三角函數(shù)教案 (2)
《三角函數(shù)教案 (2)》由會員分享,可在線閱讀,更多相關(guān)《三角函數(shù)教案 (2)(20頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 啟東市呂四中學(xué)2013-2014高一數(shù)學(xué)學(xué)案 第一章 第一課時 任意角 總序41 一、教學(xué)目標(biāo):1.理解任意角的概念; 2.學(xué)會建立直角坐標(biāo)系討論任意角,判斷象限角,掌握終邊相同角的集合的書寫。 二、教學(xué)重難點:1.判斷已知角所在象限;2.終邊相同的角的書寫。3.會寫出某個區(qū)間上角的集合。 三、教學(xué)過程: 預(yù)習(xí)測評:
2、 (1).若角的終邊在第一象限或第三象限的角平分線上,則角的集合是 . (2).若角與的終邊在一條直線上,則與的關(guān)系是 . (3).把下列各角寫成的形式,并指出它們所在的象限或終邊位置。 (1); (2); (3). 典題互動: 例1 (1)寫出終邊在y軸非負半軸上的角的集合; (2)寫出終邊在y軸非正半軸上的角的集合; (3)寫出終邊在x軸非負半軸上的角的集合; (4)寫出終邊在x軸非正半軸上的角的集合. 變式:(1)寫出終邊在軸上的角的集合。 (2)寫出
3、終邊在x軸上的角的集合。 (3)所有軸線角的集合怎么表示? 規(guī)律總結(jié):所有與角終邊相同的角,連同角在內(nèi),可構(gòu)成一個集合。 例3 (1)用集合的形式表示終邊落在第一象限的角 (2)寫出終邊落在所夾區(qū)域內(nèi)的角的集合 變題練習(xí): (1):第三象限角的集合N .第四象限角的集合 Q . 例4 在0°~360°間,找出與下列各角終邊相同的角,并判定它們是第幾象限角. (1)120° (2)660° (3)-950°12′ 變式:寫出下列各邊相同的角的集合,并把中適合不等式的元素寫出來
4、: (1); (2). 對應(yīng)練習(xí):若; 變題練習(xí): (1)已知角是第二象限角,求:(1)角是第幾象限的角;(2)角終邊的位置。 鞏固練習(xí):(1)-1120°角所在象限是 _______________ 。 (2)把-1485°轉(zhuǎn)化為α+k·360°(0°≤α<360°, k∈Z)的形式是____________ (3)下列命題:①一個角的終邊在第幾限,就說這個角是第幾象限的角;②1400°的角是第四象限的角; ③-3
5、00°的角與160°的角的終邊相同;④相等的角的終邊一定相同;⑤終邊相同的角一定相等.其中正確命題的序號是 ____________ (4)寫出角的終邊在下圖中陰影區(qū)域內(nèi)角的集合(這括邊界) 課后作業(yè): 1、寫出-720°到720°之間與-1068°終邊相同的角的集合___________________. 2、與1991°終邊相同的最小正角是_________,絕對值最小的角是_______________. 3、若角α的終邊為第二象限的角平分線,則α的集合為______________________. 4、在0°到360°范圍內(nèi),與角
6、-60°的終邊在同一條直線上的角為 . 5、若是第四象限的角,則是 . 6、求所有與所給角終邊相同的角的集合,并求出其中的最小正角,最大負角: (1); (2). 7、已知0°<θ<360°,且θ角的7倍角的終邊和θ角終邊重合,求θ. 8、設(shè)集合, ,求,. 9(1)已知,角的終邊與的終邊關(guān)于對稱,求角的集合。 (2)設(shè)是第一象限角,試探究:(1)一定不是第幾象限角?(2)是第幾象限角?
