【名校資料】高考數(shù)學(xué)理一輪資源庫 第8章學(xué)案39
《【名校資料】高考數(shù)學(xué)理一輪資源庫 第8章學(xué)案39》由會員分享,可在線閱讀,更多相關(guān)《【名校資料】高考數(shù)學(xué)理一輪資源庫 第8章學(xué)案39(11頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、◆+◆◆二〇一九高考數(shù)學(xué)學(xué)習(xí)資料◆+◆◆ 學(xué)案39 空間點(diǎn)、線、面之間的位置關(guān)系 導(dǎo)學(xué)目標(biāo): 1.理解空間直線、平面位置關(guān)系的含義.2.了解可以作為推理依據(jù)的公理和定理.3.能運(yùn)用公理、定理和已獲得的結(jié)論證明一些空間圖形的位置關(guān)系的簡單命題. 自主梳理 1.平面的基本性質(zhì) 公理1:如果一條直線上的________在一個平面內(nèi),那么這條直線上所有的點(diǎn)都在這個平面內(nèi). 公理2:如果兩個平面有一個公共點(diǎn),那么它們還有其他公共點(diǎn),這些公共點(diǎn)的集合是經(jīng)過____________的一條直線. 公理3:經(jīng)過____________________的三點(diǎn),有且只有一個平面. 推論1:經(jīng)
2、過____________________,有且只有一個平面. 推論2:經(jīng)過________________,有且只有一個平面. 推論3:經(jīng)過________________,有且只有一個平面. 2.直線與直線的位置關(guān)系 (1)位置關(guān)系的分類 (2)異面直線判定定理 過平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,和這個平面內(nèi)______________的直線是異面直線. (3)異面直線所成的角 ①定義:設(shè)a,b是兩條異面直線,經(jīng)過空間任意一點(diǎn)O,作直線a′∥a,b′∥b,把a(bǔ)′與b′所成的____________叫做異面直線a,b所成的角. ②范圍:____________. 3.公
3、理4 平行于____________的兩條直線互相平行. 4.定理 如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角________. 自我檢測 1.若直線a與b是異面直線,直線b與c是異面直線,則直線a與c的位置關(guān)系是____________. 2.如果兩條異面直線稱為“一對”,那么在正方體的十二條棱中共有異面直線________對. 3.三個不重合的平面可以把空間分成n部分,則n的可能取值為________. 4.(2010·全國Ⅰ)直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,則異面直線BA1與AC1所成角的大小為_______
4、_. 5.下列命題: ①空間不同三點(diǎn)確定一個平面; ②有三個公共點(diǎn)的兩個平面必重合; ③空間兩兩相交的三條直線確定一個平面; ④三角形是平面圖形; ⑤平行四邊形、梯形、四邊形都是平面圖形; ⑥垂直于同一直線的兩直線平行; ⑦一條直線和兩平行線中的一條相交,也必和另一條相交; ⑧兩組對邊相等的四邊形是平行四邊形. 其中正確的命題是________(填序號). 探究點(diǎn)一 平面的基本性質(zhì) 例1 如圖所示,空間四邊形ABCD中,E、F、G分別在AB、BC、CD上,且滿足AE∶EB=CF∶FB=2∶1,CG∶GD=3∶1,過E、F、G的平面交AD于H,連結(jié)EH. (
5、1)求AH∶HD; (2)求證:EH、FG、BD三線共點(diǎn). 變式遷移1 如圖,E、F、G、H分別是空間四邊形AB、BC、CD、DA上的點(diǎn),且EH與FG相交于點(diǎn)O. 求證:B、D、O三點(diǎn)共線. 探究點(diǎn)二 異面直線的判定 例2 如圖所示,直線a、b是異面直線,A、B兩點(diǎn)在直線a上,C、D兩點(diǎn)在直線b上.求證:BD和AC是異面直線. 變式遷移2 如圖是正方體或四面體,P、Q、R、S分別是所在棱的中點(diǎn),這四個點(diǎn)不共面的是________(填序號). 探究點(diǎn)三 異面直線所成的角 例3 (2009·全國
