河北省2019年中考數(shù)學(xué)總復(fù)習(xí) 第五單元 四邊形 課時訓(xùn)練22 平行四邊形練習(xí)

上傳人:Sc****h 文檔編號:89436916 上傳時間:2022-05-13 格式:DOCX 頁數(shù):12 大?。?13.30KB
收藏 版權(quán)申訴 舉報 下載
河北省2019年中考數(shù)學(xué)總復(fù)習(xí) 第五單元 四邊形 課時訓(xùn)練22 平行四邊形練習(xí)_第1頁
第1頁 / 共12頁
河北省2019年中考數(shù)學(xué)總復(fù)習(xí) 第五單元 四邊形 課時訓(xùn)練22 平行四邊形練習(xí)_第2頁
第2頁 / 共12頁
河北省2019年中考數(shù)學(xué)總復(fù)習(xí) 第五單元 四邊形 課時訓(xùn)練22 平行四邊形練習(xí)_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《河北省2019年中考數(shù)學(xué)總復(fù)習(xí) 第五單元 四邊形 課時訓(xùn)練22 平行四邊形練習(xí)》由會員分享,可在線閱讀,更多相關(guān)《河北省2019年中考數(shù)學(xué)總復(fù)習(xí) 第五單元 四邊形 課時訓(xùn)練22 平行四邊形練習(xí)(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 課時訓(xùn)練(二十二) 平行四邊形 (限時:40分鐘) |夯實基礎(chǔ)| 1.[2018·綏化] 在下列選項中,不能判定四邊形ABCD是平行四邊形的是 (  ) A.AD∥BC,AB∥CD B.AB∥CD,AB=CD C.AD∥BC,AB=CD D.AB=CD,AD=BC 2.[2017·麗水] 如圖K22-1,在?ABCD中,連接AC,∠ABC=∠CAD=45°,AB=2,則BC的長是(  ) 圖K22-1 A.2 B.2 C.22 D.4 3.如圖K22-2,?ABCD中,AB=4,BC=6,AC的垂直平分線交AD于點E,則△CDE的周長是 (  )

2、 圖K22-2 A.6 B.8 C.10 D.12 4.如圖K22-3,已知△ABC的面積為24,點D在線段AC上,點F在線段BC的延長線上,且BC=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積為 (  ) 圖K22-3 A.3 B.4 C.6 D.8 5.[2017·連云港] 如圖K22-4,在?ABCD中,AE⊥BC于點E,AF⊥CD于點F.若∠EAF=60°,則∠B=    .? 圖K22-4 6.[2018·臨沂] 如圖K22-5,在?ABCD中,AB=10,AD=6,AC⊥BC,則BD=    .?

3、 圖K22-5 7.[2018·撫順] 如圖K22-6,?ABCD中,AB=7,BC=3,連接AC,分別以點A和點C為圓心,大于12AC的長為半徑作弧,兩弧相交于點M,N,作直線MN,交CD于點E,連接AE,則△AED的周長是    .? 圖K22-6 8.平行四邊形的一個內(nèi)角平分線將該平行四邊形的一邊分為2 cm和3 cm兩部分,則該平行四邊形的周長為    .? 9.[2018·無錫] 如圖K22-7,平行四邊形ABCD中,E,F分別是邊BC,AD的中點. 求證:∠ABF=∠CDE. 圖K22-7 10.[2018

4、·曲靖] 如圖K22-8,在平行四邊形ABCD的邊AB,CD上截取AF,CE,使得AF=CE,連接EF,點M,N是線段EF上的兩點,且EM=FN,連接AN,CM. 圖K22-8 (1)求證:△AFN≌△CEM; (2)若∠CMF=107°,∠CEM=72°,求∠NAF的度數(shù). 11.[2018·永州] 如圖K22-9,在△ABC中,∠ACB=90°,∠CAB=30°,以線段AB為邊向外作等邊三角形ABD,點E是線段AB的中點,連接CE并延長交線段AD于點F. 圖K22-9 (1)求證:四邊形BCFD為平行四邊形; (2)若AB=6,求平行四

5、邊形BCFD的面積. 12.如圖K22-10,O是△ABC內(nèi)一點,連接OB,OC,并將AB,OB,OC,AC的中點D,E,F,G依次連接,得到四邊形DEFG. 圖K22-10 (1)求證:四邊形DEFG是平行四邊形; (2)若M為EF的中點,OM=3,∠OBC和∠OCB互余,求DG的長度. |拓展提升| 13.[2018·眉山] 如圖K22-11,在?ABCD中,CD=2AD,BE⊥AD于點E,F為DC的中點,連接EF,BF.下列結(jié)論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CF

6、E=3∠DEF.其中正確結(jié)論的個數(shù)共有 (  ) A.1個 B.2個 C.3個 D.4個 圖K22-11 14.[2018·陜西] 如圖K22-12,點O是?ABCD的對稱中心,AD>AB,E,F是AB邊上的點,且EF=12AB,G,H是BC邊上的點,且GH=13BC.若S1,S2分別表示△EOF和△GOH的面積,則S1與S2之間的等量關(guān)系是    .? 圖K22-12 15.[2018·貴陽] 如圖K22-13,在平行四邊形ABCD中,AE是BC邊上的高,點F是DE的中點,AB與AG關(guān)于AE對稱,AE與AF關(guān)于AG對稱. 圖K22-13 (1)求證:△AEF是等邊三

7、角形; (2)若AB=2,求△AFD的面積. 參考答案 1.C 2.C [解析] 證出△ABC是等腰直角三角形,由勾股定理得出BC=22. 3.C 4.C [解析] 設(shè)△ABC中BC邊上的高為h.∵四邊形DCFE是平行四邊形,∴DE=CF,DE∥CF,∵BC=4CF,∴DE=14BC,∴S△ADE+S△DEB=12DE·h=12×14BC·h=14×12BC·h=6,故選C. 5.60° [解析] 根據(jù)四邊形的內(nèi)角和,垂直的性質(zhì)可求得∠C=360°-90°-90°-60°=120°,再根據(jù)平行四邊形的性質(zhì)可求得∠B=60°. 6.