7、 第一章 第二課時 弧度制 總序42 一、教學(xué)目標(biāo):(1)理解并掌握弧度制的定義;(2)掌握并運用弧度制表示的弧長公式、扇形面積公式;(3)熟練地進行角度制與弧度制的換算; 二、重點難點:理解并掌握弧度制定義;熟練地進行角度制與弧度制地互化換算;弧度制的運用. 三、教學(xué)過程: 預(yù)習(xí)測評: 1、在與范圍內(nèi),找出與下列各角終邊相同的角,并判斷它們是第幾象限角? (1)610o (2)-250o (3)-930o25′ 2、寫出終邊在直線=x上的角的集合 3、寫
8、出與終邊相同的角的集合.若,且,求. 4、已知與210o的角終邊相同,判斷是第幾象限角?判斷2是第幾象限角? 概念學(xué)習(xí): 1、弧度制的定義: ; 2、探究學(xué)習(xí): 如圖,半徑為的圓的圓心與原點重合,角的終邊與軸的正半軸重合,交圓于點,終邊與圓交于點. 請完成表格. 弧的長 旋轉(zhuǎn)的方向 的弧度數(shù) 的度數(shù) 逆時針方向 逆時針方向
9、 3、思考:如果一個半徑為的圓的圓心角所對的弧長是,那么的弧度數(shù)是多少? 4、根據(jù)探究中填空: 度 例1、(1)把下列各角從弧度化為度:①; ②3.5 練習(xí):① ②-2.8 (2)把下列各角從度化為弧度:①75° ② 練習(xí):①-155° ②245°15′ 注意:角度制與弧度制的換算主要抓住 角的概念推廣以后,在弧度制下,角的集合與實數(shù)集之間建立了一一對應(yīng)關(guān)系:即每一
10、個角都有唯一的一個實數(shù)(即這個角的弧度數(shù))與它對應(yīng);反過來,每一個實數(shù)也都有唯一的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應(yīng). 例2、已知集合A={a|2kp≤a≤(2kp+1)p,k∈Z},B={a|-4≤a≤4}, 則A∩B為 5、弧長公式:在弧度制下,弧長公式和扇形面積公式又如何表示? 6、扇形面積公式:扇形面積公式為: . 例3、已知扇形的周長為8cm,圓心角為2rad,求該扇形的面積. 練習(xí):在單位圓中,等于周角的的圓心角所對的弧
11、長是________,含這段弧的扇形的面積是________,含這段弧的弓形的面積是________。 鞏固練習(xí):: 1、度化弧度:-22°30′=__________15°=_________ 弧度化度:=_____________;-=_________. 2、12弧度角是在第_________象限角。 3、一扇形的圓心角為弧度,其弧長為,則這個扇形的面積是_________。 4、已知扇形的周長為6 cm,面積是2 cm2,則扇形的圓心角的弧度數(shù)。 課后練習(xí) 1、填寫下表 角度 72° 510°
12、 -840° -165° 弧度 -10p -p 2、將分針撥慢10分鐘,則分針轉(zhuǎn)過的弧度數(shù)是 。 3、已知扇形AOB的圓心角為120°,半徑R=6,則該扇形的面積為________. 4、若 的圓心角所對的弧長為 ,則此圓的半徑為______________. 5、已知2弧度的圓心角所對的弦長為2,那么這個圓心角所對的弧長是 。 6、扇形 的面積為 ,它的周長為 ,求扇形圓心角的弧度數(shù)及弦長 . 7、鐘表的時針和分針在3點到5點40分這段時間里各轉(zhuǎn)過多少弧度. 8、
13、已知圓上的一段弧長等于該圓的內(nèi)接正方形的邊長,求這段弧所對的圓周角的度數(shù)。 9、已知:扇形AOB的周長為8 cm. (1)若這個扇形的面積為3 cm2,求圓心角的大小; (2)求這個扇形的面積取得最大值時圓心角的大小和弦長AB. 第一章 第三課時 任意角的三角函數(shù)(1) 總序43 教學(xué)目標(biāo):使學(xué)生掌握任意角的正弦、余弦、正切的定義和三角函數(shù)值在各象限內(nèi)的符號;會求已知終邊上一點的角的三角函數(shù)值. 教學(xué)重點:理解三角函數(shù)的定義,能確定三角函數(shù)值在各象限內(nèi)的符號 教學(xué)過程: 課前預(yù)
