機(jī)床主軸設(shè)計(jì)及相關(guān)技術(shù)研究-數(shù)控銑床的主軸結(jié)構(gòu)【含8張cad圖紙+文檔全套資料】
喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請(qǐng)放心下載,,有疑問(wèn)咨詢QQ:414951605或者1304139763 ======================== 喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請(qǐng)放心下載,,有疑問(wèn)咨詢QQ:414951605或者1304139763 ========================
機(jī)床主軸單元
1.介紹
機(jī)床主軸基本上完成兩個(gè)任務(wù):在空間精確的旋轉(zhuǎn)刀具(鉆削,銑削,磨削)或工件(車(chē)削);把所需要的能量傳遞到切削區(qū)。
很顯然主軸對(duì)切削效率和機(jī)加工件的質(zhì)量有很大影響,這篇文章評(píng)論了目前的狀態(tài)和介紹了主軸技術(shù)的研究挑戰(zhàn)。
1.1歷史回顧
典型地,主軸是被皮帶或齒輪驅(qū)動(dòng)的,轉(zhuǎn)速只能通過(guò)改變傳動(dòng)比或通過(guò)電器開(kāi)關(guān)改變驅(qū)動(dòng)級(jí)的數(shù)量來(lái)改變。
之后,簡(jiǎn)單的電氣或液壓控制器開(kāi)始發(fā)展,主軸旋轉(zhuǎn)速度通過(guò)無(wú)級(jí)調(diào)速方式來(lái)改變,要提高生產(chǎn)力就需要更高的速度,加工技術(shù)要求發(fā)展新型軸承,電力電子與逆變器系統(tǒng)。在致力于發(fā)展緊湊的電力電子(靜止變頻器)領(lǐng)域的進(jìn)步
導(dǎo)致在使用高頻三相異步電動(dòng)機(jī)上的低成本維護(hù),對(duì)于早在80年代的主軸,高轉(zhuǎn)速只能利用磁力軸承來(lái)實(shí)現(xiàn),在軸承,潤(rùn)滑,滾動(dòng)材料和驅(qū)動(dòng)系統(tǒng)(馬達(dá)和轉(zhuǎn)換器)領(lǐng)域的持續(xù)發(fā)展已經(jīng)允許建造直接驅(qū)動(dòng)電機(jī)主軸來(lái)滿足目前各種需求。
1.2 主要結(jié)構(gòu)
如今,絕大多數(shù)機(jī)床都裝配了點(diǎn)主軸。不同于外部驅(qū)動(dòng)主軸,電主軸不需要像齒輪和接頭一樣的機(jī)械傳動(dòng)單元。
主軸至少有兩套主要的球軸承系統(tǒng)。軸承系統(tǒng)是對(duì)主軸的壽命影響最大的組成部件。最常見(jiàn)的電機(jī)是安裝在兩個(gè)軸承系統(tǒng)之間。
而冷卻主要是通過(guò)水冷。冷卻劑流過(guò)電機(jī)定子周?chē)睦鋮s套而還經(jīng)常流過(guò)軸承外圈。
主軸末端的密封件防止碎屑及切削液的侵入,通常這些是做了空氣凈化的。
一個(gè)標(biāo)準(zhǔn)的工具接口例如HSK和SK是被放置在主軸前端的。一個(gè)夾緊系統(tǒng)是用于快速automatictool變化。理想情況下,一個(gè)可以控制夾緊力的未夾緊單元需要可靠的加工。如果切削液一定要通過(guò)刀具流到切削上,那么對(duì)應(yīng)的軌道和旋轉(zhuǎn)機(jī)構(gòu)就要求具有夾緊系統(tǒng)的特點(diǎn)。
今天,幾乎每個(gè)主軸都裝配有用于監(jiān)視電機(jī)溫度(熱敏電阻或熱電偶)的傳感器和定位夾緊系統(tǒng)。用于監(jiān)測(cè)軸承的附加傳感器,可以監(jiān)測(cè)驅(qū)動(dòng)過(guò)程的穩(wěn)定性,但在許多工業(yè)領(lǐng)域卻不太普遍。
1.3當(dāng)前發(fā)展?fàn)顩r
大功率、高轉(zhuǎn)速電主軸是為了加工用于航空、航天工業(yè)的大型鋁制框架而發(fā)展起來(lái)的。高轉(zhuǎn)速、低功率的電主軸用于電子工業(yè)為印刷電子版鉆孔(PCB)。
1.4工業(yè)方面的實(shí)際開(kāi)發(fā)領(lǐng)域
當(dāng)前電主軸的發(fā)展主要集中在電動(dòng)機(jī)的技術(shù),降低用于預(yù)防性維護(hù)監(jiān)測(cè)的成本。另一個(gè)核心問(wèn)題是為了減少主軸上的熱量發(fā)展用于抵消存在的約束力和輸出頻率的驅(qū)動(dòng)系統(tǒng)。
過(guò)去注意力主要放在增加可靠的旋轉(zhuǎn)速度。如今,如今的關(guān)注點(diǎn)已經(jīng)改變,朝著具有高轉(zhuǎn)速(15000r/min)的同時(shí)還要有很高的轉(zhuǎn)矩。由于在可靠性,產(chǎn)品生命周期和可預(yù)測(cè)維護(hù)方面需求的增加,電機(jī)主軸的狀態(tài)監(jiān)測(cè)系統(tǒng)變得越來(lái)越重要。對(duì)主軸各狀態(tài)參數(shù)的定期和或連續(xù)觀測(cè)能夠檢測(cè)磨損、過(guò)熱和即將發(fā)生的故障。
了解主軸的產(chǎn)品壽命周期費(fèi)用對(duì)預(yù)測(cè)服務(wù)期間內(nèi)的維護(hù)、故障和運(yùn)行成本有很大幫助。
2.應(yīng)用領(lǐng)域和具體需求
