購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載就能得到。。?!咀ⅰ浚篸wg后綴為CAD圖,doc,docx為WORD文檔,【有不明白之處,可咨詢QQ:1304139763】
附件 1 外文資料翻譯譯文 CNC 和 PLC 他們對于機床是同一概念嗎 摘要 設計一個計算機數(shù)字控制器 CNC 傳統(tǒng)做法是將裝置分為三個實體 一個可 編程控制器 PLC 一個可以稱之為 CNC 控制器 CNCD 的黑盒子 一個包含 CNC 軸向控制器和可以簡單描述為軸向實體的合成體 我們將指出這一機構的缺點 展示一種新機構并介紹他的優(yōu)勢所在 最后 在對比傳統(tǒng) PLC 和新機構之后 我 們認為 CNC 就是一種改進的 PLC PLC 裝置 傳統(tǒng)的可編程控制器 PLC 是基于兩個主要模塊 控制臺和執(zhí)行器 控制臺 向操作者提供了一個交互式設計的人機界面 由于這個原因 他不能實現(xiàn)實時約 束 執(zhí)行器控制基本任務的時序以使 PLC 工作和確保相關的時間約束 執(zhí)行器啟 動并管理不同的循環(huán)周期 控制臺的目標是人機界面而執(zhí)行器的目標是時序安排 可以這樣說 在大多數(shù)情況下 PLC 的主要目標是在沒有控制臺的情況下單機運行 CNC 使用的分類 CNC 對所有機床的應用本質上分為三個不同的種類 本地使用 直接數(shù)字化控 制 DNC 和遠程使用 在本地使用中 操作者在機床附近 他直接輸入命令 通過按下按鈕來控制 機床和加工過程 他也可以創(chuàng)建和修改刀具描述符和零件加工程序 這些是以 CNC 的標準代碼或類似代碼寫入的 在這一背景下 對零件的設計和輔助制造也是可能的 盡管此類活動顯得與 機床周圍糟糕的環(huán)境質量 比如噪音 高溫 灰塵 格格不入 DNC 直接數(shù)字化控制 使用 添加了從主機下載 向主機上傳 零件加工程序 的功能 主機匯集了零件加工程序 可以被看作是一個文件服務器 這些操作仍 然完全在位于機床附近的人工操作員的控制下 在某些情況下 在遠距離的操作 者之間可能會使用郵件服務器 這一類 CNC 使用方式 除了能向服務器傳輸零件 加工程序和刀具描述符之外 與前一種使用并沒有本質上的不同 第三種使用方式與柔性化加工有關而且可以自我說明 它向 CNC 提供完全的 遠程控制 CNC 必須可以控制和調節(jié)刀具和零件 可以發(fā)送收集到的足夠的內部信 息來報告 CNC 運作狀態(tài) CNC 也要可以接受控制指令并最終實現(xiàn)與外部程序的同步 所有這些新功能帶來了一些重要的需要定義的問題 比如 任務概念 備注 88 但 由于這些并非本論文的主要目的 此處不再贅述 從第三類使用中 得到的一個 重要事實是 在柔性化制造中 由于人工操作者只在有維護任務時才直接面對 CNC 所以對 CNC 來說人機交互界面變得無用了 事實上 在一個柔性化的制造環(huán) 境中 操作 CNC 的必需部分只是執(zhí)行器 現(xiàn)在我們可以說我們的主要目標就是找到一種可以滿足以上三種使用方式的 體系 CNC 設計修改 雙體結構 之前的設計思路將整個 CNC 劃分成兩個主要的部分 控制臺和執(zhí)行器 控制 臺的目的是作為一個精細的人機交互界面或改進的終端 執(zhí)行器的目的是控制加 工過程 嚴格意義上說 在柔性制造環(huán)境中 控制臺不是必須的 事實上所有 CNC 控制和決策的的智能是集中在控制器上的 因此創(chuàng)建了一種只帶有開 閉開關和急 停按鈕的黑盒子 控制臺和執(zhí)行器應具備哪些具體功能 怎樣選擇必須有一些表 述清楚的標準 控制臺的基本要求包括下列的功能 顯示加工參數(shù) 以 CNC 標準代碼生成 顯示和編輯零件加工程序 生成 顯示和編輯刀具描述符 對零件編程提供圖形幫助工具 以永久形式存儲 硬盤 零件加工程序和刀具描述符 在 CNC 設置階段能輔助自動調節(jié)并顯示狀態(tài) 調整軸向控制器的參數(shù) 設置執(zhí)行器的設置參數(shù) 向執(zhí)行器載入工作指令 為日后分析顯示和存儲統(tǒng)計信息 運行預設的測試程序以便執(zhí)行器為今后追逐已報告過的問題提供診斷計劃 可以打印出所有顯示或存儲的信息 建造一個控制臺的最常用方式是選擇一個微電腦 微電腦的操作系統(tǒng)和繪圖 工具箱搭載適當軟件后能夠滿足先前提到的要求 作為一個獨立的單元 控制臺 可以很容易的獨立于執(zhí)行器進行升級 以跟上加工方式的新發(fā)現(xiàn) 比如新的人機 界面理念 和新的技術革新 比如新的具有更好性能的硬件 此外 讓控制臺獨 立是通用化控制臺設計的第一步 這種狀況下的分析和對錯誤的診斷沒有進行錯誤分析的基礎上 我們可以對 CNC 和 PLC 來說 控制臺扮演著相同的角色 在柔性化制造環(huán)境中 沒有操作員 機床獨立工作 執(zhí)行器包含所有適用于 柔性化制造環(huán)境所需要的功能 更準確地說 執(zhí)行器的功能有以下三個基本要求 執(zhí)行要求 將以 CNC 標準代碼寫成的零件加工程序翻譯為機床可以理解和處理的中介代 碼 根據加工程序所選的機床修正加工軌跡 管理不同加工步驟地序列 控制輔助部件 如潤滑液 換刀裝置 生成加工軌跡 控制軸向進給 與現(xiàn)場總線 如果存在 通信 管理要求 在加工過程中 以合適的方式存儲當前和下一步任務 以更新機床描述符 比如更新加工時間信息數(shù)據 以半永久方式存儲設置參數(shù) 更新和管理包含標記為報告事件信息的日志 在適當時間進行自動診斷 獨立工作所需的附加要求 與管理計算機通信 探測刀具損壞 測量刀具磨損 確認刀具 管理和識別托盤 確認和測量加工零件 這些要求顯示執(zhí)行器幾乎受制于硬件的實時約束 與控制臺相反 由于執(zhí)行 器內在的復雜性 CNC 設計的訣竅就在于執(zhí)行器 處理這一部分必須小心 尤其在 設計它的結構時 分析到這一步 有人會說網絡作為第三方 顯然就是 DNC 或遠程控制使用 事實上 考慮到類似加工自動化協(xié)議 MAP 這樣的網絡 潛在的復雜性和稱作加 工信息規(guī)范 MMS 的應用層所提供的服務似乎會帶領我們闡述這個命題 但即便 如此 這個想法不在本論文范圍之列 執(zhí)行器設計 傳統(tǒng) 方式 設計一個計算機數(shù)字控制器 CNC 的傳統(tǒng)方式是裝置分為三個實體 一個可 編程控制器 PLC 一個可以稱之為 CNC 控制器 CNCD 一個包含 CNC 軸向控制 器 PLC 的主要功能是管理不同的機床附件 軸 潤滑液 CNCD 的主要任務 是翻譯 CNC 國際標準代碼 向軸向控制器輸出移動量 以及處理操作者的動作并 執(zhí)行 PLC 和 CNCD 每個都包含 CNC 的一部分 單獨任何一個都不能進行 CNC 的控 制 他們共同控制整個 CNC 為了獲得一個控制命令 