8、413 [解析] ∵四邊形ABCD是平行四邊形, ∴BC=AD=6,OB=OD,OA=OC. ∵AC⊥BC, ∴AC=AB2-BC2=8, ∴OC=4, ∴OB=OC2+BC2=213, ∴BD=2OB=413. 故答案為:413. 7.10 [解析] 由題意可知MN垂直平分線段AC,∴AE=EC,∵四邊形ABCD為平行四邊形,∴AB=CD,BC=AD.三角形ADE的周長=AD+DE+AE=BC+DE+CE=BC+CD=BC+AB=3+7=10. 8.14 cm或16 cm [解析] 如圖,∵四邊形ABCD為平行四邊形,∴AD∥BC,∴∠DAE=∠AEB.∵AE為角平分線,∴

9、∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE. ①當(dāng)AB=BE=2 cm,CE=3 cm時,周長為14 cm; ②當(dāng)AB=BE=3 cm,CE=2 cm時,周長為16 cm. 故答案為:14 cm或16 cm. 9.證明:∵四邊形ABCD是平行四邊形, ∴∠A=∠C,AB=CD,AD=BC. ∵E,F分別是邊BC,AD的中點, ∴AF=CE. 在△ABF和△CDE中, AB=CD,∠A=∠C,AF=CE, ∴△ABF≌△CDE(SAS), ∴∠ABF=∠CDE. 10.解:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD. ∴∠AFN=∠CEM,又

10、AF=CE,FN=EM, ∴△AFN≌△CEM. (2)∵∠CMF=107°,∠CEM=72°, ∠CMF=∠CEM+∠ECM, ∴∠ECM=∠CMF-∠CEM=107°-72°=35°. ∵△AFN≌△CEM, ∴∠NAF=∠ECM=35°. 11.解:(1)證明:在△ABC中,∠ACB=90°,∠CAB=30°, ∴∠ABC=60°. 在等邊三角形ABD中,∠BAD=∠D=60°, ∴∠BAD=∠ABC. ∴AD∥BC,即FD∥BC. ∵E為AB的中點,∴AE=BE. 又∵∠AEF=∠BEC,∴△AEF≌△BEC. 在△ABC中,∠ACB=90°,E為AB的中點

11、, ∴CE=12AB,BE=12AB.∴CE=BE, ∴△BCE是等邊三角形,∴∠BCE=60°. ∵△AEF≌△BEC,∴∠AFE=∠BCE=60°. 又∵∠D=60°,∴∠AFE=∠D,∴FC∥BD. ∴四邊形BCFD是平行四邊形. (2)在Rt△ABC中, ∵∠BAC=30°,AB=6, ∴BC=12AB=3,AC=3BC=33, ∴S平行四邊形BCFD=33×3=93. 12.解:(1)證明:∵D,G分別是AB,AC的中點, ∴DG∥BC,DG=12BC. ∵E,F分別是OB,OC的中點, ∴EF∥BC,EF=12BC, ∴DG=EF,DG∥EF, ∴四邊

12、形DEFG是平行四邊形. (2)∵∠OBC和∠OCB互余, ∴∠OBC+∠OCB=90°, ∴∠BOC=90°. ∵M為EF的中點,OM=3, ∴EF=2OM=6. 由(1)知四邊形DEFG是平行四邊形, ∴DG=EF=6. 13.D [解析] 如圖,延長EF交BC的延長線于G,取AB的中點H,連接FH. ∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正確; ∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△CFG,∴FE=FG, ∵B

13、E⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠EBG=∠AEB=90°,∴BF=EF,故②正確; ∵S△DFE=S△CFG,∴S四邊形DEBC=S△EBG=2S△BEF,故③正確; ∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四邊形BCFH是平行四邊形,∵CF=BC,∴四邊形BCFH是菱形,∴∠BFC=∠BFH,∵FH∥AD,BE⊥AD,∴FH⊥BE,∵FE=FB,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正確.故選D. 14.2S1=3S2S1=32S2,S2=23S1均正確 [解析] 連接AC,BD. ∵四邊形ABCD為平行四邊形,

14、 ∴AO=OC. ∴S△AOB=S△BOC. ∵EF=12AB, ∴S1=12S△AOB. ∴S△AOB=2S1. ∵GH=13BC, ∴S2=13S△BOC. ∴S△BOC=3S2. ∴2S1=3S2. 15.解:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC. ∵AE⊥BC,∴AE⊥AD,即∠EAD=90°. 在Rt△EAD中, ∵F是ED的中點,∴AF=12ED=EF. ∵AE與AF關(guān)于AG對稱,∴AE=AF, ∴AE=AF=EF,∴△AEF是等邊三角形. (2)由(1)知△AEF是等邊三角形,則∠EAF=∠AEF=60°,∠EAG=∠FAG=30°,在Rt△EAD中,∠ADE=30°. ∵AB與AG關(guān)于AE對稱,∴∠BAE=∠GAE=30°. 在Rt△AEB中,AB=2, 則AE=AB·cos∠BAE=2×cos30°=3. 在Rt△EAD中,AD=AE·tan∠AEF=3×tan60°=3, ∴S△AFD=12S△AED=12×12AE·AD=12×12×3×3=334. 12

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!