主軸被研制和制造的主要目的是實(shí)現(xiàn)金屬切削效率和加工精度的最大化。
工件材料可以分門(mén)別類(lèi),包括簡(jiǎn)單的,例如像鋁,要用具有高轉(zhuǎn)速和大功率的主軸,還包括難加工的,例如鎳鈦合金,要求主軸除了具有較低的轉(zhuǎn)速,還要具有較大的轉(zhuǎn)矩和剛度。切削具有磨料碳或碳纖維塑料的工件材料要求主軸前端具有良好的密封性。
給電路板鉆孔的主軸轉(zhuǎn)速要控制在100 000到300 000轉(zhuǎn)/每分鐘。隨著空氣軸承的精度的不斷提高,電機(jī)主軸應(yīng)用領(lǐng)域的生產(chǎn)力和轉(zhuǎn)速也在不斷提高。
用于模具加工的主軸必須以很高的進(jìn)給率完成粗軋機(jī)組操作(高性能切割、HSC)、以很高的切削速度完成切削過(guò)程(高切削速度,HSC).依據(jù)磨具和壓鑄車(chē)間的實(shí)施策略和機(jī)械裝置,可以是兩個(gè)機(jī)床配備兩個(gè)不同的主軸或一個(gè)機(jī)床配備一個(gè)主軸切換單元。另一種情況就是用一個(gè)主軸來(lái)同時(shí)完成高速切削和高性能切割,但生產(chǎn)力仍然保持合理的水平。
航空航天用的主軸要求具有大功率和高轉(zhuǎn)速。如今的主軸要求材料切除率達(dá)到每分鐘切除鋁材料101個(gè)單位。
磨削是一個(gè)要求高精度的操作過(guò)程,需要軸承具有很小的擺動(dòng)的剛性軸。目前的內(nèi)部磨床主軸要求軸承擺動(dòng)不超過(guò)1毫米。
主要用于鉆孔的主軸單元要求具有很高的軸向剛度,這需要使用具有高接觸角的角接觸球軸承來(lái)實(shí)現(xiàn)。相反,高速銑削操作要使用有小接觸角的軸承用以減少由于離心力引起的徑向剛度變化。
現(xiàn)代加工中心往往具有多種功能如銑、鉆、磨,有時(shí)珩磨操作可以在相同的工件上實(shí)現(xiàn)。提高機(jī)床先進(jìn)性的瓶頸仍然是機(jī)床主軸,因?yàn)樗荒茉谙嗤鹊臈l件下滿足所有的操作??芍貥?gòu)和模塊化的機(jī)床需要有規(guī)范化的機(jī)械、液壓、氣動(dòng)、電氣接口的可互換的主軸。
3.主軸分析
主軸單元的模型和分析的目標(biāo)是為了實(shí)現(xiàn)最大的動(dòng)態(tài)剛度,以最小的尺寸和功率增加材料去除率,在設(shè)計(jì)階段模擬主軸的性能和優(yōu)化它的尺寸。主軸裝配的機(jī)械部件是由安裝有軸承的空心主軸組成。角接觸球軸承廣泛用于高速主軸,由于其低摩擦性能和可以同時(shí)承受徑向和軸向載荷的能力。主軸可以在有限元環(huán)境下用梁、塊、或管道單元來(lái)模擬。軸承剛度可以用一個(gè)球軸承接觸角的函數(shù)、在操作期間由主軸的外部負(fù)載或熱膨脹所引起的預(yù)緊力來(lái)模擬。運(yùn)動(dòng)方程以矩陣的形式導(dǎo)出,包括陀螺和離心效應(yīng),還有得到了附在主軸上的工具的固有頻率、振型的形狀和頻率響應(yīng)函數(shù)。如果軸承剛度與速度有關(guān),或如果主軸在切削載荷下模擬,數(shù)值方法用于預(yù)測(cè)沿主軸軸振動(dòng)荷載和軸承上的接觸載荷。
主軸仿真模型考慮了主軸設(shè)計(jì)參數(shù)的優(yōu)化,目的是為了使主軸在全速運(yùn)行時(shí)達(dá)到最大的動(dòng)剛度,用一把指定的專(zhuān)用刀具用指定的速度實(shí)現(xiàn)最大軸向切削深度。在不損壞軸承和主軸的前提下以指定的速度,主軸設(shè)計(jì)的主要目標(biāo)是實(shí)現(xiàn)切除材料的最大化,同時(shí)還要保證各項(xiàng)其他指標(biāo)如精度和可靠性。
3.1實(shí)驗(yàn)?zāi)M
一個(gè)現(xiàn)有的電主軸的動(dòng)態(tài)行為是通過(guò)測(cè)量它的力和位移之間的頻率響應(yīng)函數(shù)得到的。在機(jī)械加工過(guò)程中,主軸結(jié)構(gòu)會(huì)引起振動(dòng),可測(cè)量的頻率響應(yīng)函數(shù)可以用曲線來(lái)擬合,可用于預(yù)測(cè)固有頻率、阻尼比和剛度值。頻率響應(yīng)函數(shù)的實(shí)驗(yàn)測(cè)量對(duì)于在加工工藝設(shè)計(jì)階段評(píng)估動(dòng)態(tài)剛度和確定切削顫振條件是實(shí)用的。然而,以下困難需要考慮在內(nèi):
(1)只需要測(cè)量旋轉(zhuǎn)軸的一小部分就可行了,因此模擬整個(gè)主軸是不可能的;
(2)運(yùn)算速度和溫度主要影響特征值,但當(dāng)主軸旋轉(zhuǎn)時(shí)頻率響應(yīng)函數(shù)的測(cè)量是相當(dāng)困難的;
(3)運(yùn)用從測(cè)量的輸入和輸出數(shù)據(jù)中提取的參數(shù)進(jìn)行曲線擬合或其他方法
并不總是得到主軸動(dòng)態(tài)參數(shù)的精確分析。
3.2理論模型
理論模型是基于物理定律,在設(shè)計(jì)階段用來(lái)預(yù)測(cè)和改善主軸的性能。模型提供輸入F(力,速度)和輸出q(撓度,軸承載荷,和溫度)之間的數(shù)學(xué)關(guān)系。數(shù)學(xué)模型可以用狀態(tài)空間形式或通過(guò)一系列的微分方程來(lái)表達(dá),在這兩種方案中主軸的線性或非線性行為都可以被精確的模擬。
