新編高考數(shù)學(xué)復(fù)習(xí) 專題03 三角與向量高考聯(lián)考模擬理數(shù)試題分項(xiàng)版解析解析版 Word版含解析
《新編高考數(shù)學(xué)復(fù)習(xí) 專題03 三角與向量高考聯(lián)考模擬理數(shù)試題分項(xiàng)版解析解析版 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)復(fù)習(xí) 專題03 三角與向量高考聯(lián)考模擬理數(shù)試題分項(xiàng)版解析解析版 Word版含解析(23頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 第一部分 20xx高考試題匯編 三角函數(shù)與三角形 1. 【20xx高考新課標(biāo)1卷】已知函數(shù) 為的零點(diǎn),為圖像的對稱軸,且在單調(diào),則的最大值為( ) (A)11????????(B)9?????(C)7????????(D)5 【答案】B 考點(diǎn):三角函數(shù)的性質(zhì) 【名師點(diǎn)睛】本題將三角函數(shù)單調(diào)性與對稱性結(jié)合在一起進(jìn)行考查,敘述方式新穎,是一道考查能力的好題.注意本題解法中用到的兩個結(jié)論:①的單調(diào)區(qū)間長度是半個周期;②若的圖像關(guān)于直線 對稱,則 或. 2.【高考四川理數(shù)】為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點(diǎn)( ) (A)向左平行移
2、動個單位長度 (B)向右平行移動個單位長度 (C)向左平行移動個單位長度 (D)向右平行移動個單位長度 【答案】D 【解析】 試題分析:由題意,為了得到函數(shù),只需把函數(shù)的圖像上所有點(diǎn)向右移個單位,故選D. 考點(diǎn):三角函數(shù)圖像的平移. 【名師點(diǎn)睛】本題考查三角函數(shù)的圖象平移,在函數(shù)的圖象平移變換中要注意人“”的影響,變換有兩種順序:一種的圖象向左平移個單位得,再把橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得的圖象,另一種是把的圖象橫坐標(biāo)變?yōu)樵瓉淼谋叮v坐標(biāo)不變,得的圖象,向左平移個單位得的圖象. 3.【20xx高考新課標(biāo)3理數(shù)】在中,,邊上的高等于,則( )
3、 (A) (B) (C) (D) 【答案】C 考點(diǎn):余弦定理. 【方法點(diǎn)撥】在平面幾何圖形中求相關(guān)的幾何量時,需尋找各個三角形之間的聯(lián)系,交叉使用公共條件,常常將所涉及到已知幾何量與所求幾何集中到某一個三角形,然后選用正弦定理與余弦定理求解. 4.【20xx高考新課標(biāo)2理數(shù)】若,則( ) (A) (B) (C) (D) 【答案】D 【解析】 試題分析: , 且,故選D. 考點(diǎn):三角恒等變換. 【名師點(diǎn)睛】三角函數(shù)的給值求值,關(guān)鍵是把待求角用已
4、知角表示: (1)已知角為兩個時,待求角一般表示為已知角的和或差. (2)已知角為一個時,待求角一般與已知角成“倍的關(guān)系”或“互余互補(bǔ)”關(guān)系. 5.【20xx高考新課標(biāo)2理數(shù)】若將函數(shù)的圖像向左平移個單位長度,則平移后圖象的對稱軸為( ) (A) (B) (C) (D) 【答案】B 【解析】 試題分析:由題意,將函數(shù)的圖像向左平移個單位得,則平移后函數(shù)的對稱軸為,即,故選B. 考點(diǎn): 三角函數(shù)的圖象變換與對稱性. 【名師點(diǎn)睛】平移變換和伸縮變換都是針對x而言,即x本身加減多少值,而不是依賴于ωx加減多