觸發(fā)器 可以是 PLC 或者 CNCD 必須知道整個 CNC 系統(tǒng)的狀態(tài) 因此 PLC 和 CNCD 共享狀態(tài)數(shù)據 這些數(shù) 據處于一個公共的雙通道存儲器中 或者 在處于最差的情況下 這些數(shù)據一直 不斷在 PLC 和 CNCD 間交換 因而 這信息交換所需要的高速數(shù)據傳輸率會造成嚴 重阻塞 因為傳輸?shù)奈锢斫橘| 通常是專用總線 必須有十分先進的性能 通常 只有十分尖端的技術才能達到 1984 年 瑞士聯(lián)邦理工學院開始研發(fā) CNC 系統(tǒng)原 型時 這一現(xiàn)象不十分明顯 在 1987 年 7 月 他們設計并實現(xiàn)了第一臺基于 傳 統(tǒng) CNC 體系的原型 在那時 進一步的分析發(fā)現(xiàn) 這個系統(tǒng)原型有著嚴重的信息 傳輸問題 因此 他們決定重新設計這個體系 并且研制第二個原型 驗證些新 出現(xiàn)的想法 在深入研究信息傳輸問題之后 他們著手開始工作 執(zhí)行者 PLC 核心 一個主要基于 Gregotre87 和 Gregotre89 理論的研究表明 執(zhí)行中心可以 設計成一個大型的有限狀態(tài)機 時序安排呼叫服務 圖 1 相比于傳統(tǒng)的體系相 比 單實體控制執(zhí)行 執(zhí)行狀態(tài)整體集中于這個單實體中 這個方法解決了先前 所提到的共有數(shù)據問題 圖 1 FSM 的作用在于 保證了不同服務器之間的同步問題 FSM 控制執(zhí)行并且建立 了強勁的結構 它可以在任何時候做出準確的決定 使適當?shù)姆掌鞴ぷ?從執(zhí) 行的角度看整個 FSM 可以被認為是一種 PLC 的核心 服務器是一種相當獨立的程序實體 有著自己的數(shù)據結構 也可以與其他服 務器共享 并且擁有代表服務器狀態(tài)的數(shù)據信息 從原理上講 每臺服務器 應 該由自己的處理器執(zhí)行指令 然而 一些實際理念上 遵循的是編組原則 即將 一些服務器編為一組 然后分配給每一組一個單獨的處理器 實際上 服務器概 念所包含的內容比它本身更廣泛 它包括所有 CNC 執(zhí)行所能找到的所有任務 例 如 將部分用 ISO 編碼寫的程序翻譯成中間碼 出于工具尺寸和磨損問題的考慮 更正軌跡 進給和控制軸板塊 設備數(shù)據設置管理 恢復與存儲 其中一些服務器運行十分繁重的計算程序 給執(zhí)行這些程序的執(zhí)行器造成很 大的負載系數(shù) 這主要是由于這些服務器用數(shù)字運算 如刀具修正器 或者分列 運算法 如 ISO 編譯器 由于性能原因 一個特定程序執(zhí)行可以將任務分配到高 速的特殊控制板和復雜的硬件 假定這些控制板存在于 PLC 擴展板范圍中 只需 要一個軟件去調試 所以 現(xiàn)在的 PLC 硬件經過少許的調整 就可以重新使用 服務器 的準確定義是研究中新的焦點領域 可以假設 為了更精確 每一 個服務器的規(guī)范必須是正式的 由于服務器可以視為 CNC 可再使用部件的種類 有一些要求必須注意 而 FSM 集合了這些 這也可能引導正式的技術描述 實踐執(zhí)行 為了證實我們的理論 我們計劃在第二個 CNC 原型中執(zhí)行新提出體系 所選 用的程序語言為 ADA 因為它程序穩(wěn)定 并且簡便 全面的項目設計按照 OO 論執(zhí) 行 在所有的設計方法中 這是最適合 ADA 所有的功能 軟件的功能實體分部在遵循以下表中要求的硬件中 控制臺 IBM 的 PC VME 板 可能在將來被 UNIX 工作站代替 它可以執(zhí)行所有控制臺的 功能 執(zhí)行 MOTOROLA MVME 133 XT cpu 板 MC68020 25MHz 用于控制臺的通訊和耗時 服務 ISO 編譯器 修正工具和 MSD 管理 MOTOROLA MVME 133 XT cpu 板 MC68020 25MHz 用于 FSM 執(zhí)行 輔助設備與現(xiàn) 場總線的通訊 一些 MOTOROLA MVME 133 XT cpu 板 MC68020 25MHz 用于軸的分類機 每一個板塊執(zhí)行一個以上分類機 確切的數(shù)量視結構而定 這些板塊支持軸的服 務器 一些 TMS320C25 板塊 用于軸控制器 這些板塊 在日后升級之后被取消 由特 殊的數(shù)字伺服控制器代替 一個管理所有加工刀具傳感器和制動器的現(xiàn)場總線板塊 與軸有關的除外 這些最新的約束 暫時的 是由于現(xiàn)場總線存在與軸控制要求時間的延遲 詳情 可參考 baguette et al 91 所有的硬件集中在 VME 架上 所有的板塊通過同一個總線連接 因此所有執(zhí) 行板塊的信息交流通過共享內存 服務器的響應 使用一種特定的遠程程序響應 這是專門為實現(xiàn)實時控制研發(fā)的 這個運行在主執(zhí)行板塊 FSM 的軟件和一種 PLC 中心軟件十分相似 所以 這個板塊可以方便的用 PLC 來替換 上述關于軸的分布式差補的要求不會產生與我們第一個原型一樣的問題 因 為 我們已經采用了分散分類機 它執(zhí)行著如 Debourse87 所描述的概念 只 需要升級和調整 如 Decotignie91 所描述的 在寫這篇論文的時候 第二臺原型機已經處于測試階段 但已經達到完全的 功能 結論 新介紹的 CNC 體系結構與傳統(tǒng)的 PLC 體系結構相比 有很多的相似之處 這 證明了 CNC 也是一種 PLC 或者 更確切點說 是一種進化了的 PLC 因為它有著 許多更高級的功能 實際上 這個新的體系結構可以和一個 PLC 中心一起執(zhí)行命 令 一個帶有可視為協(xié)處理器的 CPU 板 隸屬于 PLC 中心 執(zhí)行服務軟件 和 PLC 標準軸板塊執(zhí)行分散分類機軟件 附件 2 外文原文 復印件 寧 XX 大學 畢 業(yè) 設 計 論 文 臥式升降臺主傳動系統(tǒng)設計 所 在 學 院 專 業(yè) 班 級 姓 名 學 號 指 導 老 師 年 月 日 II 摘 要 本設計著重研究臥式銑床主傳動系統(tǒng)的設計步驟和設計方法 根據已確定的運動 參數(shù)以變速箱展開圖的總中心距最小為目標 擬定變速系統(tǒng)的變速方案 以獲得最優(yōu) 方案以及較高的設計效率 在機床主傳動系統(tǒng)中 為減少齒輪數(shù)目 簡化結構 縮短 軸向尺寸 用齒輪齒數(shù)的設計方法是試算 湊算法 計算麻煩且不易找出合理的設計 方案 本文通過對主傳動系統(tǒng)中三聯(lián)滑移齒輪傳動特點的分析與研究 繪制零件工作 圖與主軸箱展開圖及剖視圖 關鍵詞 傳動系統(tǒng)設計 傳動副 結構網 結構式 III Abstract The design focuses on the design steps and design method for horizontal