高考數(shù)學(xué)復(fù)習(xí) 第四章 第四節(jié) 三角恒等變換課件 理.ppt
《高考數(shù)學(xué)復(fù)習(xí) 第四章 第四節(jié) 三角恒等變換課件 理.ppt》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)復(fù)習(xí) 第四章 第四節(jié) 三角恒等變換課件 理.ppt(24頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第四節(jié)三角恒等變換 知識點一兩角和與差的正弦 余弦 正切公式及二倍角公式1 兩角和與差的正弦 余弦和正切公式 1 cos cos 2 sin sin cos cos sin sin cos cos sin sin sin cos cos sin sin cos cos sin 其變形為 tan tan tan tan tan 1 tan tan tan 1 tan tan 2sin cos cos2 sin2 2cos2 2sin2 知識點二半角公式及角的拆分與組合1 半角公式 名師助學(xué) 2 熟悉三角公式的整體結(jié)構(gòu) 靈活變換 本節(jié)要重視公式的推導(dǎo) 既要熟悉三角公式的代數(shù)結(jié)構(gòu) 更要掌握公式中角和函數(shù)名稱的特征 要體會公式間的聯(lián)系 掌握常見的公式變形 倍角公式應(yīng)用是重點 涉及倍角或半角的都可以利用倍角公式及其變形 方法1三角化簡 求值問題三角函數(shù)求值的類型及方法 1 給角求值 一般所給出的角都是非特殊角 從表面來看較難 但非特殊角與特殊角總有一定關(guān)系 解題時 要利用觀察得到的關(guān)系 結(jié)合三角函數(shù)公式轉(zhuǎn)化為特殊角的三角函數(shù) 2 給值求值 給出某些角的三角函數(shù)值 求另外一些角的三角函數(shù)值 解題關(guān)鍵在于 變角 使其角相同或具有某種關(guān)系 3 給值求角 實質(zhì)上也轉(zhuǎn)化為 給值求值 關(guān)鍵也是變角 把所求角用含已知角的式子表示 由所得的函數(shù)值結(jié)合該函數(shù)的單調(diào)區(qū)間求得角 有時要壓縮角的取值范圍 在求值的題目中 一定要注意角的范圍 要做到 先看角范圍 再求值 點評 解決本題的關(guān)鍵是正確找出待求角與已知角之間的關(guān)系并靈活的運用三角公式解題 方法2三角變換的應(yīng)用運用基本公式時 要審查公式成立的條件 要熟練掌握公式的逆用 反用 變形用 要注意和 差 倍的相對性 要注意升次 降次的靈活運用 還要注意 1 的各種變通運用 解決有關(guān)三角形的問題 往往不僅要運用正弦 余弦定理 還要把基本公式運用上 結(jié)合三角形的性質(zhì)來解決問題 此外還應(yīng)注意 轉(zhuǎn)化思想是實施三角變換的主導(dǎo)思想 變換包括 函數(shù)名稱變換 角的變換 1的變換 和積變換 冪的升降變換等 變換則必須熟悉公式 分清和掌握哪些公式會實現(xiàn)哪種變換 也要掌握各個公式的相互聯(lián)系和適用條件 恒等變形前需已知式中角的差異 函數(shù)名稱的差異 運算結(jié)構(gòu)的差異 尋求聯(lián)系 實現(xiàn)轉(zhuǎn)化 基本技巧 切割化弦 異名化同 異角化同 化為同次冪 化為比例式 化為常數(shù)- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)復(fù)習(xí) 第四章 第四節(jié) 三角恒等變換課件 高考 數(shù)學(xué) 復(fù)習(xí) 第四 三角 恒等 變換 課件
鏈接地址:http://ioszen.com/p-5641441.html