5、少值. 6.【20xx高考新課標(biāo)3理數(shù)】若 ,則( ) (A) (B) (C) 1 (D) 【答案】A 考點(diǎn):1、同角三角函數(shù)間的基本關(guān)系;2、倍角公式. 【方法點(diǎn)撥】三角函數(shù)求值:①“給角求值”將非特殊角向特殊角轉(zhuǎn)化,通過相消或相約消去非特殊角,進(jìn)而求出三角函數(shù)值;②“給值求值”關(guān)鍵是目標(biāo)明確,建立已知和所求之間的聯(lián)系. 7.【20xx高考浙江理數(shù)】設(shè)函數(shù),則的最小正周期( ) A.與b有關(guān),且與c有關(guān) B.與b有關(guān),但與c無關(guān) C.與b無關(guān),且與
6、c無關(guān) D.與b無關(guān),但與c有關(guān) 【答案】B 【解析】 試題分析:,其中當(dāng)時,,此時周期是;當(dāng)時,周期為,而不影響周期.故選B. 考點(diǎn):1、降冪公式;2、三角函數(shù)的最小正周期. 【思路點(diǎn)睛】先利用三角恒等變換(降冪公式)化簡函數(shù),再判斷和的取值是否影響函數(shù)的最小正周期. 8.【高考北京理數(shù)】將函數(shù)圖象上的點(diǎn)向左平移() 個單位長度得到點(diǎn),若位于函數(shù)的圖象上,則( ) A.,的最小值為B. ,的最小值為 C.,的最小值為D.,的最小值為 【答案】A 考點(diǎn):三角函數(shù)圖象平移 【名師點(diǎn)睛】三角函數(shù)的圖象變換,有兩種選擇:一
7、是先伸縮再平移,二是先平移再伸縮.特別注意平移變換時,當(dāng)自變量x的系數(shù)不為1時,要將系數(shù)先提出.翻折變換要注意翻折的方向;三角函數(shù)名不同的圖象變換問題,應(yīng)先將三角函數(shù)名統(tǒng)一,再進(jìn)行變換 9.【高考四川理數(shù)】= . 【答案】 【解析】[] 試題分析:由二倍角公式得 考點(diǎn):三角函數(shù)二倍角公式. 【名師點(diǎn)睛】這是一個來自于課本的題,直接利用課本公式解題,這告訴我們一定要立足于課本.有許多三角函數(shù)的求值問題一般都是通過三角函數(shù)的公式把函數(shù)化為特殊角的三角函數(shù)值而求解. 10.【20xx高考新課標(biāo)2理數(shù)】的內(nèi)角的對邊分別為,若,,,則 . 【答案】 考
8、點(diǎn): 三角函數(shù)和差公式,正弦定理. 【名師點(diǎn)睛】在解有關(guān)三角形的題目時,要有意識地考慮用哪個定理更適合,或是兩個定理都要用,要抓住能夠利用某個定理的信息.一般地,如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到. 11.【20xx高考浙江理數(shù)】已知2cos2x+sin 2x=Asin(ωx+φ)+b(A>0),則A=______,b=________. 【答案】 【解析】 試題分析:,所以[] 考點(diǎn):1、降冪公式;2、輔助角公式. 【思路點(diǎn)睛】解答本題時先用降冪公式化
9、簡,再用輔助角公式化簡,進(jìn)而對照可得和. 12.【20xx高考新課標(biāo)3理數(shù)】函數(shù)的圖像可由函數(shù)的圖像至少向 右平移_____________個單位長度得到. 【答案】 【解析】 試題分析:因?yàn)?,=,所以函?shù)的圖像可由函數(shù)的圖像至少向右平移個單位長度得到. 考點(diǎn):1、三角函數(shù)圖象的平移變換;2、兩角和與差的正弦函數(shù). 【誤區(qū)警示】在進(jìn)行三角函數(shù)圖象變換時,提倡“先平移,后伸縮”,但“先伸縮,后平移”也經(jīng)常出現(xiàn)在題目中,所以也必須熟練掌握,無論是哪種變形,切記每一個變換總是對字母而言,即圖象變換要看“變量”起多大變化,而不是“角”變化多少. 13.【20xx高考山東理數(shù)】函數(shù)f(x
