2019-2020年北京課改版數(shù)學九上22.1《直線和圓的位置關(guān)系》word練習題含答案.doc
《2019-2020年北京課改版數(shù)學九上22.1《直線和圓的位置關(guān)系》word練習題含答案.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年北京課改版數(shù)學九上22.1《直線和圓的位置關(guān)系》word練習題含答案.doc(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年北京課改版數(shù)學九上22.1《直線和圓的位置關(guān)系》word練習題含答案 一. 選擇題 1. ⊙O的半徑為8,圓心O到直線l的距離為4,則直線l與⊙O的位置關(guān)系是( ) A. 相切 B. 相交 C. 相離 D. 不能確定 2. Rt△ABC中,∠C=90,AC=3cm,BC=4cm,以C為圓心,r為半徑作圓,若圓C與直線AB相切,則r的值為( ) A. 2cm B. 2.4cm C. 3cm D. 4cm 3. 如圖,直線l與⊙O的位置關(guān)系為( ) A. 相交 B. 相切 C. 相離 D. 內(nèi)含 4. 如圖,在平面直角坐標系中,⊙O的半徑為1,則直線y=x-與⊙O的位置關(guān)系是( ) A. 相離 B. 相切 C. 相交 D. 以上三種情況都有可能 5. 在矩陣ABCD中,AB=8cm,CD=6cm,以點A為圓心,r=4cm作圓,則直線BC與⊙A的位置關(guān)系是( ) A. 相交 B. 相切 C. 相離 D. 無法判斷 二. 填空題 6. 在Rt△ABC中,∠A=30,直角邊AC=6cm,以C為圓心,3cm為半徑作圓,則⊙C與AB的位置關(guān)系是 . 7. 如圖,在Rt△ABC中,∠C=90,∠A=60,BC=4cm,以點C為圓心,以3cm長為半徑作圓,則⊙C與AB的位置關(guān)系是 . 8. 如圖,△ABC中,AB=AC=5,BC=6,點D是BC的中點,以D為圓心,2.5 為半徑作圓,則⊙D與直線AC的位置關(guān)系是 . 9. OA平分∠BOC,P是OA上任一點(O除外),若以P為圓心的⊙P與OC相離,那么⊙P與OB的位置關(guān)系是 . 10. 已知⊙O是以坐標原點為圓心,半徑為1,函數(shù)y=x與⊙O交于點A、B,點P(x,0)在x軸上運動,過點P且與OB平行的直線與⊙O有公共點,則x的范圍是 . 三. 解答題 11. 如圖,已知△ABC,且∠ACB=90. (1)請用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫作法和證明): ①以點A為圓心,BC邊的長為半徑作⊙A; ②以點B為頂點,在AB邊的下方作∠ABD=∠BAC. (2)請判斷直線BD與⊙A的位置關(guān)系(不必證明). 12. 已知∠AOB=30,P是OA上的一點,OP=24cm,以r為半徑作⊙P. (1)若r=12cm,試判斷⊙P與OB位置關(guān)系; (2)若⊙P與OB相離,試求出r需滿足的條件. 直線和圓的位置關(guān)系課后作業(yè) 參考答案 1. 答案:B 解析:∵⊙O的半徑為8,圓心O到直線L的距離為4, ∵8>4,即:d<r, ∴直線L與⊙O的位置關(guān)系是相交. 故選:B. 2. 答案:C 解析:Rt△ABC中,∠C=90,AC=3cm,BC=4cm; 由勾股定理,得:AB2=32+42=25, ∴AB=5; 又∵AB是⊙C的切線, ∴CD⊥AB, ∴CD=r; ∵S△ABC=AC?BC=AB?r; ∴r=2.4cm, 故選B. 3. 答案:C 解析:觀察圖形知,直線與圓沒有交點,故直線與圓相離,故選C. 4. 答案:B 解析:∵令x=0,則y=-;令y=0,則x=, ∴A(0,-),B(,), ∴△AOB是等腰直角三角形, ∴AB=2, 過點O作OD⊥AB,則OD=BD=AB=2=1, ∴直線y=x-與⊙O相切. 故選B. 5. 答案:C 解析:∵矩形ABCD中,AB=8cm,CD=6cm, ∴點A到BC的距離為8cm, ∵r=4cm作圓, ∴d>r, ∴直線BC與⊙A的位置關(guān)系是相離, 故選C. 6. 答案:相切 解析:根據(jù)題意畫出圖形,如圖所示: 過C作CD⊥AB,交AB于點D, 在Rt△ACD中,AC=6cm,∠A=30, ∴CD=AC=3cm, 又∵圓C的半徑為3, 則⊙C與AB的位置關(guān)系是相切. 故答案為:相切 7. 答案:相交 解析:過C作CD⊥AB,垂足為D, ∵∠C=90,∠A=60, ∴∠B=30, ∵BC=4cm, ∴CD=2cm, ∵2<3, ∴⊙C與直線AB相交. 故答案為:相交. 8. 答案:相交. 解析:連結(jié)AD,過D點作DE⊥AC于E. ∵在△ABC中,AB=AC=5,BC=6,點D是BC的中點, ∴CD=3, ∴AD=4, ∴DE=435=2.4, ∵2.5>2.4, ∴⊙D與直線AC的位置關(guān)系是相交. 故答案為:相交. 9. 答案:相離. 解析:∵OA平分∠BOC,P是OA上任一點(O除外) ∴點P到∠BOC兩邊OB、OC的距離相等. ∵⊙P與OC相離 ∴點P到OC的距離>⊙P的半徑 同理,點P到OB的距離>⊙P的半徑 ∴⊙P與OB相離. 故答案為相離. 10. 答案:-≤x≤ 解析:∵⊙O是以數(shù)軸的原點為圓心,半徑為1的圓,∠AOB=45, ∴過點P′且與OB平行的直線與⊙O相切時,假設切點為D, ∴OD=DP′=1, OP′=, ∴0<x≤, 同理可得,當OP與x軸負半軸相交時, -≤x<0, ∴-≤x≤. 故答案為:-≤x≤ 11. 解析:(1)如圖所示; (2)直線BD與⊙A相切. ∵∠ABD=∠BAC, ∴AC∥BD, ∵∠ACB=90,⊙A的半徑等于BC, ∴點A到直線BD的距離等于BC, ∴直線BD與⊙A相切. 12. 解析:過點P作PC⊥OB,垂足為C,則∠OCP=90. ∵∠AOB=30,OP=24cm, ∴PC=OP=12cm. (1)當r=12cm時,r=PC, ∴⊙P與OB相切, 即⊙P與OB位置關(guān)系是相切. (2)當⊙P與OB相離時,r<PC, ∴r需滿足的條件是:0cm<r<12cm. 小學教育資料 好好學習,天天向上! 第 8 頁 共 8 頁- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 直線和圓的位置關(guān)系 2019 2020 北京 改版 數(shù)學 22.1 直線 位置 關(guān)系 word 練習題 答案
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://ioszen.com/p-5712892.html