(通用版)2019高考數(shù)學二輪復習 第二篇 第20練 圓錐曲線的定義、方程與性質(zhì)精準提分練習 文.docx
《(通用版)2019高考數(shù)學二輪復習 第二篇 第20練 圓錐曲線的定義、方程與性質(zhì)精準提分練習 文.docx》由會員分享,可在線閱讀,更多相關《(通用版)2019高考數(shù)學二輪復習 第二篇 第20練 圓錐曲線的定義、方程與性質(zhì)精準提分練習 文.docx(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第20練 圓錐曲線的定義、方程與性質(zhì) [明晰考情] 1.命題角度:圓錐曲線的定義、方程與幾何性質(zhì)是高考考查的熱點.2.題目難度:中等偏難. 考點一 圓錐曲線的定義及標準方程 方法技巧 (1)應用圓錐曲線的定義解題時,一定不要忽視定義中的隱含條件. (2)凡涉及橢圓或雙曲線上的點到焦點的距離、拋物線上的點到焦點距離,一般可以利用定義進行轉(zhuǎn)化. (3)求解圓錐曲線的標準方程的方法是“先定型,后計算”. 1.已知A(0,7),B(0,-7),C(12,2),以C為一個焦點作過A,B的橢圓,則橢圓的另一個焦點F的軌跡方程是( ) A.y2-=1 B.x2-=1 C.y2-=1(y≤-1) D.x2-=1(x≥1) 答案 C 解析 由兩點間距離公式,可得|AC|=13,|BC|=15,|AB|=14,因為A,B都在橢圓上,所以|AF|+|AC|=|BF|+|BC|,|AF|-|BF|=|BC|-|AC|=2<14,故F的軌跡是以A,B為焦點的雙曲線的下支.由c=7,a=1,得b2=48,所以F的軌跡方程是y2-=1(y≤-1),故選C. 2.已知雙曲線-=1(a>0,b>0)的焦距為2,且雙曲線的一條漸近線與直線2x+y=0垂直,則雙曲線的方程為( ) A.-y2=1 B.x2-=1 C.-=1 D.-=1 答案 A 解析 依題意得=,① 又a2+b2=c2=5,② 聯(lián)立①②得a=2,b=1. ∴所求雙曲線的方程為-y2=1. 3.已知橢圓+=1的兩個焦點是F1,F(xiàn)2,點P在該橢圓上,若|PF1|-|PF2|=2,則△PF1F2的面積是________. 答案 解析 由橢圓的方程可知a=2,c=,且|PF1|+|PF2|=2a=4,又|PF1|-|PF2|=2, 所以|PF1|=3,|PF2|=1. 又|F1F2|=2c=2,所以有|PF1|2=|PF2|2+|F1F2|2,即△PF1F2為直角三角形,且∠PF2F1為直角, 所以=|F1F2||PF2|=21=. 4.已知P是拋物線y2=4x上的一個動點,Q是圓(x-3)2+(y-1)2=1上的一個動點,N(1,0)是一個定點,則|PQ|+|PN|的最小值為________. 答案 3 解析 由拋物線方程y2=4x,可得拋物線的焦點F(1,0),又N(1,0),所以N與F重合.過圓(x-3)2+(y-1)2=1的圓心M作拋物線準線的垂線MH,交圓于Q,交拋物線于P,則|PQ|+|PN|的最小值等于|MH|-1=3. 考點二 圓錐曲線的幾何性質(zhì) 方法技巧 (1)確定橢圓和雙曲線的離心率的值及范圍,就是確立一個關于a,b,c的方程(組)或不等式(組),再根據(jù)a,b,c的關系消掉b得到a,c的關系式. (2)要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標的范圍等. 5.(2018全國Ⅱ)雙曲線-=1(a>0,b>0)的離心率為,則其漸近線方程為( ) A.y=x B.y=x C.y=x D.y=x 答案 A 解析 雙曲線-=1的漸近線方程為bxay=0. 又∵離心率==, ∴a2+b2=3a2,∴b=a(a>0,b>0). ∴漸近線方程為axay=0,即y=x. 故選A. 6.(2018全國Ⅱ)已知F1,F(xiàn)2是橢圓C的兩個焦點,P是C上的一點.若PF1⊥PF2,且∠PF2F1=60,則C的離心率為( ) A.1- B.2- C. D.-1 答案 D 解析 在Rt△PF1F2中,∠PF2F1=60,設橢圓的方程為+=1(a>b>0), 且焦距|F1F2|=2, 則|PF2|=1,|PF1|=, 由橢圓的定義可知,2a=1+,2c=2, 得a=,c=1, 所以離心率e===-1. 7.(2017山東)在平面直角坐標系xOy中,雙曲線-=1(a>0,b>0)的右支與焦點為F的拋物線x2=2py(p>0)交于A,B兩點,若|AF|+|BF|=4|OF|,則該雙曲線的漸近線方程為________. 答案 y=x 解析 設A(x1,y1),B(x2,y2), 由得a2y2-2pb2y+a2b2=0, ∴y1+y2=. 