10、)=(sin x+cos x)(cos x –sin x)的最小正周期是( ) (A) (B)π (C) (D)2π 【答案】B 【解析】 試題分析:,故最小正周期,故選B. 考點(diǎn):1.和差倍半的三角函數(shù);2.三角函數(shù)的圖象和性質(zhì). 【名師點(diǎn)睛】本題主要考查和差倍半的三角函數(shù)、三角函數(shù)的圖象和性質(zhì).此類題目是三角函數(shù)問題中的典型題目,可謂相當(dāng)經(jīng)典.解答本題,關(guān)鍵在于能利用三角公式化簡函數(shù)、進(jìn)一步討論函數(shù)的性質(zhì),本題較易,能較好的考查考生的基本運(yùn)算求解能力及復(fù)雜式子的變形能力等. 14.【20xx高考天津理數(shù)】在△ABC中,若,BC=
11、3, ,則AC= ( ) (A)1 (B)2 (C)3 (D)4 【答案】A 【解析】 試題分析:由余弦定理得,選A. 考點(diǎn):余弦定理 【名師點(diǎn)睛】1.正、余弦定理可以處理四大類解三角形問題,其中已知兩邊及其一邊的對角,既可以用正弦定理求解也可以用余弦定理求解. 2.利用正、余弦定理解三角形其關(guān)鍵是運(yùn)用兩個定理實(shí)現(xiàn)邊角互化,從而達(dá)到知三求三的目的. 15.【20xx高考江蘇卷】定義在區(qū)間上的函數(shù)的圖象與的圖象的交點(diǎn)個數(shù)是 ▲ . 【答案】7 【解析】由,因?yàn)椋怨?個 考點(diǎn):三角函數(shù)圖像 【名師點(diǎn)睛】求函數(shù)圖像交點(diǎn)個數(shù),可選用兩個角度:一是直
12、接求解,如本題,解一個簡單的三角方程,此方法立足于易于求解,二是數(shù)形結(jié)合,分別畫出函數(shù)圖像,數(shù)交點(diǎn)個數(shù),此法直觀,但對畫圖要求較高,必須準(zhǔn)確,尤其明確增長幅度.[] 16.【20xx高考江蘇卷】在銳角三角形中,若,則的最小值是 ▲ . 【答案】8. 考點(diǎn):三角恒等變換,切的性質(zhì)應(yīng)用 【名師點(diǎn)睛】消元與降次是高中數(shù)學(xué)主旋律,利用三角形中隱含的邊角關(guān)系作為消元依據(jù)是本題突破口,斜三角形中恒有,這類同于正余弦定理,是一個關(guān)于切的等量關(guān)系,平時多總結(jié)積累常見的三角恒等變形,提高轉(zhuǎn)化問題能力,培養(yǎng)消元意識 17.【高考北京理數(shù)】(本小題13分) 在ABC中,. (1)求 的大?。?/p>
13、 (2)求 的最大值. 【答案】(1);(2). 【解析】 試題分析:(1)根據(jù)余弦定理公式求出的值,進(jìn)而根據(jù)的取值范圍求的大?。? (2)由輔助角公式對進(jìn)行化簡變形,進(jìn)而根據(jù)的取值范圍求其最大值. 試題解析:(1)由余弦定理及題設(shè)得, 又∵,∴;(2)由(1)知, ,因?yàn)椋援?dāng)時,取得最大值. 考點(diǎn):1.三角恒等變形;2.余弦定理. 【名師點(diǎn)睛】正、余弦定理是應(yīng)用極為廣泛的兩個定理,它將三角形的邊和角有機(jī)地聯(lián)系起來,從而使三角與幾何產(chǎn)生聯(lián)系,為求與三角形有關(guān)的量(如面積、外接圓、內(nèi)切圓半徑和面積等)提供了理論依據(jù),也是判斷三角形形狀、證明三角形中有關(guān)等式的重要依據(jù).其