3.2.1軸和外殼的力學(xué)建模
有限元方法普遍適用于主軸的結(jié)構(gòu)力學(xué)和動(dòng)態(tài)模型。該方法是通過(guò)偏導(dǎo)數(shù)微分方程組在有限元區(qū)域基于結(jié)構(gòu)的離散化。該分析屬于轉(zhuǎn)子動(dòng)態(tài)研究的類(lèi)型,具有對(duì)稱(chēng)性的軸通常用梁?jiǎn)卧獊?lái)模擬,可以得到質(zhì)量和剛度矩陣。
Timoshenko梁?jiǎn)卧顬槌S?,因?yàn)樗紤]了彎曲、轉(zhuǎn)動(dòng)慣量和剪切的影響,因此對(duì)主軸的固有頻率和模態(tài)形狀的預(yù)測(cè)有很大幫助。普遍都知道的有限元分析軟件ANSYS中PIPE16單元也是使用了Timoshenko理論與質(zhì)量和剛度矩陣。
3.3角接觸球軸承的建模
角接觸球軸承普遍應(yīng)用于高速主軸。為了保持徑向和軸向的旋轉(zhuǎn)精度和足夠的剛度以滿足基本的操作要求,軸承需要預(yù)緊來(lái)防止打滑?;旧希袃煞N類(lèi)型的軸承預(yù)緊力:剛性預(yù)緊和恒預(yù)緊。
圖1 機(jī)床—主軸—軸承系統(tǒng)的有限元模型
畢 業(yè) 設(shè) 計(jì) 任 務(wù) 書(shū)
1.畢業(yè)設(shè)計(jì)的任務(wù)和要求:
掌握機(jī)床主軸的基本知識(shí);掌握機(jī)床主軸設(shè)計(jì)的技術(shù)關(guān)鍵;研究數(shù)控機(jī)床主軸單元的關(guān)鍵技術(shù),掌握其相關(guān)知識(shí)及選型、應(yīng)用、設(shè)計(jì)方法等;完成一種數(shù)控銑床主軸單元的設(shè)計(jì),要求主軸工作的轉(zhuǎn)速可達(dá)8000r/min,輸出功率可達(dá)5kW,使用40柄刀具。
2.畢業(yè)設(shè)計(jì)的具體工作內(nèi)容:
1) 分析題目要求,查閱相關(guān)的國(guó)內(nèi)外文獻(xiàn)、設(shè)計(jì)資料、有關(guān)專(zhuān)利文獻(xiàn)等,在此基礎(chǔ)上,了解開(kāi)題報(bào)告的撰寫(xiě)方法、基本要求,完成開(kāi)題報(bào)告;
2) 學(xué)習(xí)和掌握機(jī)床主軸的有關(guān)知識(shí),了解主軸單元、電主軸的有關(guān)知識(shí)及發(fā)展現(xiàn)狀;了解數(shù)控機(jī)床、加工中心對(duì)主軸的要求;總結(jié)機(jī)床主軸的設(shè)計(jì)要點(diǎn)、技術(shù)關(guān)鍵及發(fā)展方向;力爭(zhēng)提出主軸設(shè)計(jì)的發(fā)展方向;
3) 按題目要求,設(shè)計(jì)一種數(shù)控銑床的主軸單元,完成裝配圖及主要零件圖,給出功率、強(qiáng)度、剛度、軸承等必要的計(jì)算;
4) 編寫(xiě)設(shè)計(jì)說(shuō)明書(shū);
5) 翻譯本專(zhuān)業(yè)外文科技文獻(xiàn)一份。
畢 業(yè) 設(shè) 計(jì) 任 務(wù) 書(shū)
3.對(duì)畢業(yè)設(shè)計(jì)成果的要求:
1)主軸裝配圖、主要零件圖;
2)主軸技術(shù)的研究及設(shè)計(jì)說(shuō)明書(shū)一份;
3)本專(zhuān)業(yè)外文科技文獻(xiàn)譯文一份。
4.畢業(yè)設(shè)計(jì)工作進(jìn)度計(jì)劃:
起 迄 日 期
工 作 內(nèi) 容
2016年
02月29日 ~03月21日
03月22日 ~04月30日
05月01日 ~05月20日
05月21日 ~05月31日
06月01日 ~06月05日
分析課題要求,查閱相關(guān)文獻(xiàn)資料,了解機(jī)床主軸設(shè)計(jì)的國(guó)內(nèi)外現(xiàn)狀及發(fā)展趨勢(shì),提出自己的設(shè)計(jì)思路,完成開(kāi)題報(bào)告;
全面掌握主軸相關(guān)的基本知識(shí),了解高速主軸的關(guān)鍵技術(shù),了解主軸單元的設(shè)計(jì)特點(diǎn);分析總結(jié)主軸技術(shù)的發(fā)展方向;
設(shè)計(jì)主軸,完成裝配圖和主要零件圖;
完成研究總結(jié)及設(shè)計(jì)說(shuō)明書(shū)
撰寫(xiě)答辯講稿,準(zhǔn)備答辯;
學(xué)生所在系審查意見(jiàn):
同意下發(fā)任務(wù)書(shū)
系主任:
2016年 2 月 29 日
畢 業(yè) 設(shè) 計(jì) 開(kāi) 題 報(bào) 告
1.結(jié)合畢業(yè)設(shè)計(jì)課題情況,根據(jù)所查閱的文獻(xiàn)資料,撰寫(xiě)2000字左右的文獻(xiàn)綜述:
文 獻(xiàn) 綜 述
1.1國(guó)內(nèi)外機(jī)床主軸研究現(xiàn)狀
(1)國(guó)內(nèi)研究現(xiàn)狀