6、Ⅰ)已知三棱柱ABC—A1B1C1的側(cè)棱與底面邊長都相等,A1在底面ABC上的射影為BC的中點(diǎn),則異面直線AB與CC1所成的角的余弦值為 ________________________________________________________________________. 變式遷移3 在空間四邊形ABCD中,已知AD=1,BC=,且AD⊥BC,對角線BD=,AC=,求AC和BD所成的角. 轉(zhuǎn)化與化歸思想 例 (14分)如圖所示,在四棱錐P—ABCD中,底面是邊長為2的菱形,∠DAB=60°,對角線AC與BD交于點(diǎn)O,PO⊥平面ABCD,PB與
7、平面ABCD所成的角為60°. (1)求四棱錐的體積; (2)若E是PB的中點(diǎn),求異面直線DE與PA所成角的余弦值. 多角度審題 對(1)只需求出高PO,易得體積;對(2)可利用定義,過E點(diǎn)作PA的平行線,構(gòu)造三角形再求解. 【答題模板】 解 (1)在四棱錐P—ABCD中, ∵PO⊥平面ABCD, ∴∠PBO是PB與平面ABCD所成的角,即∠PBO=60°,[2分] 在Rt△AOB中,∵BO=AB·sin 30°=1,又PO⊥OB, ∴PO=BO·tan 60°=, ∵底面菱形的面積S=2××2×2×=2, ∴VP—ABCD=×2×=2.[7分] (2) 取A
8、B的中點(diǎn)F,連結(jié)EF,DF, ∵E為PB中點(diǎn),∴EF∥PA, ∴∠DEF為異面直線DE與PA所成角(或其補(bǔ)角).[9分] 在Rt△AOB中, AO=AB·cos 30°=, ∴在Rt△POA中,PA=,∴EF=. 在正三角形ABD和正三角形PDB中,DF=DE=, 由余弦定理得cos∠DEF= ===.[12分] 所以異面直線DE與PA所成角的余弦值為.[14分] 【突破思維障礙】 求兩條異面直線所成的角的大小,一般方法是通過平行移動直線,把異面問題轉(zhuǎn)化為共面問題來解決.根據(jù)空間等角定理及推論可知,異面直線所成角的大小與頂點(diǎn)位置無關(guān),往往將角的頂點(diǎn)取在其中的一條直線上.特
9、別地,可以取其中一條直線與另一條直線所在平面的交點(diǎn)或異面線段的端點(diǎn).總之,頂點(diǎn)的選擇要與已知量有關(guān),以便于計(jì)算,具體步驟如下: (1)利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點(diǎn)選在特殊的位置上; (2)證明作出的角即為所求角; (3)利用三角形來求解,異面直線所成角的范圍是(0°,90°]. 【易錯點(diǎn)剖析】 1.求異面直線所成的角時,僅指明哪個角,而不進(jìn)行證明. 2.忘記異面直線所成角的范圍,余弦值回答為負(fù)值. 1.利用平面基本性質(zhì)證明“線共點(diǎn)”或“點(diǎn)共線”問題: (1)證明共點(diǎn)問題,常用的方法是:先證其中兩條直線交于一點(diǎn),再證交點(diǎn)在第
10、三條直線上,有時也可將問題轉(zhuǎn)化為證明三點(diǎn)共線. (2)要證明“點(diǎn)共線”可將線看作兩個平面的交線,只要證明這些點(diǎn)都是這兩個平面的公共點(diǎn),根據(jù)公理2可知這些點(diǎn)在交線上,因此共線. 2.異面直線的判定方法:(1)定義法:由定義判斷兩直線不可能在同一平面內(nèi);(2)反證法:用此方法可以證明兩直線是異面直線;(3)判定定理. 3.求異面直線所成的角的步驟: (1)一般是用平移法(可以借助三角形的中位線、平行四邊形等)作出異面直線的夾角; (2)證明作出的角就是所求的角; (3)利用條件求出這個角; (4)如果求出的角是銳角或直角,則它就是要求的角,如果求出的角是鈍角,則它的補(bǔ)角才是要求的角.