14、主要方法有:化角法,化邊法,面積法,運(yùn)用初等幾何法.注意體會其中蘊(yùn)涵的函數(shù)與方程思想、等價轉(zhuǎn)化思想及分類討論思想. 18.【20xx高考新課標(biāo)1卷】 (本小題滿分為12分) 的內(nèi)角A,B,C的對邊分別為a,b,c,已知 (I)求C; (II)若的面積為,求的周長. 【答案】(I)(II) 【解析】 (II)由已知,. 又,所以. 由已知及余弦定理得,. 故,從而. 所以的周長為. 考點(diǎn):正弦定理、余弦定理及三角形面積公式 【名師點(diǎn)睛】三角形中的三角變換常用到誘導(dǎo)公式, ,就是常用的結(jié)論,另外利用正弦定理或余弦定理處理?xiàng)l件中含有邊或角的等式,??紤]對其實(shí)施“邊化角”或
15、“角化邊.” 19.【20xx高考山東理數(shù)】(本小題滿分12分) 在△ABC中,角A,B,C的對邊分別為a,b,c,已知 (Ⅰ)證明:a+b=2c; (Ⅱ)求cosC的最小值. 【答案】(Ⅰ)見解析;(Ⅱ) 【解析】 試題分析:(Ⅰ)根據(jù)兩角和的正弦公式、正切公式、正弦定理即可證明; (Ⅱ)根據(jù)余弦定理公式表示出cosC,由基本不等式求cosC的最小值. 由知, 所以 , 當(dāng)且僅當(dāng)時,等號成立. 故 的最小值為. 考點(diǎn):1.和差倍半的三角函數(shù);2. 正弦定理、余弦定理;3. 基本不等式. 【名師點(diǎn)睛】此類題目是解三角形問題中的典型題目,可謂相當(dāng)經(jīng)典.解答本題,
16、關(guān)鍵在于能利用三角公式化簡三角恒等式,利用正弦定理實(shí)現(xiàn)邊角轉(zhuǎn)化,達(dá)到證明目的;三角形中的求角問題,往往要利用余弦定理用邊表示角的函數(shù).本題覆蓋面較廣,能較好的考查考生的基本運(yùn)算求解能力及復(fù)雜式子的變形能力等. 20.【20xx高考江蘇卷】(本小題滿分14分) 在中,AC=6, (1)求AB的長; (2)求的值. 【答案】(1)(2) 試題解析:解(1)因?yàn)樗? 由正弦定理知,所以 (2)在三角形ABC中,所以 于是 又,故 因?yàn)椋? 因此 考點(diǎn):同角三角函數(shù)關(guān)系,正余弦定理,兩角和與差公式 【名師點(diǎn)睛】三角函數(shù)是以角為自變量的函數(shù),因此解三角函數(shù)題,首先從角
17、進(jìn)行分析,善于用已知角表示所求角,即注重角的變換.角的變換涉及誘導(dǎo)公式、同角三角函數(shù)關(guān)系、兩角和與差公式、二倍角公式、配角公式等,選用恰當(dāng)?shù)墓?,是解決三角問題的關(guān)鍵,明確角的范圍,對開方時正負(fù)取舍是解題正確的保證. 21.【20xx高考天津理數(shù)】已知函數(shù)f(x)=4tanxsin()cos()-. (Ⅰ)求f(x)的定義域與最小正周期; (Ⅱ)討論f(x)在區(qū)間[]上的單調(diào)性. 【答案】(Ⅰ),(Ⅱ)在區(qū)間上單調(diào)遞增, 在區(qū)間上單調(diào)遞減. 【解析】 試題分析:(Ⅰ)先利用誘導(dǎo)公式、兩角差余弦公式、二倍角公式、配角公式將函數(shù)化為基本三角函數(shù):,再根據(jù)正弦函數(shù)性質(zhì)求定義域、周期根據(jù)(
18、1)的結(jié)論,研究三角函數(shù)在區(qū)間[]上單調(diào)性 解:令函數(shù)的單調(diào)遞增區(qū)間是 由,得 設(shè),易知. 所以, 當(dāng)時, 在區(qū)間上單調(diào)遞增, 在區(qū)間上單調(diào)遞減. 考點(diǎn):三角函數(shù)性質(zhì),誘導(dǎo)公式、兩角差余弦公式、二倍角公式、配角公式 【名師點(diǎn)睛】三角函數(shù)是以角為自變量的函數(shù),因此解三角函數(shù)題,首先從角進(jìn)行分析,善于用已知角表示所求角,即注重角的變換.角的變換涉及誘導(dǎo)公式、同角三角函數(shù)關(guān)系、兩角和與差公式、二倍角公式、配角公式等,選用恰當(dāng)?shù)墓?,是解決三角問題的關(guān)鍵,明確角的范圍,對開方時正負(fù)取舍是解題正確的保證. 對于三角函數(shù)來說,常常是先化為y=Asin(ωx+φ)+k的形式,再利用三角函數(shù)