milling machine main drive system according to the movement determined parameters to the gearbox developed view of the total center distance as the objective to develop the program shift transmission system to obtain the optimal solution as well as more high design efficiency In the machine tool main drive in order to reduce the number of gear structure is simplified shorter axial dimension with the gear design approach is a spreadsheet hash algorithm to calculate cumbersome and difficult to find a reasonable design Based on the main drive system features triple sliding gear analysis and research working drawings and drawing parts headstock developed view and a sectional view Keywords transmission system design transmission deputy network architecture structure IV 目 錄 摘 要 II Abstract III 目 錄 IV 第 1 章 緒論 1 第 2 章 銑床參數(shù)的擬定 2 2 1 銑床主參數(shù)和基本參數(shù) 2 2 2 確定級數(shù)主要其他參數(shù) 2 2 2 1 擬定主軸的各級轉速 2 2 2 2 主電機功率 動力參數(shù)的確定 2 2 2 3 確定結構式 2 2 2 4 確定結構網 4 2 2 5 繪制轉速圖和傳動系統(tǒng)圖 4 2 3 確定各變速組此論傳動副齒數(shù) 6 第 3 章 傳動件的計算 9 3 1 帶傳動設計 9 3 1 1 計算設計功率 Pd 9 3 1 2 選擇帶型 10 3 1 3 驗證帶速并確定帶輪的基準直徑 10 3 1 4 確定中心距離 帶的基準長度并驗算小輪包角 11 3 1 5 確定帶的根數(shù) z 12 3 1 6 確定帶輪的結構和尺寸 12 3 1 7 確定帶的張緊裝置 12 3 1 8 計算壓軸力 13 3 2 計算轉速的計算 14 3 3 齒輪模數(shù)計算及驗算 15 3 4 傳動軸最小軸徑的初定 18 第 4 章 主要零部件的選擇 20 V 4 1 軸承的選擇 20 4 2 鍵的規(guī)格 20 4 3 主軸彎曲剛度校核 20 4 4 軸承校核 21 4 5 潤滑與密封 21 第 5 章 摩擦離合器 多片式 的計算 22 5 1 結構設計 23 5 1 1 展開圖設計 23 5 1 2 截面圖及軸的空間布置 24 5 2 零件驗算 24 5 2 1 主軸剛度 24 5 2 2 傳動軸剛度 29 5 2 3 齒輪疲勞強度 32 第 6 章 主軸箱結構設計及說明 35 6 1 結構設計的內容 技術要求和方案 35 6 2 展開圖及其布置 35 結束語 36 參考文獻 37 1 第 1 章 緒論 機床技術參數(shù)有主參數(shù)和基本參數(shù) 他們是運動傳動和結構設計的依據 影響到 機床是否滿足所需要的基本功能要求 參數(shù)擬定就是機床性能設計 主參數(shù)是直接反 映機床的加工能力 決定和影響其他基本參數(shù)的依據 如車床的最大加工直徑 一般 在設計題目中給定 基本參數(shù)是一些加工件尺寸 機床結構 運動和動力特性有關的 參數(shù) 可歸納為尺寸參數(shù) 運動參數(shù)和動力參數(shù) 通用車床工藝范圍廣 所加工的工件形狀 尺寸和材料各不相同 有粗加工又有 精加工 用硬質合金刀具又用高速鋼刀具 因此 必須對所設計的機床工藝范圍和使 用情況做全面的調研和統(tǒng)計 依據某些典型工藝和加工對象 兼顧其他的可能工藝加 工的要求 擬定機床技術參數(shù) 擬定參數(shù)時 要考慮機床發(fā)展趨勢和同國內外同類機 床的對比 使擬定的參數(shù)最大限度地適應各種不同的工藝要求和達到機床加工能力下 經濟合理 機床主傳動系因機床的類型 性能 規(guī)格和尺寸等因素的不同 應滿足的要求也 不一樣 設計機床主傳動系時最基本的原則就是以最經濟 合理的方式滿足既定的要 求 在設計時應結合具體機床進行具體分析 一般應滿足的基本要求有 滿足機床使 用性能要求 首先應滿足機床的運動特性 如機床主軸油足夠的轉速范圍和轉速級數(shù) 滿足機床傳遞動力的要求 主電動機和傳動機構能提供足夠的功率和轉矩 具有較高 的傳動效率 滿足機床工作性能要求 主傳動中所有零部件有足夠的剛度 精度和抗 震性 熱變形特性穩(wěn)定 滿足產品的經濟性要求 傳動鏈盡可能簡短 零件數(shù)目要少 以便節(jié)約材料 降低成本 題目 臥式升降臺主傳動系統(tǒng)設計 參數(shù) 規(guī)格尺寸 和基本參數(shù)如下 1 X6132 萬能升降臺銑床主軸箱設計 電機額定功率 p 4kw nmin 33 5r min nmax 1320r min 轉速級數(shù) z 17 電動機轉速 no 1440r min 公 比 1 26 2 第 2 章 銑床參數(shù)的擬定 2 1 銑床主參數(shù)和基本參數(shù) 銑床的主參數(shù) 規(guī)格尺寸 和基本參數(shù)如下 2 X6132 萬能升降臺銑床主軸箱設計 電機額定功率 p 4kw nmin 33 5r min nmax 1320r min 轉速級數(shù) z 17 電動機轉速 no 1440r min 公 比 1 26 2 2 確定級數(shù)主要其他參數(shù) 2 2 1 擬定主軸的各級轉速 依據題目要求選級數(shù) Z 17 1 26 1 064考慮到設計的結構復雜程度要適中 故 采用常規(guī)的擴大傳動 各級轉速數(shù)列可直接從標準的數(shù)列表中查出 按標準轉速數(shù)列 為 33 5 42 5 53 67 85 106 132 5 170 212 267 335 425 535 670 850 1060 13 20 2 2 2 主電機功率 動力參數(shù)的確定 合理地確定電機功率 N 使機床既能充分發(fā)揮其性能 滿足生產需要 又不致使電 機經常輕載而降低功率因素 根據題設條件電機功率為 4KW 可選取電機為 Y112M 4 額定功率為 4KW 