目前國(guó)內(nèi)研究高速電主軸的科研機(jī)構(gòu)有我國(guó)河南省洛陽(yáng)軸承研究所 ,他們能自行研究開(kāi)發(fā)電主軸 ,其DmN值達(dá)到了很高的水平 ;廣州鉅聯(lián)高速電主軸有限公司研發(fā)的大功率靜壓軸承電主軸曾獲得日內(nèi)瓦國(guó)際專(zhuān)利技術(shù)博覽會(huì)金獎(jiǎng) ;廣東工業(yè)大學(xué)高速加工和機(jī)床研究所也開(kāi)發(fā)了數(shù)控銑床高速電主軸。其主要技術(shù)指標(biāo)為 :電主軸的額定功率是 13.5kW ,最高轉(zhuǎn)速為 180 0 0r/min ,在額定轉(zhuǎn)速 5 0 0r/min時(shí)產(chǎn)生最大輸出轉(zhuǎn)矩為 85Nm。在我國(guó)的安陽(yáng)市 ,有一家中外合資的電主軸生產(chǎn)廠家———安陽(yáng)萊必泰機(jī)械有限公司 ,它擁有先進(jìn)的電主軸、機(jī)床主軸設(shè)計(jì)和制造技術(shù)。該公司研制生產(chǎn)的加工中心電主軸 ,采用先進(jìn)技術(shù) ,配有矢量閉環(huán)控制系統(tǒng) ,能對(duì)主軸實(shí)行恒功率調(diào)速 ,準(zhǔn)停制動(dòng)。功率為 3.7~ 2 5kW ,恒功率段 15 0 0~ 12 0 0 0r/min。采用進(jìn)口高速精密軸承 ,旋轉(zhuǎn)件經(jīng)高精度平衡。該系列產(chǎn)品具有高精度、高剛度、高速度、低噪聲、低振動(dòng)、低溫升等優(yōu)點(diǎn) ,系99國(guó)家火炬計(jì)劃項(xiàng)目。
(2)國(guó)外研究現(xiàn)狀
國(guó)外高速電主軸技術(shù)由于研究較早 ,技術(shù)水平也處于領(lǐng)先地位 ,電主軸已越來(lái)越多地應(yīng)用到工業(yè)制造業(yè)中。著名的有瑞士的Fisher公司、Ibag公司、德 國(guó)的GMN公司、Hofer公司、Siemens公司、意大利Faemat公司、Gamfior公司及美國(guó)Ingersoll公司、日本Okuma公司和Fanuc公司等,它們的技術(shù)水平代表了這個(gè)領(lǐng)域的世界先進(jìn)水平。
這些公司生產(chǎn)的電主軸較之國(guó)內(nèi)生產(chǎn)的有以下幾個(gè)特點(diǎn) :①功率大、轉(zhuǎn)速高。②采用高速、高剛度軸承。國(guó)外高速精密主軸上采用高速、高剛度軸承 ,主要有陶瓷軸承和液體動(dòng)靜壓軸承 ,特殊場(chǎng)合采用空氣潤(rùn)滑軸承和磁懸浮軸承。③精密加工與精密裝配工藝水平高。④配套控制系統(tǒng)水平高。這些控制系統(tǒng)包括轉(zhuǎn)子自動(dòng)平衡系統(tǒng)、軸承油氣潤(rùn)滑與精密控制系統(tǒng)、定轉(zhuǎn)子冷卻溫度精密控制系統(tǒng)、主軸變形溫度補(bǔ)償精密控制系統(tǒng)等。并在此基礎(chǔ)之上,這些外國(guó)廠家如美國(guó)、日本、德國(guó)、意大利和瑞士等工業(yè)發(fā)達(dá)國(guó)家已生產(chǎn)了多種商品化高速機(jī)床。如瑞士米克朗公司 ,就是世界上著名的精密機(jī)床制造商。它生產(chǎn)的機(jī)床配備最高達(dá) 6 0 0 0 0r/min的高速電主軸 ,可以滿足不同的切削要求 ,所有的電主軸均裝有恒溫冷卻水套對(duì)主軸電機(jī)和軸承進(jìn)行冷卻 ,并通過(guò)高壓油霧對(duì)復(fù)合陶瓷軸承進(jìn)行潤(rùn)滑。所有的電主軸均采用矢量控制技術(shù) ,可以在低轉(zhuǎn)速時(shí)輸出大扭矩。
國(guó)產(chǎn)電主軸和國(guó)外產(chǎn)品相比較 ,無(wú)論是性能、品種和質(zhì)量都有較大差距 ,國(guó)產(chǎn)電主軸產(chǎn)品和國(guó)外的相比較 ,主要存在以下差距 :(1)國(guó)外電主軸低速段的輸出扭矩最大可達(dá) 30 0Nm ,而我國(guó)目前僅在 10 0Nm以內(nèi)。(2 )在高轉(zhuǎn)速方面 ,國(guó)外用于加工中心的電主軸轉(zhuǎn)速已達(dá) 75 0 0 0r/min ,我國(guó)則多在15 0 0 0r/min以內(nèi)。(3)電主軸的軸承潤(rùn)滑 ,國(guó)外普遍采用油氣潤(rùn)滑 ,而我國(guó)仍用油脂潤(rùn)滑。(4 )其他配套技術(shù)也有較大差距 ,如主軸電機(jī)矢量控制、交流伺服控制技術(shù)、精確定向技術(shù)、快速啟動(dòng)、停止等。(5 )在產(chǎn)品的品種、規(guī)格、數(shù)量和制造規(guī)模等方面 ,國(guó)產(chǎn)電主軸仍然處于小量研發(fā)試制階段 ,沒(méi)有形成系列化、專(zhuān)業(yè)化 ,遠(yuǎn)不能滿足國(guó)內(nèi)數(shù)控機(jī)床和加工中心發(fā)展的需求。所以目前國(guó)產(chǎn)的高轉(zhuǎn)速、高精度數(shù)控機(jī)床和加工中心所用的電主軸 ,仍然主要從國(guó)外進(jìn)口。
1.2主軸技術(shù)的發(fā)展趨勢(shì)
1)繼續(xù)向高速度、高剛度方向發(fā)展