14、習(xí): 1.任意角的正弦、余弦、正切的定義 設(shè)a是一個任意角,在a的終邊上任?。ó愑谠c的)一點P(x,y)則P與原點的距離 比值叫做a的正弦, 記作: 比值叫做a的余弦, 記作: 比值叫做a的正切, 記作: 說明:(1)三角函數(shù)值與點的選擇無關(guān).(2)由于r2=x2+y2,∴r≥|x|,且r≥|y|, 故 |sina|≤1且 |cosa|≤1 2.三角函數(shù)的定義域 三角函數(shù) 定義域 sina cosa tana 3.三角函數(shù)值在各個象限內(nèi)的符號 (1)圖示符號規(guī)律: (2)注意點:
15、 ①凡是終邊相同的角的三角函數(shù)值相等; ②如果終邊在坐標(biāo)軸上,上述定義同樣適用; ③三角函數(shù)是以“比值”為函數(shù)值的函數(shù); ④r>0,而x,y的正負是隨象限的變化而不同,故三角函數(shù)的符號應(yīng)由角所在的象限確定. 例1. 已知a的終邊經(jīng)過點P(2,-3),分別求a的正弦、余弦、正切值. 變式⑴ 已知角a的終邊經(jīng)過P(4,-3),求2sina+cosa的值. 變式⑵ 已知角a的終邊經(jīng)過P(4a,-3a),(a10) 求2sina+cosa的值. 例2. 求下列各角的正弦、余弦、正切值 ⑴ 0
16、 ⑵ ⑶ ⑷ 例3.確定下列三角函數(shù)值的符號: (1)cos; (2)sin(-465°) ; (3) tan 例4.若sina<0且tana<0,試確定a為第幾象限角. 課后作業(yè): 1.課本15頁練習(xí)1,2,3,4,5,6 2.課本22頁習(xí)題1.2/1,2 3、已知cos·tan<0,那么角是第 三、四 象限角. 4、在區(qū)間(0,2)內(nèi),使sinx>cosx成立
17、的x的取值范圍是。 5、角終邊上有一點(a,a)則sin= 。 6、若,則與之間的關(guān)系是 。 7、填表: a 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360° 弧度 0 0 1 0 -1 0 1 0 - - - -1 0 1 0 1 無 - -1 - 0 無 0 8.已知角的終邊經(jīng)過點P,試判斷角所在的象限,并求的
18、值. 第一章 第四課時 任意角的三角函數(shù)(2) 總序44 教學(xué)目標(biāo):要求學(xué)生掌握用單位圓中的線段表示三角函數(shù)值,從而使學(xué)生對三角函數(shù)的定義域有更深的理解. 教學(xué)重點:三角函數(shù)線的定義;利用三角函數(shù)線求三角函數(shù)的定義域. 教學(xué)過程: 一、問題情境 1.復(fù)習(xí)三角函數(shù)的定義 “定義”從 的角度揭示了三角函數(shù)是一個 的函數(shù). 2.能否從幾何的觀點來揭示三角函數(shù)的定義? 二、建構(gòu)數(shù)學(xué) 1.有向線段 2. “單位圓” 3.三角函數(shù)線的定義 設(shè)任意角a的頂點在原點,始
19、邊與x軸的非負半軸重合,角a的終邊與單位圓交于P,x軸正半軸與單位圓交于A點. 過P(x, y)作PM^x軸于M,過點A(1,0)作單位圓切線,與a角的終邊或其反向延長線交于T.此時有向線段MP的數(shù)量為sina , 即sina=MP ; 有向線段OM的數(shù)量為cosa,即cosa=OM; 有向線段AT的數(shù)量為tana,即tana=AT. (注意數(shù)量與長度的區(qū)別!不能理解成如sina=|MP|) O x A 1 y T(1,y′) a tana O x P(x,y) cosa sina y M a 有向線段MP,OM,AT分別
20、稱為正弦線、余弦線、正切線. 它們統(tǒng)稱為三角函數(shù)線. 特別地,當(dāng)角a的終邊在x軸上時,正弦線、正切線分別變成一個點;當(dāng)角a的終邊在y軸上時,余弦線變成一個點,而正切線不存在。從三角函數(shù)線也可知道, |sina|≤1;|cosa|≤1. 練習(xí):在右邊作出終邊在不同象限時的三角函數(shù)線 典題互動 例1 在單位圓中作出下列各角的正弦線、余弦線、正切線: 變式訓(xùn)練1: 例2.利用三角函數(shù)線比較下列各組數(shù)的大?。? 1° 與 2° tan與tan 例3.利用單位圓尋找適合下列條件的0°到360°的