滿載轉 速為 1440r min 2 2 3 確定結構式 對于 Z 17 可按照將主軸轉速級數(shù) 分解因子 可能的方案有 18Z 第一行 9218 29 第二行 3332 在上面的兩行方案中 第一行方案是由 11 對傳動副組成的兩個變速組 這兩個變 速組串聯(lián)構成了主軸的 17 級轉速 這樣的方案能夠省掉一根軸 但有一個傳動組內將 出現(xiàn) 9 個傳動副 假如用一個九聯(lián)滑移齒輪 那么軸向尺寸會增大 假如采用若干個 雙聯(lián)滑移齒輪與若干個三聯(lián)滑移齒輪組合使用 那么 為了防止各滑移齒輪同時嚙合 3 操縱機構必須實現(xiàn)互鎖 綜上所述 第一行中的方案一般不采用 對于第二行中的三個方案 將出現(xiàn)三個變速組 每個變數(shù)組中有 2 個或者 3 個傳 動副 我們能夠采用雙聯(lián)或者三聯(lián)滑移齒輪來變速 該行方案中總的傳動副數(shù)最少 軸向尺寸較小 操縱機構也相對簡單 因此 在主軸轉速為 18 級的分級變速系統(tǒng)設計 中 通常采用第二行中的方案 根據公式 可得 傳動件所傳遞的功率 P 與它的計算轉速 決定了傳cnPT 950 cn 遞轉矩 T 一般情況下 從電動機到主軸為降速傳動 即所謂的 近電機高轉速 從 而計算轉速 也較高 那么需要傳遞的轉矩就較小 尺寸也較小 根據傳動副的 前cn 多后少 原則 即將傳動副較多的變速組安排在靠近電動機處 這樣可以多些小尺寸 的零件 少些大尺寸的零件 不僅可以節(jié)省材料 還可以使變速箱結構緊湊 因此 對于第二行中的三種方案 我們通常采用 的方案 它表示該傳動系統(tǒng)是由2318 3 個變速組共 8 對傳動副組成 不包含可能的定比傳動副 在方案 中 由于基本組與擴大組之間的排列順序不同 又將衍生出 6231 種不同的方案 6 種方案的結構式如下 1 1268 2 31628 3 16218 4 31 5 9 6 93 在這 6 個方案中 首先應對各個方案變速組的變速范圍進行驗算 在一般情況下 變速范圍最大的是最后一個擴大組 所以只需要對最后一個擴大組的變速范圍進行校 驗 設計機床的變速系統(tǒng)中 在降速傳動時 為了避免從動齒輪的直徑過大而使徑向 尺寸隨之增大 通常使傳動副的最小傳動比 在升速傳動中 防止產生過大4 1min 的噪聲與震動 通常使傳動副的最大傳動比 對于斜齒圓柱齒輪傳動比較平穩(wěn) 2ax 所以取 故 在一般情況下變速組的變速范圍應滿足以下條件 5 2max i 10 8 minax r 在 這四種方案中 最后一個擴大組都是 其變速范圍 1 2 3 4 63 max6 13 13 1 226 2 rrxp 4 所以不滿足傳動組的極限變速范圍要求 在 這兩種方案中 最后一個擴大組都是 其變速范圍 5 6 92 826 19 22 xpr 滿足傳動組的極限變速范圍要求 根據中間軸變速范圍最小的原則 即 前密后疏 方案 為最佳方案 結構式為 5 9318 2 2 4 確定結構網 畫出結構網如下 變速系統(tǒng)共需 4 根軸 其中 軸為主軸 133 92 圖 3 1 結構網 2 2 5 繪制轉速圖和傳動系統(tǒng)圖 1 選擇電動機 采用 Y 系列封閉自扇冷式鼠籠型三相異步電動機 2 繪制轉速圖 5 3 畫主傳動系統(tǒng)圖 根據系統(tǒng)轉速圖及已知的技術參數(shù) 畫主傳動系統(tǒng)圖如圖 2 3 1 2 軸最小中心距 A 1 2min 1 2 Zmaxm 2m D 軸最小齒數(shù)和 S zmin Zmax 2 D m 6 圖 2 3 主傳動系統(tǒng)圖 2 3 確定各變速組此論傳動副齒數(shù) 1 Sz 100 120 中型機床 Sz 70 100 2 直齒圓柱齒輪 Zmin 18 20 7 齒輪齒數(shù)的確定 變速組內取模數(shù)相等 據設計要求 Zmin 18 20 齒數(shù)和 Sz 100 120 由表 4 1 根據各變速組公比 可得各傳動比和齒輪齒數(shù) 各齒輪齒數(shù) 如表 2 2 1 確定各變速組內齒輪齒數(shù) 由以上確定的各個傳動比 根據參考文獻 1 表 5 2 有 a 變速組 1 a1i1 26ia2 1 58i2a3 時 58 60 62 64 66 68 70 72 74 76 a1zS 時 56 59 61 63 65 66 68 70 72 74 26ia z 7 時 57 59 60 62 65 67 70 72 73 75 1 58ia3 zS 可知 70 和 72 是共同適用的 可取 72 再由參考文獻 1 表 5 2 查出各z zS 對齒輪副中小齒輪的齒數(shù)為 36 32 和 28 則 28 4i3a 32 40zi2a 32 40i2a1 b 變速組 2 1 6b 1 58b2 3 175b3 時 70 72 74 75 77 79 81 82 83 84 2ib1 zS 時 70 72 73 75 77 78 80 82 83 85 58b2z 時 66 67 70 71 75 79 80 83 84 87 317ib zS 可取 83 查出齒輪齒數(shù)為 37 32 和 20 zS 46 37i2b1 32 51zi2b 20 63zi3b c 變速組 3 41i6c1 12i3c2 時 80 84 85 95 96 99 100 104 105 c1zS 時 92 93 95 96 98 99 101 102 104 2ic z 可取 99 查出齒輪齒數(shù)為 24 和 33 則 zS 24 75ic1 6 3zi2c2 8 9 第 3 章 傳動件的計算 3 1 帶傳動設計 輸出功率 P 4kW 轉速 n1 1440r min n2 670r min 3 1 1 計算設計功率 Pd edAdPK 表 3 3 工作情況系數(shù) AK 原動機 類 類 一天工作時間 h工作機 10 10 16 16 0 10 16 16 載荷 平穩(wěn) 液體攪拌機 離心式水泵 通風機和鼓風機 離心式壓縮機 7 5kW 輕型運輸機 1 0 1 1 1 2 1 1 1 2 1 3 載荷 變動小 帶式運輸機 運送砂石 谷物 通風機 發(fā)電機 旋7 5k 轉式水泵 金屬切削機床 剪床 壓力機 印刷機 振動篩 1 1 1 2 1 3 1 2 1 3 1 4 載荷 變動較 大 螺旋式運輸機 斗式上料 機 往復式水泵和壓縮機 鍛錘 磨粉機 鋸木機和 木工機械 紡織機械 1 2 1 3 1 4 1 4 1 5 1 6 載荷 變動很 大 破碎機 旋轉式 顎式等 球磨機 棒磨機 起重機 挖掘機 橡膠輥壓機 1 3 1 4 1 5 1 5 1 6 1 8 10 根據 V 帶的載荷平穩(wěn) 兩班工作制 16 小時 查 機械設計 P 296表 4 取 KA 1 1 即 1 4 kWdAedPK 3 1 2 選擇帶型 普通 V 帶的帶型根據傳動的設計功率 Pd 和小帶輪的轉速 n1 按 機械設計 