由于高速切削和實(shí)際應(yīng)用的需要,隨著主軸軸承及其潤(rùn)滑技術(shù)、精密加工技術(shù)、精密動(dòng)平衡技術(shù)、高速刀具及其接口技術(shù)等相關(guān)技術(shù)的發(fā)展,數(shù)控機(jī)床用電主軸高速化已成為目前發(fā)展的普遍趨勢(shì),如鉆、銑用電主軸,瑞士IBAG的HF42的轉(zhuǎn)速達(dá)到140000r/min,英國(guó)WestWind公司的PCB鉆孔機(jī)電主軸D1733更是達(dá)到了250000r/min;加工中心用電主軸,瑞士FISCHER最高轉(zhuǎn)速達(dá)到42000r/min,意大利CAMFIOR達(dá)到了75000r/min。在電主軸的系統(tǒng)剛度方面,由于軸承及其潤(rùn)滑技術(shù)的發(fā)展,電主軸的系統(tǒng)剛度越來(lái)越大,滿足了數(shù)控機(jī)床高速、高效和精密加工發(fā)展的需要。
2) 向高速大功率、低速大轉(zhuǎn)矩方向發(fā)展
根據(jù)實(shí)際使用的需要,多數(shù)數(shù)控機(jī)床需要同時(shí)能夠滿足低速粗加工時(shí)的重切削、高速切削時(shí)精加工的要求,因此,機(jī)床電主軸應(yīng)該具備低速大轉(zhuǎn)矩、高速大功率的性能。如意大利CAMFIOR、瑞士Step—Tec、德國(guó)GMN等制造商生產(chǎn)的加工中心用電主軸,低速段輸出轉(zhuǎn)矩到200Nm以上的已經(jīng)不是難事,德國(guó)CYTEC的數(shù)控銑床和車(chē)床用電主軸的最大扭矩更是達(dá)到了630N·m;在高速段大功率方面,一般在l0~50kW;CYTEC電主軸的最大輸出功率為50kW;瑞士Step—Tec電主軸的最大功率更是達(dá)到65kW(S1),用于航空器制造和模具加工;更有電主軸功率達(dá)到80kW 的報(bào)道。
3) 進(jìn)一步向高精度、高可靠性和延長(zhǎng)工作壽命方向發(fā)展
用戶對(duì)數(shù)控機(jī)床的精度和使用可靠性提出了越來(lái)越高的要求,作為數(shù)控機(jī)床核心功能部件之一的電主軸,要求其本身的精度和可靠性隨之越來(lái)越高。如主軸徑向跳動(dòng)在0.001mm 以內(nèi)、軸向定位精度<0.0005mm以下。同時(shí),由于采用了特殊的精密主軸軸承、先進(jìn)的潤(rùn)滑方法以及特殊的預(yù)負(fù)荷施加方式,電主軸的壽命相應(yīng)得到了延長(zhǎng),其使用可靠性越來(lái)越高。Step—Tec的電主軸還加裝了加速度傳感器,降低軸承振動(dòng)加速度水平,為了監(jiān)視和限制軸承上的振動(dòng),安裝了振動(dòng)監(jiān)測(cè)模塊,以延長(zhǎng)電主軸工作壽命。
4) 快速啟動(dòng)、停止響應(yīng)速度加快
為縮短輔助時(shí)間,提高效率,要求數(shù)控機(jī)床電主軸的啟、停時(shí)間越短越好,因此需要很高的啟動(dòng)和停機(jī)加(減)速度。目前,國(guó)外機(jī)床電主軸的啟、停加速度可達(dá)到lg以上,全速啟、停時(shí)間在ls以內(nèi)。
5) 軸承及其預(yù)加載荷方式、潤(rùn)滑方式多樣化
除了常規(guī)的鋼制滾動(dòng)軸承外,近年來(lái)陶瓷球混合軸承越來(lái)越得到廣泛的應(yīng)用,潤(rùn)滑方式有油脂、油霧、油氣等,尤其是油氣潤(rùn)滑方法(又Oil-air),由于具有適應(yīng)高速、環(huán)保節(jié)能的特點(diǎn),得到越來(lái)越廣泛的推廣和應(yīng)用;滾動(dòng)軸承的預(yù)負(fù)荷施加方式除了剛性預(yù)負(fù)荷(又稱(chēng)定位預(yù)負(fù)荷)、彈性預(yù)負(fù)荷(又稱(chēng)定壓預(yù)負(fù)荷)之外,又發(fā)展了一種智能預(yù)負(fù)荷方式,即利用液壓油缸對(duì)軸承施加預(yù)負(fù)荷,并且可以根據(jù)主軸的轉(zhuǎn)速、負(fù)載等具體工況控制預(yù)負(fù)荷的大小,使軸承的支承性能更加優(yōu)良。在非接觸形式軸承支承的電主軸方面,如磁浮軸承、氣浮軸承電主軸(瑞士IBAG等)、液浮軸承電主軸(美國(guó)Ingersoll等)等已經(jīng)有系列商品供應(yīng)市場(chǎng)。
6)向多功能、智能化方向發(fā)展
在多功能方面,有角向停機(jī)精確定位(準(zhǔn)停)、C軸傳動(dòng)、換刀中空吹氣、中空通冷卻液、軸端氣體密封、低速轉(zhuǎn)矩放大、軸向定位精密補(bǔ)償、換刀自動(dòng)動(dòng)平衡技術(shù)等。在智能化方面,主要表現(xiàn)在各種安全保護(hù)和故障監(jiān)測(cè)診斷措施,如換刀聯(lián)鎖保護(hù)、軸承溫度監(jiān)控、電機(jī)過(guò)載和過(guò)熱保護(hù)、松刀時(shí)軸承卸荷保護(hù)、主軸振動(dòng)信號(hào)監(jiān)測(cè)和故障異常診斷、軸向位置變化自動(dòng)補(bǔ)償、砂輪修整過(guò)程信號(hào)監(jiān)測(cè)和自動(dòng)控制、刀具磨損和損壞信號(hào)監(jiān)控等,如Step-Tec 電主軸安裝有診斷模塊,維修人員可通過(guò)紅外接口讀取數(shù)據(jù),識(shí)別過(guò)載,統(tǒng)計(jì)電主軸工作壽命。
參考文獻(xiàn)
[1]鄭修本.機(jī)械制造工藝學(xué).機(jī)械工業(yè)出版社,2012,03
[2]韓秋實(shí).械制造技術(shù)基礎(chǔ).北京:機(jī)械工業(yè)出版社,2010
[3] 谷玉芳.立式加工中心主軸箱的抗振特性研究和拓?fù)鋬?yōu)化設(shè)計(jì)[D].陜西科技大學(xué) 2012.