又∵|AF|+|BF|=4|OF|, ∴y1++y2+=4, 即y1+y2=p, ∴=p,即=,∴=, ∴雙曲線的漸近線方程為y=x. 8.已知A是雙曲線-=1(a>0,b>0)的左頂點,F(xiàn)1,F(xiàn)2分別為左、右焦點,P為雙曲線上一點,G是△PF1F2的重心,若=λPF1,則雙曲線的離心率為________. 答案 3 解析 因為=λPF1,所以∥PF1, 所以==(O為坐標原點),即=, 所以e==3. 考點三 圓錐曲線的綜合問題 方法技巧 (1)圓錐曲線范圍、最值問題的常用方法 定義性質(zhì)轉(zhuǎn)化法;目標函數(shù)法;條件不等式法. (2)圓錐曲線中的定值、定點問題可以利用特例法尋求突破,然后對一般情況進行證明. 9.已知方程-=1表示橢圓,則實數(shù)m的取值范圍是( ) A.(-∞,-1) B.(-2,+∞) C.∪(-1,+∞) D.∪ 答案 D 解析 由-=1轉(zhuǎn)化成標準方程為+=1, 假設焦點在x軸上,則2+m>-(m+1)>0, 解得-<m<-1; 假設焦點在y軸上,則-(m+1)>2+m>0, 解得-2<m<-. 綜上可知,m的取值范圍為∪. 10.(2016四川)設O為坐標原點,P是以F為焦點的拋物線y2=2px(p>0)上任意一點,M是線段PF上的點,且|PM|=2|MF|,則直線OM的斜率的最大值為( ) A.B.C.D.1 答案 C 解析 如圖,由題意可知F,設P點坐標為,顯然, 當y0<0時,kOM<0;當y0>0時,kOM>0.要求kOM的最大值,不妨設y0>0,則=+=+=+(-)=+=,kOM==≤=,當且僅當y=2p2時等號成立.故選C. 11.過拋物線y=ax2 (a>0)的焦點F作一條直線交拋物線于A,B兩點,若線段AF,BF的長分別為m,n,則=________. 答案 解析 顯然直線AB的斜率存在,故設直線方程為y=kx+,與y=ax2聯(lián)立,消去y得ax2-kx-=0, 設A(x1,ax),B(x2,ax),則x1+x2=,x1x2=-, x+x=+,m=ax+,n=ax+, ∴mn=,m+n=,∴=. 12.(2018齊齊哈爾模擬)已知橢圓+=1(a>b>0)的短軸長為2,上頂點為A,左頂點為B,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,且△F1AB的面積為,點P為橢圓上的任意一點,則+的取值范圍為________. 答案 解析 由已知得2b=2,故b=1, ∵△F1AB的面積為, ∴(a-c)b=, ∴a-c=2-, 又a2-c2=(a-c)(a+c)=b2=1, ∴a=2,c=, ∴+= ==, 又2-≤|PF1|≤2+, ∴1≤-|PF1|2+4|PF1|≤4, ∴1≤+≤4, 即+的取值范圍為. 1.若點O和點F(-2,0)分別為雙曲線-y2=1(a>0)的中心和左焦點,點P為雙曲線右支上的任意一點,則的取值范圍為( ) A.[3-2,+∞) B.[3+2,+∞) C. D. 答案 B 解析 由題意,得22=a2+1,即a=,設P(x,y),x≥,=(x+2,y),則=(x+2)x+y2=x2+2x+-1=2-,因為x≥,所以的取值范圍為[3+2,+∞). 2.若橢圓的對稱軸是坐標軸,且短軸的一個端點與兩個焦點組成一個正三角形,焦點到同側(cè)頂點的距離為,則橢圓的方程為________________. 答案 +=1或+=1 解析 由題意,得 所以 所以b2=a2-c2=9. 所以當橢圓焦點在x軸上時,橢圓的方程為+=1;當橢圓焦點在y軸上時,橢圓的方程為+=1. 故橢圓的方程為+=1或+=1. 3.已知A(1,2),B(-1,2),動點P滿足⊥.若雙曲線-=1(a>0,b>0)的漸近線與動點P的軌跡沒有公共點,則雙曲線離心率的取值范圍是________. 答案 (1,2) 解析 設P(x,y),由題設條件, 得動點P的軌跡方程為(x-1)(x+1)+(y-2)(y-2)=0, 即x2+(y-2)2=1,它是以(0,2)為圓心,1為半徑的圓. 又雙曲線-=1(a>0,b>0)的漸近線方程為y=x,即bxay=0, 由題意,可得>1,即>1,所以e=<2, 又e>1,故1- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 通用版2019高考數(shù)學二輪復習 第二篇 第20練 圓錐曲線的定義、方程與性質(zhì)精準提分練習 通用版 2019 高考 數(shù)學 二輪 復習 第二 20 圓錐曲線 定義 方程 性質(zhì) 精準 練習
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://ioszen.com/p-6408996.html