11、 (滿分:90分) 一、填空題(每小題6分,共48分) 1.和兩條異面直線都相交的兩條直線的位置關(guān)系是______________. 2.給出下列命題: ①若平面α上的直線a與平面β上的直線b為異面直線,直線c是α與β的交線,那么c至多與a、b中的一條相交;②若直線a與b異面,直線b與c異面,則直線a與c異面;③一定存在平面α同時和異面直線a、b都平行.其中正確的命題為________(填序號). 3. 如圖所示,在正三角形ABC中,D、E、F分別為各邊的中點(diǎn),G、H、I、J分別為AF、AD、BE、DE的中點(diǎn),將△ABC沿DE、EF、DF折成三棱錐以后,GH與IJ所成角的大
12、小為________. 4.(2009·全國Ⅱ改編)已知正四棱柱ABCD—A1B1C1D1中,AA1=2AB,E為AA1的中點(diǎn),則異面直線BE與CD1所成的角的余弦值為________. 5.正四棱錐S—ABCD的側(cè)棱長為,底面邊長為,E為SA的中點(diǎn),則異面直線BE和SC所成的角為________. 6.一個正方體紙盒展開后如圖所示,在原正方體紙盒中有如下結(jié)論: ①AB⊥EF;②AB與CM所成的角為60°;③EF與MN是異面直線;④MN∥CD.則正確結(jié)論的序號是______. 7.下面命題正確的是________(填序號). ①若直線a、b相交,b、c相交,則a、c相交;
13、 ②若a∥b,則a、b與c所成的角相等; ③若a、b與c所成的角相等,則a∥b; ④若a⊥b,b⊥c,則a∥c. 8.在圖中,G、H、M、N分別是正三棱柱的頂點(diǎn)或所在棱的中點(diǎn),則表示直線GH、MN是異面直線的圖形有____________.(填上所有正確答案的序號) 二、解答題(共42分) 9.(14分) 如圖所示,正方體ABCD—A1B1C1D1中,E,F(xiàn)分別是AB和AA1的中點(diǎn). 求證:(1)E,C,D1,F(xiàn)四點(diǎn)共面; (2)CE,D1F,DA三線共點(diǎn). 10.(14分)如圖,在正方體ABCD-A1B1C1D1中,P、Q、M、N分別為AD、A
14、B、C1D1、B1C1的中點(diǎn),求證:A1P∥CN,A1Q∥CM,且∠PA1Q=∠MCN. 11.(14分) 如圖,正方體ABCD—A1B1C1D1的棱長為2,E為AB的中點(diǎn).求異面直線BD1與CE所成的角的余弦值. 學(xué)案39 空間點(diǎn)、線、面之間的位置關(guān)系 答案 自主梳理 1.兩點(diǎn) 這個公共點(diǎn) 不在同一條直線上 一條直線和這條直線外的一點(diǎn) 兩條相交直線 兩條平行直線 2.(1)平行 相交 (2)不經(jīng)過該點(diǎn) (3)①銳角或直角?、凇?.同一條直線 4.相等 自我檢測 1.平行、相交或異面 解析 a
15、,c都與直線b異面,并不能確定直線a,c的關(guān)系. 2.24 3.4,6,7,8 4.60° 解析 將直三棱柱ABC—A1B1C1補(bǔ)成如圖所示的幾何體. 由已知易知:該幾何體為正方體. 連結(jié)C1D,則C1D∥BA1. ∴異面直線BA1與AC1所成的角為∠AC1D(或補(bǔ)角), 在等邊△AC1D中,∠AC1D=60°. 5.④ 課堂活動區(qū) 例1 解題導(dǎo)引 證明線共點(diǎn)的問題實(shí)質(zhì)上是證明點(diǎn)在線上的問題,其基本理論是把直線看作兩平面的交線,點(diǎn)看作是兩平面的公共點(diǎn),由公理2得證. (1)解 ∵==2,∴EF∥AC. ∴EF∥平面ACD.而EF?平面EFGH, 且平面EFG