19、的性質(zhì)求解.三角恒等變換要堅持結(jié)構(gòu)同化原則,即盡可能地化為同角函數(shù)、同名函數(shù)、同次函數(shù)等,其中切化弦也是同化思想的體現(xiàn);降次是一種三角變換的常用技巧,要靈活運(yùn)用降次公式. 22.【20xx高考浙江理數(shù)】(本題滿分14分)在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c. 已知b+c=2a cos B. (I)證明:A=2B; (II)若△ABC的面積,求角A的大小. 【答案】(I)證明見解析;(II)或. 試題分析:(I)先由正弦定理可得,進(jìn)而由兩角和的正弦公式可得,再判斷的取值范圍,進(jìn)而可證;(II)先由三角形的面積公式可得,進(jìn)而由二倍角公式可得,再利用三角形的內(nèi)角和可得角的大
20、?。? 試題解析:(I)由正弦定理得, 故, 于是. 又,,故,所以 或, 因此(舍去)或, 所以,. 考點(diǎn):1、正弦定理;2、兩角和的正弦公式;3、三角形的面積公式;4、二倍角的正弦公式. 【思路點(diǎn)睛】(I)用正弦定理將邊轉(zhuǎn)化為角,進(jìn)而用兩角和的正弦公式轉(zhuǎn)化為含有,的式子,根據(jù)角的范圍可證;(II)先由三角形的面積公式及二倍角公式可得含有,的式子,再利用三角形的內(nèi)角和可得角的大小. 23.【高考四川理數(shù)】(本小題滿分12分) 在△ABC中,角A,B,C所對的邊分別是a,b,c,且. (I)證明:; (II)若,求. 【答案】(Ⅰ)證明詳見解析;(Ⅱ)4. 【解
21、析】 試題分析:(Ⅰ)已知條件式中有邊有角,利用正弦定理,將邊角進(jìn)行轉(zhuǎn)化(本小題是將邊轉(zhuǎn)化為角),結(jié)合誘導(dǎo)公式進(jìn)行證明;(Ⅱ)從已知式可以看出首先利用余弦定理解出cos A=,再根據(jù)平方關(guān)系解出sinA,代入(Ⅰ)中等式sin Asin B=sin Acos B+cos Asin B,解出tanB的值. 試題解析:(Ⅰ)根據(jù)正弦定理,可設(shè)===k(k>0). 則a=ksin A,b=ksin B,c=ksin C. 代入+=中,有 +=,變形可得 sin Asin B=sin Acos B+cos Asin B=sin(A+B). 在△ABC中,由A+B+C=π,有sin(A+B
22、)=sin(π–C)=sin C, 所以sin Asin B=sin C. 考點(diǎn):正弦定理、余弦定理、商數(shù)關(guān)系、平方關(guān)系. 【名師點(diǎn)睛】本題考查正弦定理、余弦定理、商數(shù)關(guān)系等基礎(chǔ)知識,考查學(xué)生的分析問題的能力和計算能力.在解三角形的應(yīng)用中,凡是遇到等式中有邊又有角時,可用正弦定理進(jìn)行邊角互化,一種是化為三角函數(shù)問題,一般是化為代數(shù)式變形問題.在角的變化過程中注意三角形的內(nèi)角和為這個結(jié)論,否則難以得出結(jié)論. 24.【20xx高考上海理數(shù)】設(shè),若對任意實(shí)數(shù)都有,則滿足條件的有序?qū)崝?shù)組的組數(shù)為 . 【答案】4 【解析】 試題分析:因?yàn)椋? 當(dāng)確定時,唯一.
