《【備戰(zhàn)】上海版高考數(shù)學(xué)分項(xiàng)匯編 專題10 立體幾何含解析理》由會(huì)員分享,可在線閱讀,更多相關(guān)《【備戰(zhàn)】上海版高考數(shù)學(xué)分項(xiàng)匯編 專題10 立體幾何含解析理(17頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、專題10 立體幾何
一.基礎(chǔ)題組
1. 【2014上海,理6】若圓錐的側(cè)面積是底面積的3倍,則其母線與底面角的大小為 (結(jié)果用反三角函數(shù)值表示).
【答案】.
【考點(diǎn)】圓錐的性質(zhì),圓錐的母線與底面所成的角,反三角函數(shù).
2. 【2013上海,理13】在xOy平面上,將兩個(gè)半圓弧(x-1)2+y2=1(x≥1)和(x-3)2+y2=1(x≥3)、兩條直線y=1和y=-1圍成的封閉圖形記為D,如圖中陰影部分.記D繞y軸旋轉(zhuǎn)一周而成的幾何體為Ω.過(guò)(0,y)(|y|≤1)作Ω的水平截面,所得截面面積為+8π.試?yán)米鏁溤?、一個(gè)平放的圓柱和一個(gè)長(zhǎng)方體,得出Ω的體積值為_(kāi)_____.
2、
【答案】2π2+16π
3. 【2012上海,理8】若一個(gè)圓錐的側(cè)面展開(kāi)圖是面積為2π的半圓面,則該圓錐的體積為_(kāi)_________.
【答案】
4. 【2012上海,理14】如圖,AD與BC是四面體ABCD中互相垂直的棱,BC=2.若AD=2c,且AB+BD=AC+CD=2a,其中a,c為常數(shù),則四面體ABCD的體積的最大值是__________.
【答案】
5. 【2011上海,理7】若圓錐的側(cè)面積為2π,底面面積為π,則該圓錐的體積為_(kāi)_____.
【答案】
6. 【2010上海,理12】如圖所示,在邊長(zhǎng)為4的正方形紙片ABCD中,AC與BD相交于O
3、,剪去,將剩余部分沿OC、OD折疊,使OA、OB重合,則以A(B)、C、D、O為頂點(diǎn)的四面體的體積為_(kāi)_______;
【答案】
【點(diǎn)評(píng)】本題屬于典型的折疊問(wèn)題,解題的關(guān)鍵是:抓住折疊前后哪些幾何元素的位置關(guān)系發(fā)生了改變,哪些位置關(guān)系沒(méi)有發(fā)生改變,本題中應(yīng)用正方形的性質(zhì)是解題的推手.
7. (2009上海,理5)如圖,若正四棱柱ABCD—A1B1C1D1的底面邊長(zhǎng)為2,高為4,則異面直線BD1與AD所成角的大小是____________.(結(jié)果用反三角函數(shù)值表示)
【答案】
8. (2009上海,理8)已知三個(gè)球的半徑R1,R2,R3滿足R1+2R2=3R3,則它們的表面
4、積S1,S2,S3滿足的等量關(guān)系是_____________.
【答案】
9. (本題滿分14分)(2009上海,理19)如圖,在直三棱柱ABC—A1B1C1中,AA1=BC=AB=2,AB⊥BC,求二面角B1-A1C-C1的大小.
【答案】
10. 【2008上海,理16】(12’)如圖,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E是BC1的中點(diǎn),求直線DE與平面ABCD所成角的大小(結(jié)果用反三角函數(shù)表示
11. 【2007上海,理10】平面內(nèi)兩直線有三種位置關(guān)系:相交,平行與重合。已知兩個(gè)相交平面與兩直線,又知在內(nèi)的射影為,在內(nèi)的射影為
5、.試寫出與滿足的條件,使之一定能成為是異面直線的充分條件
11、 12. 【2005上海,理11】有兩個(gè)相同的直三棱柱,高為,底面三角形的三邊長(zhǎng)分別為。用它們拼成一個(gè)三棱柱或四棱柱,在所有可能的情形中,表面積最小的是一個(gè)四棱柱,則的取值范圍是__________.
【答案】
兩個(gè)相同的直三棱柱豎直放在一起,有一種情況
13. 【2005上海,理17】(本題滿分12分)
已知直四棱柱中,,底面是直角梯形,為直角,,,,,求異面直線與所成角的大?。ńY(jié)果用反三角函數(shù)值表示)
【答案】
二.能力題組
1. 【2013上
6、海,理19】如圖,在長(zhǎng)方體ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.證明直線BC′平行于平面D′AC,并求直線BC′到平面D′AC的距離.
【答案】
2. 【2012上海,理19】如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中點(diǎn).已知AB=2,,PA=2.求:
(1)三角形PCD的面積;
(2)異面直線BC與AE所成的角的大?。?
【答案】(1) ;(2)
3. 【2011上海,理21】已知ABCD-A1B1C1D1是底面邊長(zhǎng)為1的正四棱柱,O1為A1C1與B1D1的交點(diǎn).
(1)設(shè)
7、AB1與底面A1B1C1D1所成角的大小為α,二面角A-B1D1-A1的大小為β.求證:;
(2)若點(diǎn)C到平面AB1D1的距離為,求正四棱柱ABCD-A1B1C1D1的高.
【答案】(1)參考解析; (2) 2
4. 【2010上海,理21】(本題滿分13分)本題共有2個(gè)小題,第一個(gè)小題滿分5分,第2個(gè)小題滿分8分.
如圖所示,為了制作一個(gè)圓柱形燈籠,先要制作4個(gè)全等的矩形骨架,總計(jì)耗用9.6米鐵絲,骨架把圓柱底面8等份,再用平方米塑料片制成圓柱的側(cè)面和下底面(不安裝上底面).
(1)當(dāng)圓柱底面半徑取何值時(shí),取得最大值?并求出該最大值(結(jié)果精確到0.01平方米);
8、(2)在燈籠內(nèi),以矩形骨架的頂點(diǎn)為點(diǎn),安裝一些霓虹燈,當(dāng)燈籠的底面半徑為0.3米時(shí),求圖中兩根直線與所在異面直線所成角的大小(結(jié)果用反三角函數(shù)表示).
【答案】(1)(2)
【點(diǎn)評(píng)】本題以圓柱形燈籠為載體,考查二次函數(shù)的實(shí)際應(yīng)用、異面直線所成角的概念與求法,由此看出,立體幾何板塊難度比去年有所上升.
5. 【2007上海,理16】體積為1的直三棱柱中,,,求直線與平面所成角.
【答案】
6. 【2006上海,理19】(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分)
在四棱錐P-ABCD中,底面是邊長(zhǎng)為2的菱形,∠DAB=60,對(duì)角線AC與BD相交于點(diǎn)O,PO⊥平面ABCD,PB與平面ABCD所成的角為60.
P
A
B
C
D
O
E
(1)求四棱錐P-ABCD的體積;
(2)若E是PB的中點(diǎn),求異面直線
DE與PA所成角的大?。ńY(jié)果用反
三角函數(shù)值表示).
【答案】(1)2;(2)arccos
E
三.拔高題組
1. 【2014上海,理19】(本題滿分12分)
底面邊長(zhǎng)為2的正三棱錐,其表面展開(kāi)圖是三角形,如圖,求△的各邊長(zhǎng)及此三棱錐的體積.
【答案】邊長(zhǎng)為4,體積為.
【考點(diǎn)】圖象的翻折,幾何體的體積.