16、H∩平面ACD=GH,∴EF∥GH. 而EF∥AC,∴AC∥GH. ∴==3,即AH∶HD=3∶1. (2)證明 ∵EF∥GH,且=,=, ∴EF≠GH,∴四邊形EFGH為梯形. 令EH∩FG=P,則P∈EH,而EH?平面ABD, P∈FG,F(xiàn)G?平面BCD,平面ABD∩平面BCD=BD, ∴P∈BD.∴EH、FG、BD三線共點(diǎn). 變式遷移1 證明 ∵E∈AB,H∈AD, ∴E∈平面ABD,H∈平面ABD.∴EH?平面ABD. ∵EH∩FG=O,∴O∈平面ABD. 同理可證O∈平面BCD, ∴O∈平面ABD∩平面BCD, 即O∈BD,∴B、D、O三點(diǎn)共線. 例2 解
17、題導(dǎo)引 證明兩直線為異面直線的方法: 1.定義法(不易操作). 2.反證法:先假設(shè)兩條直線不是異面直線,即兩直線平行或相交,由假設(shè)的條件出發(fā),經(jīng)過嚴(yán)密的推理,導(dǎo)出矛盾,從而否定假設(shè)肯定兩條直線異面.此法在異面直線的判定中經(jīng)常用到. 3.判定定理. 證明 假設(shè)BD和AC不是異面直線,則BD和AC共面,設(shè)它們共面于α. ∴A、B、C、D∈α,∴AB、CD?α,即a、b?α. 這與a、b是異面直線矛盾,故假設(shè)不成立. ∴BD和AC是異面直線. 變式遷移2 ④ 例3 解題導(dǎo)引 高考中對異面直線所成角的考查,一般出現(xiàn)在綜合題的某一步,求異面直線所成角的一般步驟為: (1)平移:選擇適
18、當(dāng)?shù)狞c(diǎn),平移異面直線中的一條或兩條成為相交直線,這里的點(diǎn)通常選擇特殊位置的點(diǎn),如線段的中點(diǎn)或端點(diǎn),也可以是異面直線中某一條直線上的特殊點(diǎn). (2)證明:證明所作的角是異面直線所成的角. (3)尋找:在立體圖形中,尋找或作出含有此角的三角形,并解之. (4)取舍:因?yàn)楫惷嬷本€所成角θ的取值范圍是0°<θ≤90°,所以所作的角為鈍角時,應(yīng)取它的補(bǔ)角作為異面直線所成的角. 答案 解析 如圖,A1D⊥平面ABC,且D為BC的中點(diǎn),設(shè)三棱柱的各棱長為1,則AD=,由A1D⊥平面ABC知A1D=,Rt△A1BD中,易求A1B==. ∵CC1∥AA1,∴AB與AA1所成的角即為AB與C
19、C1所成的角.在△A1BA中,由余弦定理可知cos∠A1AB==.∴AB與CC1所成的角的余弦值為. 變式遷移3 解 如圖所示,分別取AD、CD、AB、BD的中點(diǎn)E、F、G、H,連結(jié)EF、FH、HG、GE、GF. 由三角形的中位線定理知,EF∥AC,且EF=,GE∥BD,且GE=.GE和EF所成的銳角(或直角)就是AC和BD所成的角. 同理,GH∥AD,HF∥BC.GH=,HF=, 又AD⊥BC,∴∠GHF=90°,∴GF2=GH2+HF2=1. 在△EFG中,EG2+EF2=1=GF2, ∴∠GEF=90°,即AC和BD所成的角為90°. 課后練習(xí)區(qū) 1.異面或相交
20、 2.③ 解析?、馘e,c可與a、b都相交; ②錯,因?yàn)閍、c可能相交也可能平行; ③正確,例如過異面直線a、b的公垂線段的中點(diǎn)且與公垂線垂直的平面即可滿足條件. 3.60° 解析 將三角形折成三棱錐,如圖所示,HG與IJ為一對異面直線,過D分別作HG與IJ的平行線, 因GH∥DF,IJ∥AD, 所以∠ADF為所求, 因此HG與IJ所成的角為60°. 4. 解析 如圖所示,連結(jié)A1B,則A1B∥C D1,故異面直線BE與CD1所成的角即為BE與A1B所成的角.設(shè)AB=a,則A1E=a,A1B=a,BE=a. △A1BE中,由余弦定理得 cos∠A1BE=