21、角a的范圍。 1° sina≥ 2° tana 變式:在單位圓中畫出適合下列條件的角的終邊的范圍,并由此寫出角的集合: (1)sin≥; (2)cos≤. 變式訓(xùn)練2:求下列函數(shù)的定義域: (1)y=;(2)y=lg(3-4sin2x) 學(xué)效自測 1.利用余弦線比較的大?。? 2.若,則比較、、的大小; 3.分別根據(jù)下列條件,寫出角的取值范圍: (1) ; (2) ; (3) 課后作業(yè): 1、已知
22、,則滿足條件的角的取值范圍是___ _. 2、寫出使的角的集合是_ _. 3、設(shè)和分別是角的正弦線和余弦線,則給出以下不等式:①;②;③;④。其中正確的是___ ____。 4、從小到大的順序是__ _。 5、利用單位圓寫出符合下列條件的角的范圍。 (1); (2); (3)且; (4); (5)且. 6、已知q是第三象限角且,問是第幾象限角? 7、求函數(shù)的定義域
23、。 8、★★★★已知,則q為第幾象限角? 第一章 第五課時 同角三角函數(shù)的基本關(guān)系(1) 總序45 教學(xué)目標(biāo):要求學(xué)生能根據(jù)三角函數(shù)的定義,導(dǎo)出同角三角函數(shù)的基本關(guān)系, O x A 1 y P(cosa,sina) M 角a的終邊 并能正確運用公式進行三角函數(shù)式的求值、化簡及三角恒等式的證明。 教學(xué)重點:公式的靈活運用(求值、化簡及證明) 教學(xué)過程: 問題:復(fù)述任意角的三角函數(shù)的定義. 你能否找到sina、cosa、tana之間的關(guān)系? (1)稱為平方關(guān)系 ;
24、 (2)稱為商數(shù)關(guān)系 注意:1°“同角”的概念與角的表達形式無關(guān),可以用角得任意結(jié)構(gòu)代換公式中的角a; 2° 上述公式都必須在定義域允許的范圍內(nèi)成立; 3° 根據(jù)上述公式,由一個角的任一三角函數(shù)值可求出這個角的其余各三角函數(shù)值; 4°注意公式的變形應(yīng)用: 1-sin2a=cos2a;1-cos2a=sin2a;sina=tana·cosa ; cosa= 例1.(1) 已知sina= ,且a是第二象限角,求cosa,tana的值. (2) 已知tana= ,求sina,cosa的值.
25、 (3) 已知tana=2,求下列各式的值: ① ②3sin2a-cos2a 練習(xí):1.已知,且∈,則的值是 . 2. 已知,求下列各式的值: (1); (2) ; (3) . 例2:化簡下列各式: ① tana,其中a是第二象限角。 ②+(a為銳角) ③ 練習(xí):已知是第三象限角,化簡 例3. 求證:= 課后作業(yè): 1.已知tana= - 則cosa= . 2.已知
26、=2sin2q,log2b=cos2q,則ab= . 3.若角a終邊落在直線x+y=0上,則+= . 4.已知sinq·cosq=,則tanq+=________. 5.已知tana=,則=_____________. 6.已知sin2q-2cosq=2,則sinqcosq+3 sinq +cosq= . 7.已知,則= . 8.若,,,則a的值 . 9.若,且,則的取值范圍為 .
27、 10.已知cosq+cos2q=1, 求sin2q+ sin6q+ sin8q的值. 第一章 第六課時 同角三角函數(shù)的基本關(guān)系(2) 總序46 教學(xué)目標(biāo):要求學(xué)生能正確運用公式進行三角函數(shù)式的求值、化簡及三角恒等式的證明. 教學(xué)重點:公式的靈活運用(求值、化簡及證明) 教學(xué)過程: 預(yù)習(xí)測評: 1. 已知,則 . 2. 化簡:= 3. 若是方程的兩根,求實數(shù)m的值. 二、例題選講: 例1.已知sina+cosa=,求下列各三角函數(shù)式的值:
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案