數(shù)學(xué)四 數(shù)列、推理與證明 第2講 數(shù)列的求和問題 理

上傳人:s****u 文檔編號(hào):58997123 上傳時(shí)間:2022-03-01 格式:PPT 頁數(shù):53 大?。?75.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
數(shù)學(xué)四 數(shù)列、推理與證明 第2講 數(shù)列的求和問題 理_第1頁
第1頁 / 共53頁
數(shù)學(xué)四 數(shù)列、推理與證明 第2講 數(shù)列的求和問題 理_第2頁
第2頁 / 共53頁
數(shù)學(xué)四 數(shù)列、推理與證明 第2講 數(shù)列的求和問題 理_第3頁
第3頁 / 共53頁

下載文檔到電腦,查找使用更方便

5 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《數(shù)學(xué)四 數(shù)列、推理與證明 第2講 數(shù)列的求和問題 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《數(shù)學(xué)四 數(shù)列、推理與證明 第2講 數(shù)列的求和問題 理(53頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第2講數(shù)列的求和問題專題四數(shù)列、推理與證明熱點(diǎn)分類突破真題押題精練熱點(diǎn)分類突破熱點(diǎn)一分組轉(zhuǎn)化求和有些數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列,若將數(shù)列通項(xiàng)拆開或變形,可轉(zhuǎn)化為幾個(gè)等差、等比數(shù)列或常見的數(shù)列,即先分別求和,然后再合并.例例1(2017山東省平陰縣第一中學(xué)模擬)已知數(shù)列an是等差數(shù)列,其前n項(xiàng)和為Sn,數(shù)列bn是公比大于0的等比數(shù)列,且b12a12,a3b21,S32b37.(1)求數(shù)列an和bn的通項(xiàng)公式;解答解解設(shè)數(shù)列an的公差為d,bn的公比為q,且q0,由題易知, a11,b12,an2n1,bn2n.解答思維升華解解由(1)知,an2n1,bn2n,Tn(c1c3c5cn1)

2、(c2c4cn)n(c2c4cn),令Hnc2c4c6cn,以上兩式相減,得當(dāng)n(n3)為奇數(shù)時(shí),n1為偶數(shù),經(jīng)驗(yàn)證,n1也適合上式.思維升華思維升華在處理一般數(shù)列求和時(shí),一定要注意使用轉(zhuǎn)化思想.把一般的數(shù)列求和轉(zhuǎn)化為等差數(shù)列或等比數(shù)列進(jìn)行求和,在求和時(shí)要分析清楚哪些項(xiàng)構(gòu)成等差數(shù)列,哪些項(xiàng)構(gòu)成等比數(shù)列,清晰正確地求解.在利用分組求和法求和時(shí),由于數(shù)列的各項(xiàng)是正負(fù)交替的,所以一般需要對(duì)項(xiàng)數(shù)n進(jìn)行討論,最后再驗(yàn)證是否可以合并為一個(gè)公式.證明得nan12(n1)ann(n1),由a10及遞推關(guān)系,可知an0,(2)求數(shù)列an的前n項(xiàng)和Sn.解答ann2nn,Sn2222323(n1)2n1n2n12

3、3(n1)n,設(shè)Tn2222323(n1)2n1n2n,則2Tn22223324(n1)2nn2n1,由,得Tn222232nn2n1Tn(n1)2n12,熱點(diǎn)二錯(cuò)位相減法求和錯(cuò)位相減法是在推導(dǎo)等比數(shù)列的前n項(xiàng)和公式時(shí)所用的方法,這種方法主要用于求數(shù)列anbn的前n項(xiàng)和,其中an,bn分別是等差數(shù)列和等比數(shù)列.(1)求數(shù)列an和bn的通項(xiàng)公式;解答解解因?yàn)閿?shù)列an為等差數(shù)列,又因?yàn)閍35,所以a11,所以an2n1.所以bn2bn1,即數(shù)列bn是首項(xiàng)為1,公比為2的等比數(shù)列,所以bn(2)n1.(2)設(shè)cnan|bn|,求數(shù)列cn的前n項(xiàng)的和Tn.解解因?yàn)閏nan|bn|(2n1)2n1,所以

4、Tn1132522(2n1)2n1,2Tn12322523(2n1)2n,兩式相減,得Tn112222222n1(2n1)2n12(2222n1)(2n1)2n12n14(2n1)2n3(32n)2n,所以Tn3(2n3)2n.解答思維升華思維升華思維升華(1)錯(cuò)位相減法適用于求數(shù)列anbn的前n項(xiàng)和,其中an為等差數(shù)列,bn為等比數(shù)列.(2)所謂“錯(cuò)位”,就是要找“同類項(xiàng)”相減.要注意的是相減后得到部分求等比數(shù)列的和,此時(shí)一定要查清其項(xiàng)數(shù).(3)為保證結(jié)果正確,可對(duì)得到的和取n1,2進(jìn)行驗(yàn)證.(1)求數(shù)列an與bn的通項(xiàng)公式;解答解解當(dāng)n1時(shí),a11,當(dāng)n2時(shí),anSnSn12n1(nN*)