21、 ==. 5.60° 解析 設(shè)AC與BD的交點(diǎn)為O,則OE∥SC,∴∠BEO(或其補(bǔ)角)即為異面直線BE和SC所成的角, EO=SC=,BO=BD=, 在△SAB中,cos A=== 在△ABE中,cos A=, ∴BE=. 在△BEO中,cos∠BEO==, ∴∠BEO=60°. 6.①③ 解析 把正方體的平面展開圖還原成原來的正方體,如圖所示,易知AB⊥EF,AB∥CM,EF與MN異面,MN⊥CD,故①③正確. 7.② 8.(2)(4) 9.證明 (1)如圖所示,連結(jié)CD1,EF,A1B, ∵E、F分別是AB和AA1的中點(diǎn), ∴EF∥A1B
22、,且EF=A1B,(2分) 又∵A1D1綊BC, ∴四邊形A1BCD1是平行四邊形, ∴A1B∥CD1,∴EF∥CD1, ∴EF與CD1確定一個平面α, ∴E,F(xiàn),C,D1∈α, 即E,C,D1,F(xiàn)四點(diǎn)共面.(6分) (2)由(1)知EF∥CD1,且EF=CD1, ∴四邊形CD1FE是梯形, ∴CE與D1F必相交,設(shè)交點(diǎn)為P,(8分) 則P∈CE?平面ABCD, 且P∈D1F?平面A1ADD1, ∴P∈平面ABCD且P∈平面A1ADD1.(10分) 又平面ABCD∩平面A1ADD1=AD, ∴P∈AD,∴CE,D1F,DA三線共點(diǎn).(14分) 10.證明 如圖所示
23、,在A1B1上取中點(diǎn)K,易知四邊形MKBC為平行四邊形.(3分) ∴CM∥BK. 又∵A1K∥BQ,且A1K=BQ, ∴四邊形A1KBQ為平行四邊形, ∴A1Q∥BK,(9分) 由公理4有A1Q∥MC,(10分) 同理可證A1P∥CN,由于∠PA1Q與∠MCN對應(yīng)邊分別平行,且方向相反. ∴∠PA1Q=∠MCN.(14分) 11.解 延長DC至G,使CG=EB,連結(jié)BG、D1G, ∵CG綊EB, ∴四邊形EBGC是平行四邊形. ∴BG∥EC. ∴∠D1BG就是異面直線BD1與CE所成的角.(6分) 在△D1BG中,D1B=2, BG=,D1G==. ∴cos∠D1BG= ==. ∴異面直線BD1與CE所成角的余弦值是. (14分) 高考數(shù)學(xué)復(fù)習(xí)精品 高考數(shù)學(xué)復(fù)習(xí)精品
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第七章-透射電子顯微鏡
- 群落的結(jié)構(gòu)(課件)
- 焊接基礎(chǔ)知識
- 水文地質(zhì)學(xué)課件
- 某公司員工工傷安全管理規(guī)定
- 消防培訓(xùn)課件:安全檢修(要點(diǎn))
- 某公司安全生產(chǎn)考核與獎懲辦法范文
- 安全作業(yè)活動安全排查表
- 某公司危險源安全辨識、分類和風(fēng)險評價、分級辦法
- 某公司消防安全常識培訓(xùn)資料
- 安全培訓(xùn)資料:危險化學(xué)品的類別
- 中小學(xué)寒假學(xué)習(xí)計(jì)劃快樂度寒假充實(shí)促成長
- 紅色插畫風(fēng)輸血相關(guān)知識培訓(xùn)臨床輸血流程常見輸血不良反應(yīng)
- 14.應(yīng)急救援隊(duì)伍訓(xùn)練記錄
- 某公司各部門及人員安全生產(chǎn)責(zé)任制