P297 圖 13 11 選取 圖 3 2 根據算出的 Pd 4 4kW 及小帶輪轉速 n1 1440r min 查圖得 d d 80 100 可知 應選取 A 型 V 帶 3 1 3 驗證帶速并確定帶輪的基準直徑 由 機械設計 P 298表 13 7 查得 小帶輪基準直徑為 80 100mm 則取 dd1 100mm ddmin 75 mm d d1根據 P295表 13 4 查得 表 3 4 V 帶帶輪最小基準直徑 mind 槽型 Y Z A B C D Emind 20 50 75 125 200 355 50021 240 1 0 14 267dd 由 機械設計 查 V 帶輪的基準直徑 得 200mm2d 11 誤差驗算傳動比 為彈性滑動率 210 2 41 1 di 誤 誤差 符合要求1 04 5i 誤 帶速 113v 7 606dnms 滿足 5m s v300mm 所以宜選用 E 型輪輻式帶輪 總之 小帶輪選 H 型孔板式結構 大帶輪選擇 E 型輪輻式結構 帶輪的材料 選用灰鑄鐵 HT200 3 1 7 確定帶的張緊裝置 選用結構簡單 調整方便的定期調整中心距的張緊裝置 13 3 1 8 計算壓軸力 由 機械設計 P303 表 13 12 查得 A 型帶的初拉力 F0 123 31N 上面已得到 165 17o z 3 則1a 1a165 72sin 32 sinN 3 62ooFz 對帶輪的主要要求是質量小且分布均勻 工藝性好 與帶接觸的工作表面加工精度要 高 以減少帶的磨損 轉速高時要進行動平衡 對于鑄造和焊接帶輪的內應力要小 帶輪由輪緣 腹板 輪輻 和輪轂三部分組成 帶輪的外圈環(huán)形部分稱為輪緣 輪緣 是帶輪的工作部分 用以安裝傳動帶 制有梯形輪槽 由于普通 V 帶兩側面間的夾角 是 40 為了適應 V 帶在帶輪上彎曲時截面變形而使楔角減小 故規(guī)定普通 V 帶輪槽 角 為 32 34 36 38 按帶的型號及帶輪直徑確定 輪槽尺寸見表 7 3 裝在軸上的筒形部分稱為輪轂 是帶輪與軸的聯(lián)接部分 中間部分稱為輪幅 腹板 用來聯(lián)接輪緣與輪轂成一整體 槽型 項目 符號 Y Z A B C D E 基準寬度 b p 5 3 8 5 11 0 14 0 19 0 27 0 32 0 基準線上槽深 h amin 1 6 2 0 2 75 3 5 4 8 8 1 9 6 基準線下槽深 h fmin 4 7 7 0 8 7 10 8 14 3 19 9 23 4 槽間距 e 8 0 3 12 0 3 15 0 3 19 0 4 25 5 0 5 37 0 6 44 5 0 7 第一槽對稱面 至端面的距離 f min 6 7 9 11 5 16 23 28 14 最小輪緣厚 5 5 5 6 7 5 10 12 15 帶輪寬 B B z 1 e 2 f z 輪槽數(shù) 外徑 d a 32 60 34 80 118 190 315 36 60 475 600 38 對應的 基準直 徑 d d 80 118 190 315 475 600 輪 槽 角 極限偏差 1 0 5 表 3 7 普通 V 帶輪的輪槽尺寸 摘自 GB T13575 1 92 V 帶輪按腹板 輪輻 結構的不同分為以下幾種型式 1 實心帶輪 用于尺寸較小的帶輪 dd 2 5 3 d 時 如圖 3 2a 2 腹板帶輪 用于中小尺寸的帶輪 dd 300mm 時 如圖 3 2b 3 孔板帶輪 用于尺寸較大的帶輪 dd d 100 mm 時 如圖 3 3c 4 橢圓輪輻帶輪 用于尺寸大的帶輪 dd 500mm 時 如圖 3 3d a b c d 圖 3 3 帶輪結構類型 根據設計結果 可以得出結論 小帶輪選擇實心帶輪 如圖 a 大帶輪選擇腹板帶輪如圖 b 3 2 計算轉速的計算 1 主軸的計算轉速n j 由公式 n n 得 主軸的計算轉速n j 127 031r min jmi 13 z 取100r min 2 傳動軸的計算轉速 15 軸3 400 r min 軸2 630 r min 軸1 800r min 2 確定各傳動軸的計算轉速 表 3 1 各軸計算轉速 3 確定齒輪副的計算轉速 3 2 表 3 2 齒輪副計算轉速 序號 Z1Z 2Z3Z 4Z5 n j800 800 630 630 400 3 3 齒輪模數(shù)計算及驗算 1 模數(shù)計算 一般同一變速組內的齒輪取同一模數(shù) 選取負荷最重的小齒輪 按 簡化的接觸疲勞強度公式進行計算 即 mj 16338 可得各組的模數(shù) 如321 jjmnuzP 表 3 3 所示 表 3 3 模數(shù) 2 基本組齒輪計算 基本組齒輪幾何尺寸見下表 齒輪 Z1 Z1 Z2 Z2 Z3 Z3 齒數(shù) 32 40 28 56 24 48 分度圓直徑 96 120 84 168 72 144 軸 號 軸 軸 軸 計算轉速 r min 800 630 400 組號 基本組 第一擴大組 第二擴大組 模數(shù) mm 3 3 3 5 16 齒頂圓直徑 102 126 90 174 78 150 齒根圓直徑 88 5 112 5 76 5 160 5 64 5 136 5 齒寬 24 24 24 24 24 24 按基本組最小齒輪計算 小齒輪用 40Cr 調質處理 硬度 241HB 286HB 平均取 260HB 大齒輪用 45 鋼 調質處理 硬度 229HB 286HB 平均取 240HB 計算如下 齒面接觸疲勞強度計算 接觸應力驗算公式為 jfsj MPauBnNKzm 1 02832 彎曲應力驗算公式為 wswPaBYnz 10923 5 式中 N 傳遞的額定功率 kW 這里取 N 為電動機功率 計算轉速 r min jn m 初算的齒輪模數(shù) mm m 3 mm B 齒寬 mm z 小齒輪齒數(shù) u 小齒輪齒數(shù)與大齒輪齒數(shù)之比 壽命系數(shù) sK sTnNKq 工作期限系數(shù) T 17 mTCnK016 T 齒輪工作期限 這里取 T 15000h 齒輪的最低轉速 r min 1n 基準循環(huán)次數(shù) 接觸載荷取 彎曲載荷取 0C0C710C612 m 疲勞曲線指數(shù) 接觸載荷取 m 3 彎曲載荷取 m 6 轉速變化系數(shù) 查 5 2 上 取 0 60nKnK 功率利用系數(shù) 查 5 2 上 取 0 78N N 材料強化系數(shù) 查 5 2 上 0 60q q 工作狀況系數(shù) 取 1 13K3K 動載荷系數(shù) 查 5 2 上 取 12 齒向載荷分布系數(shù) 查 5 2 上 1 1 1K Y 齒形系數(shù) 查 5 2 上 Y 0 386 許用接觸應力 MPa 查 4 表 4 7 取 650 Mpa j j 許用彎曲應力 MPa 查 4 表 4 7 取 275 Mpa w w 根據上述公式 可求得及查取值可求得 635 Mpa j j 78 Mpaww 3 擴大組齒輪計算 第一擴大組 