[4]秦大同.謝里陽(yáng).現(xiàn)代機(jī)械設(shè)計(jì)手冊(cè)(第1卷).化學(xué)工業(yè)出版社,2011,03
[5]孫開(kāi)元.駱?biāo)鼐?常見(jiàn)機(jī)構(gòu)設(shè)計(jì)及應(yīng)用圖例.化學(xué)工業(yè)出版社,2010,07
[6]凌云.朱金生.機(jī)械設(shè)計(jì)實(shí)用機(jī)構(gòu)運(yùn)動(dòng)仿真圖解.電子工業(yè)出版社,2014,01
[7]楊雪寶.機(jī)械制造裝備與設(shè)計(jì).西北工業(yè)大學(xué)出版社,2010.
[8] 李國(guó)斌.機(jī)械設(shè)計(jì)基礎(chǔ).機(jī)械工業(yè)出版社出版,2010
[9]辛文彤.Solidworks2012中文版從入門(mén)到精通.人民郵電出版社, 2012,01
[10]詹迪維.Solid Works高級(jí)應(yīng)用教程(2012中文版).機(jī)械工業(yè)出版社,2012,03
[11] 呂建法,閆兵,王文芝.鏜銑床有限元建模及其瞬態(tài)動(dòng)力學(xué)分析[J].機(jī)械工程師. 2012(12).
[12] 任小星.BFK150/2鏜銑床主軸夾緊裝置的改造[J].制造技術(shù)與機(jī)床.2016(02).
[13] 劉超峰,張功學(xué),張淳,陳英.DVG850高速立式加工中心主軸箱靈敏度分析[J].組合機(jī)床與自動(dòng)化加工技術(shù).2010(10).
[14] 張霄.機(jī)床主軸箱的固定聯(lián)接及其結(jié)構(gòu)方案設(shè)計(jì)[D].大連理工大學(xué)2015.
[15] 張樂(lè)平.面向重載數(shù)控車(chē)床的主軸箱結(jié)構(gòu)優(yōu)化[D].南京航空航天大學(xué)2014.
[16] 陸暢.重型數(shù)控車(chē)床主軸箱的分析及優(yōu)化[D].沈陽(yáng)航空航天大學(xué)2014.
[17] 梁東旭.球面車(chē)磨床主軸箱及其關(guān)鍵零件的有限元分析與優(yōu)化[D].蘭州理工大學(xué) 2013.
[18] 韓君.組合機(jī)床主軸箱智能設(shè)計(jì)系統(tǒng)的研究[D]. 河北農(nóng)業(yè)大學(xué) 2012
畢 業(yè) 設(shè) 計(jì) 開(kāi) 題 報(bào) 告
2.本課題要研究或解決的問(wèn)題和擬采用的研究手段(途徑):
2.1研究或解決的問(wèn)題
(1)通過(guò)對(duì)自己所查找的相關(guān)資料,了解掌握銑床主軸的基本知識(shí)。
(2)熟悉銑床主軸單元的關(guān)鍵技術(shù),掌握其相關(guān)知識(shí)及選型、應(yīng)用、設(shè)計(jì)方法等。
(3)學(xué)會(huì)CAD設(shè)計(jì)軟件,完成相應(yīng)的工程圖設(shè)計(jì)。
(4)編寫(xiě)說(shuō)明書(shū)。
2.2擬采用的設(shè)計(jì)方案
(1)本次設(shè)計(jì)擬采用數(shù)控銑床的電主軸,其結(jié)構(gòu)如圖所示:
圖1 數(shù)控銑床主軸結(jié)構(gòu)圖
(2)主軸伺服驅(qū)動(dòng)器的選擇:由于本次設(shè)計(jì)要求主軸工作轉(zhuǎn)速達(dá)8000r/min,輸出功率達(dá)5KW,可采用深圳步科的伺服驅(qū)動(dòng)器。具體的相關(guān)的技術(shù)參數(shù)如下:控制器等級(jí),0.75Kw~75Kw;調(diào)速范圍,0r/min~15000r/min(四級(jí)電機(jī));0r/min~30000r/min(二級(jí)電機(jī));本次的電機(jī)的主功率為5Kw,轉(zhuǎn)速8000r/min。
(3)確定主軸的主要結(jié)構(gòu)參數(shù):確定主軸的軸徑、主軸前端懸伸量和主軸主要支承間的跨距。
(4)利用CAD軟件繪制工程圖。
2.3擬采用的研究思路和手段
初步擬采用理論分析和結(jié)構(gòu)設(shè)計(jì)相結(jié)合的研究方法。針對(duì)銑床主軸單元設(shè)計(jì)主要采取以下方法:
①收集國(guó)內(nèi)外相關(guān)研究資料,對(duì)其進(jìn)行詳細(xì)分析并總結(jié)各自方案的優(yōu)缺點(diǎn);通過(guò)對(duì)比國(guó)內(nèi)外研究情況,提出自己的看法,擁有自己的創(chuàng)新點(diǎn)。
②通過(guò)對(duì)機(jī)構(gòu)進(jìn)行總體分析并詳細(xì)設(shè)計(jì),初步確定本設(shè)計(jì)的研究思路。
③總結(jié)自己的思路,并與指導(dǎo)老師、同學(xué)們進(jìn)行交流,最終確保本畢業(yè)設(shè)計(jì)思路的正確性和可行性。
④在做畢業(yè)設(shè)計(jì)的過(guò)程中,如果遇到疑問(wèn)或問(wèn)題,及時(shí)與老師溝通交流;最終完成銑床主軸變速箱設(shè)計(jì)。
⑤撰寫(xiě)畢業(yè)設(shè)計(jì)說(shuō)明書(shū),準(zhǔn)備答辯。
進(jìn)度安排:
2月29日-3月3日:查閱資料
3月4日-3月21日 :撰寫(xiě)開(kāi)題報(bào)告
3月22日-5月18日:確定優(yōu)化方案
5月19日-6月1日: 完成畢業(yè)論文初稿
6月2日—6月5日:根據(jù)指導(dǎo)老師意見(jiàn),修改論文初稿,完成終稿,準(zhǔn)備答辯
畢 業(yè) 設(shè) 計(jì) 開(kāi) 題 報(bào) 告
指導(dǎo)教師意見(jiàn):
報(bào)告表明,該同學(xué)近期查閱了大量文獻(xiàn)資料,特別是企業(yè)產(chǎn)品的技術(shù)資料,對(duì)數(shù)控機(jī)床、電主軸等有了一些新認(rèn)識(shí)。對(duì)國(guó)內(nèi)外采用了什么新技術(shù),關(guān)鍵技術(shù)等還有些不足。
但對(duì)設(shè)計(jì)任務(wù)基本明確。
同意開(kāi)題。
指導(dǎo)教師:
2016 年 3 月 22 日
所在學(xué)院審查意見(jiàn):
同意開(kāi)題
負(fù)責(zé)人:
2016 年 3 月 22 日
機(jī)床主軸設(shè)計(jì)及相關(guān)技術(shù)研究
