《蘇教版初二上學(xué)期 動(dòng)點(diǎn)問(wèn)題》由會(huì)員分享,可在線閱讀,更多相關(guān)《蘇教版初二上學(xué)期 動(dòng)點(diǎn)問(wèn)題(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、如圖,已知△ABC中,AB=AC=10厘米,BC=8厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以3厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t.
(1)用含有t的代數(shù)式表示CP.
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
如圖,在長(zhǎng)方形ABCD中,AB=CD=6cm,BC=10cm,點(diǎn)P從點(diǎn)B出發(fā),以2cm/秒的速度沿BC向點(diǎn)C運(yùn)
2、動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒:
(1) PC=_________cm(用t的代數(shù)式表示)
(2) 當(dāng)t為何值時(shí),△ABP≌△DCP?
(3)當(dāng)點(diǎn)P從點(diǎn)B開(kāi)始運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以v cm/秒的速度沿CD向點(diǎn)D運(yùn)動(dòng),是否存在這樣v的值,使得△ABP與△PQC全等?若存在,請(qǐng)求出v的值;若不存在,請(qǐng)說(shuō)明理由.
如圖,△ABC中,∠ACB=90°,AC=12,BC=16.點(diǎn)P從A點(diǎn)出發(fā)沿A-C-B路徑
向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為B點(diǎn);點(diǎn)Q從B點(diǎn)出發(fā)沿B-C-A路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為A點(diǎn).點(diǎn)P和Q分別以2和6的運(yùn)動(dòng)速度同時(shí)開(kāi)始運(yùn)動(dòng),兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),在某時(shí)刻,分別過(guò)
3、P和Q作PE⊥l于E,QF⊥l于F.
問(wèn):點(diǎn)P運(yùn)動(dòng)多少時(shí)間時(shí),△PEC與QFC全等?請(qǐng)說(shuō)明理由.
1. 如圖,已知正方形ABCD中,邊長(zhǎng)為10厘米,點(diǎn)E在AB邊上,BE=6厘米.
(1)如果點(diǎn)P在線段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上由C點(diǎn)向D點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPE與△CQP是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPE與△CQP全等?
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿正方形ABCD四邊運(yùn)
4、動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在正方形ABCD邊上的何處相遇?
(1) 操作發(fā)現(xiàn):如圖①,D是等邊△ABC邊BA上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在BC上方作等邊△DCF,連接AF.你能發(fā)現(xiàn)線段AF與BD之間的數(shù)量關(guān)系嗎?并證明你發(fā)現(xiàn)的結(jié)論.
(2)類(lèi)比猜想:如圖②,當(dāng)動(dòng)點(diǎn)D運(yùn)動(dòng)至等邊△ABC邊BA的延長(zhǎng)線上時(shí),其他作法與(1)相同,猜想AF與BD在(1)中的結(jié)論是否仍然成立?
(3)深入探究:
Ⅰ.如圖③,當(dāng)動(dòng)點(diǎn)D在等邊△ABC邊BA上運(yùn)動(dòng)時(shí)(點(diǎn)D與點(diǎn)B不重合)連接DC,以DC為邊在BC上方、下方分別作等邊△DCF和等邊△DCF′,連接AF、BF′,探究A
5、F、BF′與AB有何數(shù)量關(guān)系?并證明你探究的結(jié)論.
Ⅱ.如圖④,當(dāng)動(dòng)點(diǎn)D在等邊△邊BA的延長(zhǎng)線上運(yùn)動(dòng)時(shí),其他作法與圖③相同,Ⅰ中的結(jié)論是否成立?若不成立,是否有新的結(jié)論?并證明你得出的結(jié)論.
如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1s后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
(
6、2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在△ABC的哪條邊上相遇?
如圖,在等邊△ABC中,AB=9cm,點(diǎn)P從點(diǎn)C出發(fā)沿CB邊向點(diǎn)B點(diǎn)以2cm/s的速度移動(dòng),點(diǎn)Q點(diǎn)從B點(diǎn)出發(fā)沿BA邊向A點(diǎn)以5cm/s速度移動(dòng).P、Q兩點(diǎn)同時(shí)出發(fā),它們移動(dòng)的時(shí)間為t秒鐘.