齒輪幾何尺寸見下表 齒輪 Z4 Z4 Z5 Z5 Z6 Z6 18 齒數(shù) 46 37 32 51 20 63 分度圓直徑 138 111 96 153 60 189 齒頂圓直徑 144 117 102 159 66 195 齒根圓直徑 130 5 103 5 88 5 145 5 52 5 181 5 齒寬 24 24 24 24 24 24 第二擴大組齒輪幾何尺寸見下表 齒輪 Z5 Z5 Z6 Z6 齒數(shù) 66 33 24 75 分度圓直徑 231 115 5 84 262 5 齒頂圓直徑 238 122 5 91 269 5 齒根圓直徑 222 25 106 75 75 25 253 75 齒寬 24 24 24 24 按擴大組最小齒輪計算 小齒輪用 40Cr 調質處理 硬度 241HB 286HB 平 均取 260HB 大齒輪用 45 鋼 調質處理 硬度 229HB 286HB 平均取 240HB 同理根據基本組的計算 查文獻 6 可得 0 62 0 77 0 60 1 1 nKNqK3 1 1 m 3 5 355 2K1j 可求得 619 Mpa j j 135Mpa ww 3 4 傳動軸最小軸徑的初定 由 5 式 6 傳動軸直徑按扭轉剛度用下式計算 19 d 1 64 mm 4 Tn 或 d 91 mm 4njN 式中 d 傳動軸直徑 mm Tn 該軸傳遞的額定扭矩 N mm T 9550000 JnN N 該軸傳遞的功率 KW 該軸的計算轉速jn 該軸每米長度的允許扭轉角 01 各軸最小軸徑如表 3 3 表 3 3 最小軸徑 軸 號 軸 軸 最小軸徑 mm 35 40 20 第 4 章 主要零部件的選擇 4 1 軸承的選擇 I軸 與帶輪靠近段安裝雙列角接觸球軸承代號7007C 另一安裝深溝球軸承6012 II軸 對稱布置深溝球軸承6009 III軸 后端安裝雙列角接觸球軸承代號7015C 另一安裝端角接觸球軸承代號7010C 中間布置角接觸球軸承代號7012C 4 2 鍵的規(guī)格 I軸安裝帶輪處選擇普通平鍵規(guī)格 BXL 10X56 II軸選擇花鍵規(guī)格 N d 8X36X40X7 III軸選擇鍵規(guī)格 BXL 14X90 4 3 主軸彎曲剛度校核 1 主軸剛度符合要求的條件如下 a 主軸的前端部撓度 0 250 1sy b 主軸在前軸承處的傾角 rad 容 許 值 軸 承 c 在安裝齒輪處的傾角 容 許 值 齒 2 計算如下 前支撐為雙列圓柱滾子軸承 后支撐為角接觸軸承架立放圓柱滾子軸承跨距 L 450mm 當量外徑 de 21D m2851045 主軸剛度 因為 di de 25 285 0 088 0 7 所以孔對剛度的影響可忽略 21 ks 2kN mm3 44424 10 5 1 02 3 1034 aldAie 剛度要求 主軸的剛度可根據機床的穩(wěn)定性和精度要求來評定 4 4 軸承校核 610 1739hCLThnP 4 5 潤滑與密封 主軸轉速高 必須保證充分潤滑 一般常用單獨的油管將油引到軸承處 主軸是兩端外伸的軸 防止漏油更為重要而困難 防漏的措施有兩種 1 密封圈 加密封裝置防止油外流 2 疏導 在適當?shù)牡胤阶龀龌赜吐?使油能順利地流回到油箱 22 第 5 章 摩擦離合器 多片式 的計算 設計多片式摩擦離合器時 首先根據機床結構確定離合器的尺寸 如為軸裝式時 外摩擦片的內徑 d 應比花鍵軸大 2 6mm 內摩擦片的外徑 D 的確定 直接影響離合 器的徑向和軸向尺寸 甚至影響主軸箱內部結構布局 故應合理選擇 摩擦片對數(shù)可按下式計算 Z 2MnK f b p 20D 式中 Mn 摩擦離合器所傳遞的扭矩 N mm Mn 955 955 3 0 98 800 1 28 N mm 41djn410510 Nd 電動機的額定功率 kW 安裝離合器的傳動軸的計算轉速 r min jn 從電動機到離合器軸的傳動效率 K 安全系數(shù) 一般取 1 3 1 5 f 摩擦片間的摩擦系數(shù) 由于磨擦片為淬火鋼 查 機床設計指導 表 2 15 取 f 0 08 摩擦片的平均直徑 mm 0D D d 2 67mm b 內外摩擦片的接觸寬度 mm b D d 2 23mm 摩擦片的許用壓強 N p2m 1 1 1 00 1 00 0 76 0 8360t vKmz 基本許用壓強 MPa 查 機床設計指導 表 2 15 取 1 1 0t 速度修正系數(shù)v n 6 2 5 m s p 02D41 根據平均圓周速度 查 機床設計指導 表 2 16 取 1 00 pv 接合次數(shù)修正系數(shù) 查 機床設計指導 表 2 17 取 1 00 mK 摩擦結合面數(shù)修正系數(shù) 查 機床設計指導 表 2 18 取 0 76 z 23 所以 Z 2MnK f b p 2 1 28 1 4 3 14 0 08 23 0 836 11 0D510267 臥式銑床反向離合器所傳遞的扭矩可按空載功率損耗 確定 一般取kP 0 4 0 4 11 4 4 kPdN 最后確定摩擦離合器的軸向壓緊力 Q 可按下式計算 Q b N 1 1 3 14 23 1 00 3 57 0tp 2DvK267510 式中各符號意義同前述 摩擦片的厚度一般取 1 1 5 1 75 2 mm 內外層分離時的最大間隙為 0 2 0 4 mm 摩擦片的材料應具有較高的耐磨性 摩擦系數(shù)大 耐高溫 抗膠合性 好等特點 常用 10 或 15 鋼 表面滲碳 0 3 0 5 mm 淬火硬度達 HRC52 62 圖 3 5 多片摩擦離合器 24 5 1 結構設計 5 1 1 展開圖設計 5 1 1 1 齒輪布置 主傳動系統(tǒng)采用集中傳動方式 將全部傳動和變速機構集中在同一個主軸箱內 結 構緊湊 便于實現(xiàn)集中操縱 安裝調整方便 電機軸與電動機采用彈性柱銷聯(lián)軸器連 接 可一定程度降低定心精度要求 隔離點擊震動 5 1 1 2 主軸組件設計 圓錐滾子軸承能同時承受徑向和軸向載荷 成對使用具有軸承數(shù)量少 支撐結構簡 單 軸承間隙調整方便的特點 主軸采用單列圓錐滾子軸承的前中支承為主端深溝球 軸承的尾端支承為輔的三支撐結構 用中支撐左側的螺母同時調整前中兩個軸承的間 隙 5 1 2 截面圖及軸的空間布置 由于滑移齒輪軸心離箱體壁距離較大 且滑移行程較長 故采用撥叉沿導向桿滑動 來操縱滑移齒輪 擺動撥叉通過滑塊與滑動撥叉尾端的槽接觸 滑塊做圓弧運動轉化 為撥叉的滑動 實現(xiàn)滑移 使用鋼球彈簧作為定位的手柄座可以使操作桿撥動到指定 位置即停下并鎖緊 方便工人操作 5 2 零件驗算 5 2 1 主軸剛度 5 2 1 1 主軸支撐跨距 的確定l 前端懸伸量 主軸前端的懸伸長度 即從主軸外側前支撐中點 滾錐軸承及向心C 推力軸承則是接觸角法線與軸線的交點處 到主軸前端的距離 這里選定 60mC 一般最佳跨距 考慮到結構以及支承剛度會因磨損而不02 3 108 ml 斷降低 應取跨距 