23、若,,則;若,,則; 若,,則;若,,則; 故有4種組合. 考點(diǎn):1.三角函數(shù)的誘導(dǎo)公式;2.三角函數(shù)的圖象和性質(zhì). 【名師點(diǎn)睛】本題根據(jù)三角函數(shù)的圖象和性質(zhì)及三角函數(shù)的誘導(dǎo)公式,首先確定得到的可能取值,利用分類討論的方法,進(jìn)一步得到的值,從而根據(jù)具體的組合情況,使問題得解.本題主要考查考生的邏輯思維能力、基本運(yùn)算求解能力、數(shù)形結(jié)合思想、分類討論思想等. 25、【20xx高考上海理數(shù)】方程在區(qū)間上的解為___________ 【答案】 考點(diǎn):1.二倍角公式;2.已知三角函數(shù)值求角. 【名師點(diǎn)睛】已知三角函數(shù)值求角,基本思路是通過化簡 ,得到角的某種三角函數(shù)值,結(jié)合角的范
24、圍求解.. 本題難度不大,能較好地考查考生的邏輯推理能力、基本計算能力等. 26.【20xx高考上海理數(shù)】已知的三邊長分別為3,5,7,則該三角形的外接圓半徑等于_________. 【答案】 【解析】 試題分析: 由已知,∴, ∴,∴ 考點(diǎn):1.正弦定理;2.余弦定理. 【名師點(diǎn)睛】此類題目是解三角形問題中的典型題目.解答本題,往往要利用三角公式化簡三角恒等式,利用正弦定理實(shí)現(xiàn)邊角轉(zhuǎn)化,達(dá)到解題目的;三角形中的求角問題,往往要利用余弦定理用邊表示角的函數(shù).本題較易,主要考查考生的基本運(yùn)算求解能力等. 第五章 平面向量 1.【20xx高考山東理數(shù)】已知非零向量m
25、,n滿足4│m│=3│n│,cos
26、析】 試題分析:向量,由得,解得,故選D. 考點(diǎn): 平面向量的坐標(biāo)運(yùn)算、數(shù)量積. 【名師點(diǎn)睛】已知非零向量a=(x1,y1),b=(x2,y2): 結(jié)論 幾何表示 坐標(biāo)表示 模 |a|= |a|= 夾角 cos θ= cos θ= a⊥b的充要條件 a·b=0 x1x2+y1y2=0 3.【20xx高考新課標(biāo)3理數(shù)】已知向量 , ,則( ) (A) (B) (C) (D) 【答案】A 【解析】 試題分析:由題意,得,所以,故選A. 考點(diǎn):向量夾角公式. 【思維拓展】(1)平面向量
27、與的數(shù)量積為,其中是與的夾角,要注意夾角的定義和它的取值范圍:;(2)由向量的數(shù)量積的性質(zhì)有,,,因此,利用平面向量的數(shù)量積可以解決與長度、角度、垂直等有關(guān)的問題. 4.【高考北京理數(shù)】設(shè),是向量,則“”是“”的( ) A.充分而不必要條件 B.必要而不充分條件 C.充分必要條件 D.既不充分也不必要條件 【答案】D 【解析】 試題分析:由,故是既不充分也不必要條件,故選D. 考點(diǎn):1.充分必要條件;2.平面向量數(shù)量積. 【名師點(diǎn)睛】由向量數(shù)量積的定義(為,的夾角)可知,數(shù)量積的值、模的乘積、夾角知二可求一,再考慮到數(shù)量積還可
