2018版高中數學 第一章 計數原理 課時作業(yè)4 排列的綜合應用(習題課) 新人教A版選修2-3.doc
《2018版高中數學 第一章 計數原理 課時作業(yè)4 排列的綜合應用(習題課) 新人教A版選修2-3.doc》由會員分享,可在線閱讀,更多相關《2018版高中數學 第一章 計數原理 課時作業(yè)4 排列的綜合應用(習題課) 新人教A版選修2-3.doc(3頁珍藏版)》請在裝配圖網上搜索。
課時作業(yè) 4 排列的綜合應用(習題課) |基礎鞏固|(25分鐘,60分) 一、選擇題(每小題5分,共25分) 1.6名同學排成一排,其中甲、乙必須排在一起的不同排法共有( ) A.720種 B.360種 C.240種 D.120種 解析:將甲、乙兩人視為1人與其余4人排列,有A種排列方法,甲、乙兩人可互換位置,所以總的排法有AA=240(種). 答案:C 2.某單位準備用不同花色的裝飾石材分別裝飾辦公樓中的辦公室、走廓、大廳的地面以及樓的外墻,現(xiàn)有編號為1~6的六種不同花色的裝飾石材可選擇,其中1號石材有微量的放射性,不可用于辦公室內,則不同的裝飾效果種數為( ) A.65 B.50 C.350 D.300 解析:辦公室可選用的花色有A種,其余三個地方的裝飾花色有A種,所以不同的裝飾效果種數為AA=300(種),故選D. 答案:D 3.六個人從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有( ) A.192種 B.216種 C.240種 D.288種 解析:第一類:甲在最左端,有A=54321=120(種)方法;第二類:乙在最左端,有4A=44321=96(種)方法.所以共有120+96=216(種)方法. 答案:B 4.從a,b,c,d,e五人中選2人分別參加數學和物理競賽,但a不能參加物理競賽,則不同的選法有( ) A.16種 B.12種 C.20種 D.10種 解析:先選一人參加物理競賽有A種方法,再從剩下的4人中選1人參加數學競賽,有A種方法,共有AA=16種方法. 答案:A 5.由數字0,1,2,3,4,5組成沒有重復數字的五位數,其中個位數字小于十位數字的只有( ) A.210個 B.300個 C.464個 D.600個 解析:沒有重復數字的五位數有5A=600(個),個位數字小于十位數字的有=300(個).故選B. 答案:B 二、填空題(每小題5分,共15分) 6.某藝校在一天的6節(jié)課中隨機安排語文、數學、外語三門文化課和其他三門藝術課各1節(jié),則在課表上的相鄰兩節(jié)文化課之間最多間隔1節(jié)藝術課的排法有________種. 解析:課表上相鄰兩節(jié)文化課之間最多間隔1節(jié)藝術課,分三類: 第1類:文化課之間沒有藝術課,有AA=624=144(種). 第2類:某兩節(jié)文化課之間有1節(jié)藝術課,有ACAA=6326=216(種). 第3類:三節(jié)文化課之間有2節(jié)藝術課,有AAA=662=72(種). 共有144+216+72=432(種). 答案:432 7.將序號分別為1,2,3,4,5的5張參觀券全部分給4人,每人至少1張,如果分給同一人的2張參觀券連號,那么不同的分法種數是________. 解析:5張參觀券全部分給4人,分給同一人的2張參觀券連號,方法數為:1和2,2和3,3和4,4和5,四種連號,其他號碼各為一組,分給4人,共有4A=96(種). 答案:96 8.把5件不同產品擺成一排.若產品A與產品B相鄰,且產品A與產品C不相鄰,則不同的擺法有________種. 解析:先將A,B捆綁在一起,有A種擺法,再將它們與其他3件產品全排列,有A種擺法,共有AA種擺法.而A,B,C這3件產品在一起,且A,B相鄰,A,C相鄰有2A種擺法.故A,B相鄰,A,C不相鄰的擺法有AA-2A=36(種). 答案:36 三、解答題(每小題10分,共20分) 9.用0,1,2,…,9十個數字可組成多少個滿足以下條件的且沒有重復數字的排列: (1)五位奇數; (2)大于30 000的五位偶數? 解析:(1)要得到五位奇數,末位應從1,3,5,7,9五個數字中取,有5種取法,取定末位數字后,首位就有除這個數字和0之外的8種不同取法.首末兩位取定后,十個數字還有八個數字可供中間的十位、百位與千位三個數位選取,共有A種不同的排列方法.因此由分步乘法計數原理共有58A=13 440個沒有重復數字的五位奇數. (2)要得偶數,末位應從0,2,4,6,8中選取,而要比30 000大的五位偶數,可分兩類: ①末位數字從0,2中選取,則首位可取3、4、5、6、7、8、9中任一個,共7種選取方法,其余三個數位就有除首末兩個數位上的數字之外的八個數字可以選取,共A種取法.