摘要:隨著我們的機(jī)械加工的不斷發(fā)展,對(duì)于我們的加工零件的要求也在不斷的變化和提高,在如今的加工設(shè)備中,有用到很多的銑床設(shè)備,數(shù)控銑床就是比較新式的加工設(shè)備,能夠?qū)崿F(xiàn)對(duì)我們的各種零部件進(jìn)行各個(gè)工序的銑削加工,加工的精度比較高,生產(chǎn)的效率也高,尤其是對(duì)一些形狀和結(jié)構(gòu)尺寸比較特殊的工件,能夠滿足各個(gè)部位的精準(zhǔn)加工工序,可以滿足加工企業(yè)的各種要求。
本次我們?cè)O(shè)計(jì)的是數(shù)控銑床的主軸結(jié)構(gòu),是我們數(shù)控銑床的關(guān)鍵的零部件,也是我們加工設(shè)備的最主要核心部件,主軸的前端部分是跟我們的夾具結(jié)構(gòu)直接連接的部分,帶動(dòng)我們的被夾持的工件進(jìn)行高速旋轉(zhuǎn)運(yùn)動(dòng)的,本次的主軸的工作時(shí)候的轉(zhuǎn)速達(dá)到8000r/min,輸出的功率達(dá)到5KW,此主軸結(jié)構(gòu)能夠使用40把不同的刀具。主軸的性能和質(zhì)量的好壞直接會(huì)對(duì)我們加工的零件產(chǎn)生影響,因此我們對(duì)于主軸的設(shè)計(jì),必須要求能夠有好的強(qiáng)度和韌性,這樣才能保證我們的銑床設(shè)備有著比較好的加工切削性能,滿足我們對(duì)于工件的加工的需求。如今市面上的用的主軸結(jié)構(gòu)種類(lèi)較多,我們對(duì)于主軸結(jié)構(gòu)的設(shè)計(jì),可以在現(xiàn)有的主軸的基礎(chǔ)上,更加注重去考慮工藝方面的完善,選擇一個(gè)合理又比較經(jīng)濟(jì)的傳動(dòng)的方案,并對(duì)我們選用的相關(guān)的零部件進(jìn)行計(jì)算和相應(yīng)的校核,最后畫(huà)出我們結(jié)構(gòu)的裝配圖跟零件圖。運(yùn)用我們所學(xué)的機(jī)械傳動(dòng)的知識(shí)跟基礎(chǔ)原理,完成畢業(yè)設(shè)計(jì)的任務(wù),也能提高我們的動(dòng)手操作的能力。
關(guān)鍵詞:數(shù)控銑床;主軸;設(shè)計(jì)計(jì)算
II
1
Machine tool spindle design and related technology research
Abstract:With the continuous development of our machine, for the requirements of the processing parts also in constant change and improve, in today's processing equipment, useful to a lot of milling machine, CNC milling machine is a relatively new processing equipment to achieve various processes of milling to all parts of our, relatively high precision machining, production efficiency is high, especially for some of the shape, size and structure of special workpiece, can meet the needs of the various parts of the high precision machining process, and can satisfy the requirement of processing enterprises of all.
This we design is CNC milling machine spindle structure, is the key to our numerical control milling machine parts, is also our processing equipment the main core components, part of the front end of the spindle is with our fixture structure directly connected, driven by our by clamping the workpiece high-speed rotation movement, achieve the working time of the spindle 8000r / min speed and power output to 5kW, the spindle structure to 40 different tools to use. Spindle performance and quality is good or bad will directly influence to our processing of parts, so we for the design of the spindle must request to note Oh ah good strength and toughness, so as to ensure our milling equipment has a good cutting performance and satisfy our demand for machining the workpiece. Now on the market with the spindle structure of many kinds, we design for the main structure of can on the basis of existing spindle, pay more attention to to consider the improvement of process, select a reasonable and economical transmission scheme, and the checking calculation and corresponding to our selection of related parts, and finally draw the assembly drawing and parts drawing. Using the knowledge of the mechanical transmission and the basic principles, the completion of the task of graduation design, but also to improve the ability of our hands.