28、以用坐標(biāo)表示,因此又可以借助坐標(biāo)進(jìn)行運(yùn)算.當(dāng)然,無論怎樣變化,其本質(zhì)都是對數(shù)量積定義的考查.求解夾角與模的題目在近年高考中出現(xiàn)的頻率很高,應(yīng)熟練掌握其解法. 5.【20xx高考天津理數(shù)】已知△ABC是邊長為1的等邊三角形,點(diǎn)分別是邊的中點(diǎn),連接 并延長到點(diǎn),使得,則的值為( ) (A) (B) (C) (D) 【答案】B 【解析】 試題分析:設(shè),,∴,, ,∴,故選B. 考點(diǎn):向量數(shù)量積 【名師點(diǎn)睛】研究向量數(shù)量積,一般有兩個思路,一是建立直角坐標(biāo)系,利用坐標(biāo)研究向量數(shù)量積;二是利用一組基底表示所有向量,兩種實(shí)質(zhì)相同,坐標(biāo)法更易理解和化簡. 平面向量的坐標(biāo)運(yùn)算
29、的引入為向量提供了新的語言——“坐標(biāo)語言”,實(shí)質(zhì)是“形”化為“數(shù)”.向量的坐標(biāo)運(yùn)算,使得向量的線性運(yùn)算都可用坐標(biāo)來進(jìn)行,實(shí)現(xiàn)了向量運(yùn)算完全代數(shù)化,將數(shù)與形緊密結(jié)合起來. 6.【高考四川理數(shù)】在平面內(nèi),定點(diǎn)A,B,C,D滿足 ==,===-2,動點(diǎn)P,M滿足 =1,=,則的最大值是( ) (A) (B) (C) (D) 【答案】B 【解析】 考點(diǎn):1.向量的數(shù)量積運(yùn)算;2.向量的夾角;3.解析幾何中與圓有關(guān)的最值問題. 【名師點(diǎn)睛】本題考查平面向量的數(shù)量積與向量的模,由于結(jié)論是要求向量模的平方的最大值,因此我們要把它用一個參數(shù)表示出來,
30、解題時首先對條件進(jìn)行化簡變形,本題中得出,且,因此我們采用解析法,即建立直角坐標(biāo)系,寫出坐標(biāo),同時動點(diǎn)的軌跡是圓,,因此可用圓的性質(zhì)得出最值. 7.【20xx高考新課標(biāo)1卷】設(shè)向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,則m= . 【答案】 【解析】 試題分析:由,得,所以,解得. 考點(diǎn):向量的數(shù)量積及坐標(biāo)運(yùn)算 【名師點(diǎn)睛】全國卷中向量大多以客觀題形式出現(xiàn),屬于基礎(chǔ)題.解決此類問題既要準(zhǔn)確記憶公式,又要注意運(yùn)算的準(zhǔn)確性.本題所用到的主要公式是:若,則. 8.【20xx高考江蘇卷】如圖,在中,是的中點(diǎn),是上的兩個三等分點(diǎn),, ,則
31、的值是 ▲ . 【答案】 [] 考點(diǎn):向量數(shù)量積 【名師點(diǎn)睛】研究向量數(shù)量積,一般有兩個思路,一是建立直角坐標(biāo)系,利用坐標(biāo)研究向量數(shù)量積;二是利用一組基底表示所有向量,兩種實(shí)質(zhì)相同,坐標(biāo)法更易理解和化簡. 對于涉及中線向量問題,利用向量加法與減法的平行四邊形法則,可以得到一個很實(shí)用的結(jié)論: 9.【20xx高考浙江理數(shù)】已知向量a、b, |a| =1,|b| =2,若對任意單位向量e,均有 |a·e|+|b·e| ,則a·b的最大值是 . 【答案】 【解析】 試題分析:,即最大值為 考點(diǎn):平面向量的數(shù)量積. 【易錯點(diǎn)睛】在兩邊
