒開槽,削弱了強度(2)端部進入缸體內(nèi)較長,安裝時密封圈易被槽口檫傷綜合以上,確定液壓缸體與缸蓋的連接結構選用外螺紋連接 [4]。(2)活塞和活塞桿的連接結構本科生畢業(yè)設計(論文) 26焊接結構 結構簡單,比較牢固 螺紋連接 結構簡單,在振動的工作條件下容易松動,必須用鎖緊裝置半環(huán)連接 結構簡單,拆裝方便,不易松動,但會出現(xiàn)軸向間隙錐銷連接 結構可靠,用錐銷連接,銷孔必須配鉸活塞與活塞桿的接結構采用螺紋紋接,這種結構連接穩(wěn)固,活塞與活塞桿之間無公差要求。(3)活塞杠導向部分的結構活塞杠導向部分的結構,包括活塞桿與端蓋﹑導向套的結構,以及密封﹑防塵和鎖緊裝置等。導向套的結構可以做成端蓋整體式直接導向,也可以做成與端蓋分開的導向套結構。后者導向套磨損后便于更換,所以應用較普遍。導向套的位置可安裝在密封圈的內(nèi)側,也可以裝在外側。結構形式 特點端蓋直接導向(1)端蓋與活塞桿直接接觸導向,結構簡單,但磨損后只能更換整個端蓋。(2)蓋與桿的密封常用 O 型和 Y 型密封圈。畢業(yè)設計(論文)27導向套導向(1)導向套與活塞桿接觸支承導向,磨損后便于更換,導向套也可用耐磨材料。(2)蓋與桿的密封常用 Y 型和 V 型。密封可適用于中高壓液壓缸。綜合以上各種結構形式,確定采用導向套導向。根據(jù)密封的部位、溫度、運動速度的范圍,活塞與缸體的密封形式選用高低唇Y 形圈,這種密封圈的內(nèi)外兩唇邊長不同,直接密封用較短唇邊,這樣就不易翻轉,一般不要支承。表 5-1 液壓缸基本參數(shù)進出油口連接缸筒內(nèi)徑(mm)缸筒外徑(mm)二級活塞桿直徑(mm)三級活塞桿直徑(mm) 公稱直徑 螺紋連接200 240 160 100 40 M48×2活塞桿導向部分的結構,包括活塞桿與端蓋、導向套的結構,以及密封、防塵和鎖緊裝置等?;钊麠U處的密封形式用 Yx 形密封圈。為了清除活塞桿處外露部分沾附的灰塵,保證油液清潔及減少磨損,在端蓋外側增加防塵圈,本系統(tǒng)選用無骨架防塵圈。液壓缸帶動工作部件運動時,因為運動部件的質(zhì)量較大,運動速度較高,則在行程終點時,會產(chǎn)生液壓沖擊甚至使活塞與缸筒端蓋之間產(chǎn)生機械碰撞,為防止這種現(xiàn)象的發(fā)生,在行程末端設置緩沖裝置。 常用的緩沖結構有:a. 環(huán)狀間隙式節(jié)流緩沖裝置 適用于運動慣性不大、運動速度不高的液壓系統(tǒng)。b. 三角槽節(jié)流緩沖裝置三角槽節(jié)流緩沖裝置是利用被封閉液體的節(jié)流產(chǎn)生的液壓阻力來緩沖的。c. 可調(diào)節(jié)流緩沖裝置這種節(jié)流閥不緊有圓柱形的緩沖柱塞和凹腔等結構,而且在液壓缸端蓋上還裝有針形節(jié)流閥和單向閥。液壓系統(tǒng)如果長期停止工作,或油中混有空氣,液壓缸重新工作時產(chǎn)生爬行、噪聲和發(fā)熱等現(xiàn)象。為防止這些不正?,F(xiàn)象產(chǎn)生,一般在液壓缸的最高位置設置放氣閥。5.2.9 液壓缸主要零件的材料和技術要求本科生畢業(yè)設計(論文) 28a. 缸體材料選用 45 鋼。內(nèi)徑用 H9 配合,粗糙度 Ra0.3 ,內(nèi)徑圓度、圓柱度不大于直徑公差之半,m?內(nèi)表面直線度在 500mm 長度不大于 0.03mm,端面與缸蓋固定時,端面跳動量在直徑100mm 上不大于 0.04mm,為防止腐蝕和提高壽命,內(nèi)表面可鍍鉻,層厚0.03~0.04mm,在進行拋光,缸體外涂外耐腐蝕油漆。b. 缸蓋常用材料有:35 鋼、45 鋼或鑄鋼;做導向時選用鑄鐵、耐磨鑄鐵。故可選取前缸蓋 HT200、后缸蓋為 35 鋼。