高數(shù)上冊(cè)第一章第十節(jié)閉區(qū)間上連續(xù)函數(shù)的性質(zhì).ppt
-
資源ID:7233184
資源大小:962.06KB
全文頁(yè)數(shù):13頁(yè)
- 資源格式: PPT
下載積分:9.9積分
快捷下載

會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
高數(shù)上冊(cè)第一章第十節(jié)閉區(qū)間上連續(xù)函數(shù)的性質(zhì).ppt
1 第十節(jié)閉區(qū)間上連續(xù)函數(shù)的性質(zhì) 一 有界性與最大值和最小值定理 二 零點(diǎn)定理與介值定理 三 小結(jié)思考題 2 一 有界性與最大值和最小值定理 定義 例如 注意 最值可以取在閉區(qū)間的端點(diǎn)處 3 定理1 有界性與最大值和最小值定理 在閉區(qū)間上連續(xù)的函數(shù)在該區(qū)間上一定有界且必取得它的最大值和最小值 4 注意 1 若區(qū)間是開(kāi)區(qū)間 定理不一定成立 如圖a 3 由此可知定理的條件是充分條件 不必要 圖a 圖b 2 若區(qū)間內(nèi)有間斷點(diǎn) 定理不一定成立 如圖b 5 二 零點(diǎn)定理與介值定理 定義 定理2 零點(diǎn)定理 1 零點(diǎn)定理 作用 常用于判斷方程有根 根的存在性 即方程f x 0在 a b 內(nèi)至少存在一個(gè)實(shí)根 6 幾何解釋 2 介值定理 定理3 介值定理 7 幾何解釋 證 由零點(diǎn)定理 則 8 推論 在閉區(qū)間上連續(xù)的函數(shù)必取得介于最大值M與最小值m之間的任何值 例1 證 由零點(diǎn)定理 分析 至少有一根 存在性 證 設(shè)m f x1 M f x2 而m M 在閉區(qū)間 x1 x2 或 x2 x1 上應(yīng)用介值定理 即可得證 9 補(bǔ)例2 證 由零點(diǎn)定理 分析 本題關(guān)鍵是尋求符合零點(diǎn)定理的函數(shù)來(lái)證明 10 注 1 上面的稱為輔助函數(shù) 把結(jié)論中的改寫(xiě)成 移項(xiàng) 使等式右邊為0 令左邊式子為 2 使用零點(diǎn)定理作輔助函數(shù)F x 的一般作法 則即為所求的輔助函數(shù) 3 一定注意本節(jié)中的所有定理的條件都是充分條件 11 三 小結(jié) 三個(gè)定理 有界性與最值定理 介值定理 根的存在性定理 注意 1 閉區(qū)間 2 連續(xù)函數(shù) 這兩點(diǎn)不滿足上述定理不一定成立 解題思路 1 直接法 先利用最值定理 再利用介值定理 2 輔助函數(shù)法 先作輔助函數(shù)F x 再利用零點(diǎn)定理 12 思考題 下述命題是否正確 13 思考題解答 不正確 例如 函數(shù)