32、同時平方,轉(zhuǎn)化為的過程中,很容易忘記右邊的進(jìn)行平方而導(dǎo)致錯誤. 第二部分 20xx優(yōu)質(zhì)模擬題 1.【20xx江西贛中南五校一聯(lián),理5】如圖所示,點(diǎn)是函數(shù)圖象的最高點(diǎn),M、N是圖象與軸的交點(diǎn),若,則等于( ) A. B. C. D. 【答案】B 【解析】由題意可得:,,所以;所以函數(shù)的周期為16,即故選B. 2.【20xx云南第一次統(tǒng)測,理7】為得到的圖象,只需要將的圖象( ) A.向右平移個單位 B.向右平移個單位 C.向左平移個單位 D.向左平移個單位 【答案】D 【解析】因?yàn)椋詾榈玫降膱D象,只需要將的圖
33、象向左平移個單位;故選D. 3.【20xx湖北省優(yōu)質(zhì)高中聯(lián)考,理4】已知向量,若,則向量與向量的夾角的余弦值是( ?。? A. B. C. D. 【答案】A 【解析】,因?yàn)?,所以,解得,?dāng)時,,故選A. 4.【20xx江西贛中南五校一聯(lián),理6】外接圓圓心O,半徑為1,且,則向量在向量方向的投影為( ) A. B. C. D. 【答案】A 5.【20xx河南中原名校一聯(lián),理10】在中,角,,的對邊分別為,,,已知向量,,且. (1)求角的大??; (2)若,求面積的最大值. 【解析】,所以, 由正弦定理得, ,由, 由于,因此,所以,由于, (2)由余弦定理得 ,因此,當(dāng)且僅當(dāng)時,等號成立;[] 因此面積,因此面積的最大值. 6.【20xx河北石家莊質(zhì)檢二,理17】中,角,,的對邊分別為,,,且. (1)求角的大?。? (2)若為邊上的中線,,,求的面積. (2)在中,由余弦定理得,∴…①, 在中,由正弦定理得,由已知得 ∴,∴……②, 由①,②解得,∴.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 領(lǐng)導(dǎo)班子2024年度民主生活會對照檢查材料范文(三篇)
- 金融工作主題黨課講稿范文(匯編)
- 鍋爐必備學(xué)習(xí)材料
- 鍋爐設(shè)備的檢修
- 主題黨課講稿:走中國特色金融發(fā)展之路加快建設(shè)金融強(qiáng)國(范文)
- 鍋爐基礎(chǔ)知識:啟爐注意事項(xiàng)技術(shù)問答題
- 領(lǐng)導(dǎo)班子2024年度民主生活會“四個帶頭”對照檢查材料范文(三篇)
- 正常運(yùn)行時影響鍋爐汽溫的因素和調(diào)整方法
- 3.鍋爐檢修模擬考試復(fù)習(xí)題含答案
- 司爐作業(yè)人員模擬考試試卷含答案-2
- 3.鍋爐閥門模擬考試復(fù)習(xí)題含答案
- 某公司鍋爐安全檢查表
- 3.工業(yè)鍋爐司爐模擬考試題庫試卷含答案
- 4.司爐工考試題含答案解析
- 發(fā)電廠鍋爐的運(yùn)行監(jiān)視和調(diào)整