所以共有27A種不同情況. ②末位數字從4,6,8中選取,則首位應從3、4、5、6、7、8、9中除去末位數字的六位數字中選取,其余三個數位仍有A種選法,所以共有36A種不同情況.由分類加法計數原理,比30 000大的無重復數字的五位偶數的個數共有27A+36A=10 752種. 10.六人按下列要求站一橫排,分別有多少種不同的站法? (1)甲不站兩端; (2)甲、乙站在兩端; (3)甲不站左端,乙不站右端. 解析:(1)法一:要使甲不站在兩端,可先讓甲在中間4個位置上任選1個,有A種站法,然后其余5人在另外5個位置上作全排列有A種站法,根據分步乘法計數原理,共有站法AA=480種. 法二:由于甲不站兩端,這兩個位置只能從其余5個人中選2個人站,有A種站法,然后其余4人有A種站法,根據分步乘法計數原理,共有站法AA=480種. 法三:若對甲沒有限制條件共有A種站法,甲在兩端共有2A種站法,從總數中減去這兩種情況的排列數,即得所求的站法數,共有A-2A=480種. (2)首先考慮特殊元素,甲、乙先站兩端,有A種,再讓其他4人在中間位置作全排列,有A種,根據分步乘法計數原理,共有AA=48種站法. (3)法一:甲在左端的站法有A種,乙在右端的站法有A種,且甲在左端而乙在右端的站法有A種,共有A-2A+A=504種站法. 法二:以元素甲分類可分為兩類:a.甲站右端有A種,b.甲在中間4個位置之一,而乙不在右端有AAA種,故共有A+AAA=504種站法. |能力提升|(20分鐘,40分) 11.某單位安排7位員工在10月1日至7日值班,每天安排1人,每人值班1天.若7位員工中的甲、乙被安排在相鄰兩天值班,丙不在10月1日值班,丁不在10月7日值班,則不同的安排方案共有( ) A.504種 B.960種 C.1 008種 D.1 108種 解析:由題意知,滿足甲、乙兩人被安排在相鄰兩天值班的方案共有AA=1 440(種),其中滿足甲、乙兩人被安排在相鄰兩天值班且丙在10月1日值班的方案共有AA=240(種),滿足甲、乙兩人被安排在相鄰兩天值班且丁在10月7日值班的方案共有AA=240(種),滿足甲、乙兩人安排在相鄰兩天值班且丙在10月1日值班、丁在10月7日值班的方案共有AA=48(種).因此,滿足題意的方案共有1 440-2240+48=1 008(種). 答案:C 12.兩家夫婦各帶一個小孩一起去公園游玩,購票后排隊依次入園.為安全起見,首尾一定要排兩位爸爸,另外,兩個小孩一定要排在一起,則這6人的入園順序排法種數為________. 解析:分3步進行分析,①先安排兩位爸爸,必須一首一尾,有A=2種排法, ②兩個小孩一定要排在一起,將其看成一個元素,考慮其順序有A=2種排法,③將兩個小孩看作一個元素與兩位媽媽進行全排列,有A=6種排法. 則共有226=24種排法. 答案:24 13.某教師一天上3個班級的課,每班一節(jié),如果一天共9節(jié)課,上午5節(jié)、下午4節(jié),并且教師不能連上3節(jié)課(第5和第6節(jié)不算連上),那么這位教師一天的課的所有排法有多少種? 解析:首先求得不受限制時,從9節(jié)課中任意安排3節(jié),有A=504種排法,其中上午連排3節(jié)的有3A=18種,下午連排3節(jié)的有2A=12種,則這位教師一天的課的所有排法有504-18-12=474種. 14.一場晚會有5個演唱節(jié)目和3個舞蹈節(jié)目,要求排出一個節(jié)目單. (1)3個舞蹈節(jié)目不排在開始和結尾,有多少種排法? (2)前四個節(jié)目要有舞蹈節(jié)目,有多少種排法? 解析:(1)先從5個演唱節(jié)目中選兩個排在首尾兩個位置有A種排法,再將剩余的3個演唱節(jié)目,3個舞蹈節(jié)目排在中間6個位置上有A種排法,故共有不同排法AA=14 400種. (2)先不考慮排列要求,有A種排列,其中前四個節(jié)目沒有舞蹈節(jié)目的情況,可先從5個演唱節(jié)目中選4個節(jié)目排在前四個位置,然后將剩余四個節(jié)目排列在后四個位置,有AA種排法,所以前四個節(jié)目要有舞蹈節(jié)目的排法有A-AA=37 440種.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2018版高中數學 第一章 計數原理 課時作業(yè)4 排列的綜合應用習題課 新人教A版選修2-3 2018 高中數學 計數 原理 課時 作業(yè) 排列 綜合 應用 習題 新人 選修
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://ioszen.com/p-6291170.html