比最佳支承跨距 大一些 一般是 的 倍 再綜合考慮結l0l1 25 構的需要 本設計取 76l 5 2 1 2 最大切削合力 P 的確定 最大圓周切削力 須按主軸輸出全功率和最大扭矩確定t 25 4 8 4 9 429510 dtjNPDn 其中 電動機額定功率 dNKWd 主傳動系統(tǒng)的總效率 為各傳動副 軸承的效率 總效 1 ni i 率 由前文計算結果 取 0 7 85 90 8 0 3 0 8 主軸的計算轉速 由前文計算結果 主軸的計算轉速為jn r min 92r mi 計算直徑 對于臥式銑床 為最大端銑刀計算直徑 對于工作jD jD 臺面積為 的臥式銑床 其端銑刀的計算直徑及寬度分別為201 j 6B 可以得到 429510 83921 7N7tP 驗算主軸組件剛度時 須求出作用在垂直于主軸軸線的平面內的最大切削合力 P 對于臥式升降臺銑床的銑削力 一般按端銑計算 不妨假設本銑床進給系統(tǒng)的末端傳動副有消隙機構 應采用不對稱順銑 則各切削 分力 同 的比值可大致認為VPHatP 0 95372 8NVtP 41H 6 at 則 即 與水平面成20 983HVtPP 4 t P 角 在水平面的投影與 成 角 60 H5 5 2 1 3 切削力作用點的確定 設切削力 的作用點到主軸前支撐的距離為 Ps m scw 其中 主軸前端的懸伸長度 c60 對于普通升降臺銑床 wB 可以得到 12s 26 4 11 4 10 5 2 1 4 齒輪驅動力 Q 的確定 齒輪傳動軸受輸入扭矩的齒輪驅動力 的作用而產生彎曲變形 當齒輪為直齒圓柱Q 齒輪時 其嚙合角 齒面摩20 擦角 時 其彎曲載荷5 7 72 10 N mzn 其中 齒輪傳遞的全功率 取 NKW4 該齒輪的模數(shù) 齒數(shù) mz 該傳動軸的計算工況轉速 n r in 可以得到 740 82 13 6KN392Q 5 2 1 5 變形量允許值的確定 變形量允許值 對普通機床前端撓度的允許值 目前廣泛 使用的經驗數(shù)據0 y 0 2myl 其中 主軸兩支撐間的距離 l 76l 可以得到 0 20 52y 5 2 1 6 主軸組件的靜剛度驗算 圖 4 4 主軸組件縱向視圖力的分布 27 4 12 圖 4 5 主軸組件橫向視圖力的分布 選定如圖的直角坐標系 求各力同時作用下 前后軸承負荷的大小及其方向角 并 判定象限 建立方程組計算主軸前后支撐處的支反力 的 方向 Fxcoscos0PBQAFxFx 的 方向 yininyy 在 點的水平投影 MB coscs0AQPFxabb 在 點的垂直投影 iniy 可以得到 1653 4NAFx 238 46NAFy 0B751B 即 方向與 軸正方向夾角 2864NAF A 方向與 軸正方向夾角 753BxBF 前后軸承的負荷大小與支反力大小相同 方向相反 故前后軸承的負荷為 方向與 軸正方向夾角 AR125 6AR 方向與 軸正方向夾角 2B x93B 按軸承的合成負荷 計算軸承的彈性位移 R C 滾動軸承的徑向剛度是支承剛度的主要部分 支承剛度還包括軸承環(huán)與軸頸及箱體 孔的配合表面間的接觸剛度 預緊的滾動軸承可以提高剛度 計算時可以忽略軸承環(huán)與軸頸以及箱體孔之間的接觸剛度 僅以滾動軸承的游隙為 零時 承受徑向載荷來計算軸承的徑向剛度 圓錐滾子軸承的徑向剛度 0 9 801 93cosCizlR 其中 28 4 13 4 14 4 15 滾動體列數(shù) I 每列中滾動體數(shù) Z 滾子有效長度 0l m 軸承的徑向負荷 RN 軸承的接觸角 deg 可以得到 0 9 0 80 1 963162c0 52os1AC 4B 前后支承軸承的彈性位移 63 8 0 51 8mAAR 7230BBC 分別計算各作用力對彈性主軸前端 點產生的撓度 c 由簡單載荷下簡支軸的變形公式 軸自身變形引起的軸 點撓度公式c P 2 6cpslyEI Qmcqlab 其中 載荷力 PQ N 材料的彈性模量 鋼的 E52 10 MPa E 分別為軸的 的抗彎慣性矩 lsI ls 44 6IDd 可以得到 44 705 81792mlI 636s 可以得到 P25384 03107120 624989cpy Q56876 4m cq 共同作用下 點的撓度分解 10 24os 20 1cos75 820 19cxy 29 10 6sin25 70 14sin75 820 9mcy 將軸承的彈性位移分解為直角坐標分量 并計算它對主軸前端 點產生的相應撓度c 值 點 A 3cos 147 9 180Ax in5my 點 B 4cos93 67 2810Bx 3iny 在水平面 方向 點產生的撓度 x 2 0 318 027660cxy 在垂直面 方向 點產生的撓度 yc2 9 9 452cy 可以得到 24 10mcxy 389 將主軸組件前端 c 點在直角坐標上的各分量進行代數(shù)疊加后 再合成綜合撓度值 并計算其方向角 分量 4 332 910 9 2 810mcxy 3 287 合成 221 40cxcyy 方向角 artn 8 cycyx 由綜合撓度 可見 故主軸通過校核 0 c 5 2 2 傳動軸剛度 5 2 2 1 齒輪驅動力 Q 的確定 齒輪傳動軸同時受輸入扭矩的齒輪驅動力 和輸出扭矩的齒輪驅動阻力 的作用aQbQ 30 4 16 而產生彎曲變形 當齒輪為直齒圓柱齒輪 其嚙合角 齒面摩擦角 時 20 5 72 其彎曲載荷 72 10 N mznQ 其中 該齒輪傳遞的全功率 取 N KW 3 58K 該齒輪的模數(shù) 和齒數(shù) mz 該傳動軸的計算工況轉速 n r in 該軸輸入扭矩的齒輪計算轉速 aj m 該軸輸出扭矩的齒輪計算轉速 bj r i 由于軸 上有三種不同的驅動力和三種不同的驅動阻力 故驅動力具體的計算結 果在下文討論 5 2 2 2 變形量允許值的確定 齒輪傳動軸的抗彎剛度驗算 包括軸的最大撓度 滾動軸承處及齒輪安裝處的傾角 驗算 其值均應小于允許變形量 及 允許變形量可由參考文獻 4 查得 0 y 0 5 390 15ml 6rad 由參考文獻 3 知 對于傳動軸 僅需要進行剛度計算 無須進行強度驗算 5 2 2 3 主軸組件的撓度驗算 圖 5 4 傳動軸 II 載荷分布 其中 是變速組 1 的驅動力 且 3 個驅動力不能同時作用 123aaQ 是變速組 2 的驅動阻力 且 3 個驅動阻力不能同時作用 12b3b 可以得到 31 4 17 4 18 713 582 010 38NaQ 2 6 542733 58 10194 0a 對于輸出驅動阻力 由于各種情況轉速不定 故應在選定校核用軸 速度以后計算 為了計算上的簡便 可以近似地以該軸的中點撓度代替最大撓度 其最大誤差不超 過 3 由參考文獻 4 若兩支承的齒輪傳動軸為實心的圓形鋼軸 忽略其支承變形 在 單位彎曲載荷作用下 其中點撓度 334 0 75 1 9 mlNxyDzn 其中 兩支承間的跨距 l m l 該軸的平均直徑 D36 ixal 齒輪 