(1)你能用t表示BP和BQ的長(zhǎng)度嗎?請(qǐng)你表示出來(lái).
(2)請(qǐng)問(wèn)幾秒鐘后,△PBQ為等邊三角形?
(3)若P、Q兩點(diǎn)分別從C、B兩點(diǎn)同時(shí)出發(fā),并且都按順時(shí)針?lè)较蜓亍鰽BC三邊運(yùn)動(dòng),請(qǐng)問(wèn)經(jīng)過(guò)幾秒鐘后點(diǎn)P與點(diǎn)Q第一次在△ABC的哪條邊上相
7、遇?
問(wèn)題情境:如圖1,在直角三角形ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,可知:∠BAD=∠C(不需要證明);
特例探究:如圖2,∠MAN=90°,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B、C在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點(diǎn)F,BD⊥AE于點(diǎn)D.證明:△ABD≌△CAF;
歸納證明:如圖3,點(diǎn)B,C在∠MAN的邊AM、AN上,點(diǎn)E,F(xiàn)在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF;
拓展應(yīng)用:如圖4,在△ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在
8、線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,則△ACF與△BDE的面積之和為.
如圖①,已知△ABC是等腰直角三角形,∠BAC=90°,BC=2,AD是BC邊上的高.作正方形DEFG,使點(diǎn)A、C分別在DG和DE上,且DE=BC,且連接AE、BG.
(1)試猜想線段BG和AE的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出你得到的結(jié)論;
(2)將正方形DEFG繞點(diǎn)D逆時(shí)針?lè)较蛐D(zhuǎn)一定角度后(旋轉(zhuǎn)角度大于0°,或小于90°),DG、DE分別交AB、AC于點(diǎn)M和N(如圖②),則(1)中的結(jié)論是否仍然成立?如果成立,請(qǐng)予以證明;如果不成立,請(qǐng)說(shuō)明理由.
(3)在(2)的情況下,當(dāng)AE∥BC時(shí),求
9、AM的值.
如圖1,在△ABC中,點(diǎn)P為BC邊中點(diǎn),直線a繞頂點(diǎn)A旋轉(zhuǎn),若點(diǎn)B,P在直線a的異側(cè),BM⊥直線a于點(diǎn)M.CN⊥直線a于點(diǎn)N,連接PM,PN.
(1)延長(zhǎng)MP交CN于點(diǎn)E(如圖2).
①求證:△BPM≌△CPE;
②求證:PM=PN;
(2)若直線a繞點(diǎn)A旋轉(zhuǎn)到圖3的位置時(shí),點(diǎn)B,P在直線a的同側(cè),其它條件不變,此時(shí)PM=PN還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由;
(3)若直線a繞點(diǎn)A旋轉(zhuǎn)到與BC邊平行的位置時(shí),其它條件不變,請(qǐng)直接判斷四邊形MBCN的形狀及此時(shí)PM=PN還成立嗎?不必說(shuō)明理由.
如圖(1),在等邊的頂點(diǎn)B、C處各有一只蝸牛,它們同時(shí)出發(fā)△ABC分別以每分鐘1各單位的速度油B向C和由C向A爬行,其中一只蝸牛爬到終點(diǎn)s時(shí),另一只也停止運(yùn)動(dòng),經(jīng)過(guò)t分鐘后,它們分別爬行到D,P處,請(qǐng)問(wèn):
(1)在爬行過(guò)程中,BD和AP始終相等嗎?為什么?
(2)問(wèn)蝸牛在爬行過(guò)程中BD與AP所成的∠DQA大小有無(wú)變化?請(qǐng)證明你的結(jié)論.
(3)若蝸牛沿著B(niǎo)C和CA的延長(zhǎng)線爬行,BD與AP交于點(diǎn)Q,其他條件不變,如圖(2)所示,蝸牛爬行過(guò)程中的∠DQA大小變化了嗎?若無(wú)變化,請(qǐng)證明.若有變化,請(qǐng)直接寫(xiě)出∠DQA的度數(shù).