5、,檢驗(yàn)a11,滿足an2n1(nN*).且bn0,2bn1bn,(2)設(shè)cnanbn,求數(shù)列cn的前n項(xiàng)和Tn.解答熱點(diǎn)三裂項(xiàng)相消法求和裂項(xiàng)相消法是指把數(shù)列和式中的各項(xiàng)分別裂開后,某些項(xiàng)可以相互抵消從而求和的方法,主要適用于 (其中an為等差數(shù)列)等形式的數(shù)列求和.例例3(2017屆山東省青島市二模)在公差不為0的等差數(shù)列an中, a3a6,且a3為a1與a11的等比中項(xiàng).(1)求數(shù)列an的通項(xiàng)公式;解解設(shè)數(shù)列an的公差為d,即(a12d)2a1(a110d),d0,由解得a12,d3.數(shù)列an的通項(xiàng)公式為an3n1. (a1d)2a12da15d,解答思維升華思維升華思維升華裂項(xiàng)相消法的基本

6、思想就是把通項(xiàng)an分拆成anbnkbn(k1,kN*)的形式,從而在求和時(shí)達(dá)到某些項(xiàng)相消的目的,在解題時(shí)要善于根據(jù)這個(gè)基本思想變換數(shù)列an的通項(xiàng)公式,使之符合裂項(xiàng)相消的條件.解答思維升華思維升華思維升華常用的裂項(xiàng)公式(1)求數(shù)列an的通項(xiàng)公式;解答解答真題押題精練真題體驗(yàn)1.(2017全國(guó))等差數(shù)列an的前n項(xiàng)和為Sn,a33,S410,則_.答案解析12解析解析設(shè)等差數(shù)列an的公差為d,則122.(2017天津)已知an為等差數(shù)列,前n項(xiàng)和為Sn(nN*),bn是首項(xiàng)為2的等比數(shù)列,且公比大于0,b2b312,b3a42a1,S1111b4.(1)求an和bn的通項(xiàng)公式;12解答解解設(shè)等差數(shù)

7、列an的公差為d,等比數(shù)列bn的公比為q.由已知b2b312,得b1(qq2)12,而b12,所以q2q60.又因?yàn)閝0,解得q2,所以bn2n.由b3a42a1,可得3da18,由S1111b4,可得a15d16,聯(lián)立,解得a11,d3,由此可得an3n2.所以數(shù)列an的通項(xiàng)公式為an3n2,數(shù)列bn的通項(xiàng)公式為bn2n.12(2)求數(shù)列a2nb2n1的前n項(xiàng)和(nN*).12解答解解設(shè)數(shù)列a2nb2n1的前n項(xiàng)和為Tn,由a2n6n2,b2n124n1,得a2nb2n1(3n1)4n,故Tn24542843(3n1)4n,4Tn242543844(3n4)4n(3n1)4n1,得3Tn24

8、34234334n(3n1)4n1(3n2)4n18,12押題預(yù)測(cè)答案解析押題依據(jù)押題依據(jù)數(shù)列的通項(xiàng)以及求和是高考重點(diǎn)考查的內(nèi)容,也是考試大綱中明確提出的知識(shí)點(diǎn),年年在考,年年有變,變的是試題的外殼,即在題設(shè)的條件上有變革,有創(chuàng)新,但在變中有不變性,即解答問題的常用方法有規(guī)律可循.121.已知數(shù)列an的通項(xiàng)公式為an ,其前n項(xiàng)和為Sn,若存在MZ,滿足對(duì)任意的nN*,都有Sn0),且4a3是a1與2a2的等差中項(xiàng).(1)求an的通項(xiàng)公式;解答押題依據(jù)押題依據(jù)錯(cuò)位相減法求和是高考的重點(diǎn)和熱點(diǎn),本題先利用an,Sn的關(guān)系求an,也是高考出題的常見形式.12押題依據(jù)解解當(dāng)n1時(shí),S1a(S1a11),所以a1a,當(dāng)n2時(shí),Sna(Snan1),Sn1a(Sn1an11),12故an是首項(xiàng)a1a,公比為a的等比數(shù)列,所以anaan1an.故a2a2,a3a3.由4a3是a1與2a2的等差中項(xiàng),可得8a3a12a2,即8a3a2a2,因?yàn)閍0,整理得8a22a10,即(2a1)(4a1)0,12解答1212所以Tn32522723(2n1)2n1(2n1)2n, 2Tn322523724(2n1)2n(2n1)2n1, 由,得Tn322(22232n)(2n1)2n122n2(2n1)2n12(2n1)2n1,所以Tn2(2n1)2n1.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!