的工作位置至較近支撐點的距離 iaiz m 輸入扭矩的齒輪在軸的中點引起的撓度 y 輸出扭矩的齒輪在軸的中點引起的撓度 b 其余各符號定義與前文一致 可以得到 175 390 4ax 226 3 115b2 90 3x 342b 可以得到 31 490 58 78 7 0 16m605ay 32 26 57 32 4 19 4 20 4 21 3 33 490 58 706 7 17 0 21m625ay 故 引起的中點撓度最大 在計算合成撓度時使用 進行計算 1aQaQ ay 此時軸 轉速為 5r min 可以得到 713 582 0974 15N0bQ 2 6 21 733 58 107 4b 可以得到 3 3149 58 015 7 0 m69by 20 72 213 349 58 0 4 17 0 5635by 故 引起的中點撓度最大 在計算合成撓度時使用 進行計算 1bQ 2bQ 2by 由參考文獻 4 中點的合成撓度 2cos m hababyy 其中 被驗算軸的中點合成撓度 hy 在橫截面上 被驗算的軸與其前 后傳動軸連心線的夾角 驅動力 和阻力 在橫截面上 兩向量合成時的夾角 aQb 2 可以得到 2 1805 7218 6 可以得到 20 16 3 6 3cos 07mhy 由綜合撓度 可見 滿足要求 hy 由參考文獻 4 傳動軸在支承點 A B 處的傾角 A B rad hyl 可以得到 33 4 22 4 23 4 24 4 25 30 17 3rad9AB 可見 滿足要求 故不用計算傳動軸在齒輪處的傾角 綜上 傳動軸 通過校核 5 2 3 齒輪疲勞強度 驗算變速箱中齒輪強度時 選擇相同模數(shù)中承受載荷最大的及齒數(shù)最小的齒輪進行 接觸應力和彎曲應力計算 一般對高速轉動的齒輪驗算齒面接觸應力 對低速轉動的 齒輪驗算齒根彎曲應力 對硬齒面軟芯的滲淬火齒輪 一定要驗算彎曲應力 因而此 處僅驗算 與 這對齒輪 23 87 由參考文獻 4 齒面接觸應力 3123s201Mpa j jjKNZmuBn 齒根彎曲應力 5123s9 aw wjY 其中 初算得到的齒輪模數(shù) m m 傳遞的額定功率 NKW 齒輪的計算轉速 jnr in 35 7 92r ij 大齒輪齒數(shù)與小齒輪齒數(shù)之比 外嚙合取 號 內嚙合取 u 1u 號 小齒輪的齒數(shù) Z 齒寬 B m 許用接觸應力 由參考文獻 5 表 13 16 齒輪材料選用 45 鋼 j Mpa 高頻淬火 可得 1370j 許用彎曲應力 w 280paw 壽命系數(shù) sKsTNnpK 工作期限系數(shù) T 106mTC 齒輪在機床工作期限 內的總工作時間 對于中型機床的齒輪 s h 34 取 統(tǒng)一變速組內的齒輪總工作時間可近似地認150 2hsT 150hsT 為 為該變速組的傳動副數(shù) 取 則 sp 2p 750hT 齒輪的最低轉速 取 1n r min 106 rmin 基準循環(huán)次數(shù) 對于鋼和鑄鐵件 接觸載荷取 彎曲載荷取0C 701C 62 疲勞曲線指數(shù) 接觸載荷取 彎曲載荷對正火 調質及整體淬硬m3 件取 對表面淬硬 高頻 滲碳 氮化等 件取 9 可以得到 93670175026 5 1 42 062TK 功率利用系數(shù) 取 N 8NK 轉速變化系數(shù) 取 n 9 n 材料強化系數(shù) 取 p 0 可以得到 1 428 3760 8s 699K 齒向載荷分布系數(shù) 取 1K1 動載荷系數(shù) 取 2 2 工作狀況系數(shù) 考慮載荷沖擊的影響 主運動 中等沖擊 取3 4 齒形系數(shù) 取 Y0 4 51Y 可以得到 387 3 40693 2012147 2Mpa27j 5290 1 8 0830435w 可見 jj 綜上 齒輪通過校核 35 第 6 章 主軸箱結構設計及說明 6 1 結構設計的內容 技術要求和方案 設計主軸變速箱的結構包括傳動件 傳動軸 軸承 帶輪 齒輪 離合器和制動 器等 主軸組件 操縱機構 潤滑密封系統(tǒng)和箱體及其聯(lián)結件的結構設計與布置 用 一張展開圖和若干張橫截面圖表示 課程設計由于時間的限制 一 0 般只畫展開圖 主軸變速箱是機床的重要部件 設計時除考慮一般機械傳動的有關要求外 著重 考慮以下幾個方面的問題 精度方面的要求 剛度和抗震性的要求 傳動效率要求 主軸前軸承處溫度和溫 升的控制 結構工藝性 操作方便 安全 可靠原則 遵循標準化和通用化的原則 主軸變速箱結構設計時整個機床設計的重點 由于結構復雜 設計中不可避免要 經過反復思考和多次修改 在正式畫圖前應該先畫草圖 目的是 1 布置傳動件及選擇結構方案 2 檢驗傳動設計的結果中有無干涉 碰撞或其他不合理的情況 以便及時改正 3 確定傳動軸的支承跨距 齒輪在軸上的位置以及各軸的相對位置 以確 定各軸的受力點和受力方向 為軸和軸承的驗算提供必要的數(shù)據 6 2 展開圖及其布置 展開圖就是按照傳動軸傳遞運動的先后順序 假想將各軸沿其軸線剖開并將這些 剖切面平整展開在同一個平面上 I 軸上裝的摩擦離合器和變速齒輪 有兩種布置方案 一是將兩級變速齒輪和離合 器做成一體 齒輪的直徑受到離合器內徑的約束 齒根圓的直徑必須大于離合器的外 徑 負責齒輪無法加工 這樣軸的間距加大 另一種布置方案是離合器的左右部分分 別裝在同軸線的軸上 左邊部分接通 得到一級反向轉動 右邊接通得到三級反向轉 動 這種齒輪尺寸小但軸向尺寸大 我們采用第一種方案 通過空心軸中的拉桿來操 縱離合器的結構 總布置時需要考慮制動器的位置 制動器可以布置在背輪軸上也可以放在其他軸 上 制動器不要放在轉速太低軸上 以免制動扭矩太大 是制動尺寸增大 齒輪在軸上布置很重要 關系到變速箱的軸向尺寸 減少軸向尺寸有利于提高剛 度和減小體積 36 結束語 1 本次課程設計是針對專業(yè)課程基礎知識的一次綜合性應用設計 設計過程應用了 機械制圖 機械原理 工程力學 等 2 本次課程設計充分應用了以前所學習的知識 并應用這些知識來分析和解決實際問 題 3 本次課程設計進一步掌握了一般設計的設計思路和設計切入點 同時對機械部件的 傳動設計和動力計算也提高了應用各種資料和實際動手的能力 4 本次課程設計進一步規(guī)范了制圖要求 掌握了機械設計的基本技能 5 本次課程設計由于學習知識面的狹窄和對一些概念的理解不夠深刻 以及缺乏實際 設計經驗 使得設計黨中出現(xiàn)了許多不妥和錯誤之處 誠請老師給予指正和教導 37 參考文獻 1 段鐵群 主編 機械系統(tǒng)設計 科學出版社 第一版 2 于惠力 主編 機械設計 科學出版社 第一版 3 戴 曙 主編 金屬切削機床設計 機械工業(yè)出版社 4 戴 曙 主編 金屬切削機床 機械工業(yè)出版社 第一版 4 趙九江 主編 材料力學 哈爾濱工業(yè)大學出版社 第一版 6 鄭文經 主編 機械原理 高等教育出版社 第七版 7 于惠力 主編 機械設計課程設計 科學出版社