配合表面的圓度、圓柱度不大于直徑公差之半,端面在對孔軸線的垂直度在直徑 100mm 上不大于 0.04mm.c. 活塞材料選用 HT200。外徑的圓度、圓柱度不大于直徑公差之半,外徑對內(nèi)孔的徑向跳動不大于外徑公差之半,端面對軸線垂直度在直徑 100mm 上不大于 0.04mm,活塞外徑用橡膠密封圈密封時可取 f9 配合,內(nèi)孔與活塞桿的配合取 H8。d. 活塞桿本設計中是空心活塞桿,選用的材料為 45 鋼的無縫鋼管。桿外圓柱面粗糙度為 Ra0.8 ,材料進行熱處理,調(diào)質(zhì) 52~58HRC,外徑的圓m?度、圓柱度不大于直徑公差之半,外徑表面直線度在 500mm 長度不大于 0.03mm,活塞桿與前端蓋采用螺紋連接。5.2.10 選擇各類控制閥A 確定控制閥的壓力和流量參數(shù)各控制閥的壓力取決于液壓泵的工作壓力。該壓力值應納入中壓系列,壓力參數(shù)確定為 13.5MPa。B 確定各類控制閥的型號系統(tǒng)工作壓力為 12.7MPa,油泵的額定最高壓力為 13.5MPa,所以可以選取額定壓力大于或等于 13.5MPa 的各種元件,其流量按實際情況分別選取。根據(jù)所擬訂的液壓系統(tǒng)圖,按通過的各元件的最大流量來選擇液壓元件的規(guī)格。a. 溢流閥 4溢流閥 4 的壓力調(diào)整值為系統(tǒng)壓力最高值,其值比泵的最高工作壓力稍大即可,所以選擇溢流閥的型號為 DBDA10/20。畢業(yè)設計(論文)29b.定壓閥 7定壓閥 7 的壓力值為液壓缸工作壓力的 ,其值為 3.1MPa,所以選擇定壓閥的型41號為 DBD10/5。c. 單向閥 6 的型號為 S10A015.3 油箱設計油箱的主要功用是存儲油液,散發(fā)系統(tǒng)中累積的熱量﹑促進油液中氣體的分離﹑沉淀油液中的污染物等作用。液壓系統(tǒng)中的油箱有整體式和分離式兩種。整體式油箱利用主機的內(nèi)腔作為油箱,這種油箱結構緊湊,各處漏油易于回收,但增加了設計和制造的復雜性,維修不便,散熱條件不好。分離式油箱單獨設置,與主機分開,減少了油箱發(fā)熱和液壓源振動對主機工作精度的影響,因此的到了普遍的采用。a.油箱的有效容積(油面高度為油箱高度的 80%時的容積)應根據(jù)液壓系統(tǒng)發(fā)熱﹑散熱平衡的原則來計算,這項計算在系統(tǒng)負載較大﹑長期連續(xù)工作時是必不可少的。但對于一般情況來說,油箱的有效容積可以按液壓泵的額定流量 q(L/min)估計出來。V=ξq (5-13)式中,V 為油箱的有效容積(L) ;ξ 為與系統(tǒng)壓力有關的經(jīng)驗數(shù)字,低壓系統(tǒng)ξ=2~4,中壓系統(tǒng) ξ=5~7,高壓系統(tǒng) ξ=10~12。b.吸油管和回油管應盡量相距遠些,兩管之間要用隔板隔開,以增加油液循環(huán)距離,使油液有足夠的時間分離氣泡,沉淀雜質(zhì),消散熱量。隔板高度最好為箱內(nèi)油面高度的 3/4。吸油管入口處要裝粗濾油器。粗濾油器與回油管管端在油面最低時浸沒在油中?;赜凸芄芏艘诵鼻?45°,以增大出油口截面積,減慢出口處油流速度。c.為了防止油液污染,油箱上各蓋板﹑管口處都要妥善密封。注油器上要加過濾網(wǎng)。防止油箱出現(xiàn)負壓而設置的通氣孔上須裝空氣濾清器。d.為了易于散熱和便于對油箱進行搬移及維護保養(yǎng)。按 GB/T3766-83 規(guī)定,箱底離地至少應在 150mm 以上,廂體上注油口的近旁必須設置液位計。濾油器的安裝位置應便于裝拆。箱內(nèi)各處應便于清洗。e.油箱中如要安裝熱交換器,必須考慮好它的安裝位置,以及測溫﹑控制等措施。f.分離式油箱一般用 2.5mm~4mm 鋼板焊成。箱壁愈薄,散熱愈快。大尺寸油箱要加焊角板﹑筋條,以增加剛性。