Key words: CNC milling machine ; principal axis ; design calculation
目 錄
摘 要 Ⅰ
Abstract Ⅱ
目 錄 Ⅳ
1 緒 論 1
2 數(shù)控銑床主軸的介紹 3
2.1 電主軸的工作原理 3
2.2 電主軸的特征 3
3 電主軸結(jié)構(gòu)設(shè)計(jì) 5
3.1 電主軸結(jié)構(gòu)圖原理 5
3.2主軸伺服驅(qū)動(dòng)器的選擇 5
3.3 主軸的轉(zhuǎn)子和定子的設(shè)計(jì) 5
3.4 軸承的選擇 7
3.5 冷卻系統(tǒng)的設(shè)計(jì) 8
3.5.1 熱源的主要構(gòu)成 8
3.5.2 主軸傳動(dòng)的熱平衡計(jì)算 8
4 主軸的設(shè)計(jì) 10
4.1主軸的主要結(jié)構(gòu)參數(shù) 10
4.1.1 前端懸伸量 10
4.1.2主支承間的跨距 10
4.1.3構(gòu)造 10
4.1.4材料和熱處理 10
4.1.5主軸的軸徑 11
4.2 軸的強(qiáng)度校核計(jì)算 12
4.3 軸的剛度校核計(jì)算 15
5 軸承的校核 17
5.1 角接觸球軸承的校核 17
5.2 深溝球軸承的校核 18
總結(jié) 20
參考文獻(xiàn): 21
致 謝 22
6
1 緒 論
隨著國(guó)家經(jīng)濟(jì)的大力發(fā)展,以及工業(yè)進(jìn)程的加快,尤其是機(jī)加工零件的需求量的增加,需要用到的加工設(shè)備量也就非常的大。數(shù)控加工設(shè)備的使用能夠產(chǎn)生大大的提高我們生產(chǎn)的零件的質(zhì)量和提高生產(chǎn)的效率[1][2]。在機(jī)加工的過(guò)程中,對(duì)于很多的零部件的加工,往往都是大批量進(jìn)行加工,需要的量也是非常的大,并且在加工的零件精度要求上,這幾年也是越來(lái)的越嚴(yán)格了,各種的需求在提高,對(duì)于加工的單位來(lái)說(shuō)的話也是一種動(dòng)力,但是也是非常的有壓力的,要想在加工的質(zhì)量上能夠滿足顧客的需求,并能夠按時(shí)完成大批量的工件加工,在規(guī)定的時(shí)間能生產(chǎn)出預(yù)期的產(chǎn)品的數(shù)量的話,完全通過(guò)傳統(tǒng)的加工設(shè)備和人力的加工生產(chǎn),已經(jīng)完全無(wú)法滿足現(xiàn)在的市場(chǎng)需求了,因此,很多的現(xiàn)代高精度的加工設(shè)備也就被廣泛的應(yīng)用,數(shù)控銑床就是被我們用的比較多的設(shè)備,很多的企業(yè)加工車(chē)間都能看到數(shù)控銑床的身影。
數(shù)控銑床的使用,是在近幾十年來(lái)才不斷被廣泛使用的[4]。數(shù)控銑床的使用是跟我們的計(jì)算機(jī)的應(yīng)用相連的,通過(guò)我們?cè)谟?jì)算機(jī)中輸入我們需要對(duì)零件進(jìn)行加工的步驟和工序,以及加工的尺寸的需求,在計(jì)算機(jī)中又通過(guò)數(shù)字信息的形式傳給我們的數(shù)控銑床設(shè)備,進(jìn)而實(shí)現(xiàn)一定的指令動(dòng)作,完成對(duì)我們工件的基本加工,這種的操作加工方式比較簡(jiǎn)單,也是高智能化的生產(chǎn),完全通過(guò)設(shè)備的自動(dòng)走刀實(shí)現(xiàn)對(duì)零件的加工,并且精度也非常的高,生產(chǎn)的效率非常高,數(shù)控銑床對(duì)于我們的操作人員的要求也不高。對(duì)于企業(yè)來(lái)說(shuō),加工的成本相對(duì)也就低了,能夠達(dá)到經(jīng)濟(jì)性的生產(chǎn)的標(biāo)準(zhǔn)[5][6]。
我們國(guó)家的數(shù)控銑床的發(fā)展技術(shù)起步比較晚一些,相對(duì)與歐美的發(fā)達(dá)國(guó)家來(lái)比的話,整整遲了十幾年年,在改革開(kāi)放初期,我們的企業(yè)很少能夠自主生產(chǎn)這些機(jī)床設(shè)備的,很多的機(jī)床設(shè)備都是靠進(jìn)口來(lái)滿足企業(yè)的生產(chǎn)要求的,沒(méi)有一個(gè)自主的數(shù)控銑床的專(zhuān)利,數(shù)控銑床的結(jié)構(gòu)也比較簡(jiǎn)單,很多機(jī)加工的企業(yè)有通過(guò)買(mǎi)一些國(guó)外的二手機(jī)床來(lái)滿足加工的生產(chǎn)要求。在改革開(kāi)發(fā)的帶動(dòng)下,我們國(guó)家的經(jīng)濟(jì)發(fā)展比較快,各行各業(yè)欣欣向榮的一副景象,在這么一個(gè)背景下,對(duì)于數(shù)控機(jī)床的需求量非常的大。企業(yè)通過(guò)進(jìn)口的話成本非常高,因此獨(dú)立自主的設(shè)計(jì)數(shù)控機(jī)床的出現(xiàn)成為一個(gè)必然的趨勢(shì),在這么一個(gè)背景下,我們的機(jī)械設(shè)計(jì)人員,通過(guò)國(guó)外高精度的數(shù)控機(jī)床的基礎(chǔ)知
Machine tool spindle units1 IntroductionMachine tool spindles basically fulfill two tasks:rotate the tools (drilling, milling and grinding) or work piece (turning) precisely inspace transmit the required energy to the cutting zone for metal removalObviously spindles have a strong influence on metal removal rates and quality of the machinedparts. This paper reviews the current state.and presents research challenges of spindle technology.1.1.Historical reviewClassically, main spindles were driven by belts or gears and the rotational speeds could only bevaried by changing either the transmission ratio or the number of driven poles by electricalswitches.Later simple electrical or hydraulic controllers were developed and the rotational speed of thespindle could be changed by means of infinitely adjustable rotating transformers (Ward Leonardsystem of motor control).The need for increased productivity led to higher speed machiningrequirements which led to the development of new bearings, power electronics and invertersystems. The progress in the field of the power electronics (static frequency converter) led to thedevelopment of compact drives with low-cost maintenance using high frequency three-phaseasynchronous motors.Through the early 1980s high spindle speeds were achievable only by usingactive magnetic bearings. Continuous developments in bearings, lubrication, the rolling elementmaterials and drive systems (motors and converters) have allowed the construction of direct drivemotor spindles which currently fulfill a wide range of requirements.1.2. Principal setupToday, the overwhelming majority of machine tools are equipped with motorized spindles.Unlike externally driven spindles, the motorized spindles do not require mechanical transmissionelements like gears and couplings.The spindles have at least two sets of mainly ball bearing systems. The bearing system is thecomponent with the greatest influence on the lifetime of a spindle. Most commonly the motor isarranged between the two bearing systems.Due to high ratio of power to volume active cooling is often required, which is generallyimplemented through water based cooling. The coolant flows through a cooling sleeve around thestator of the motor and often the outer bearing rings.Seals at the tool end of the spindle prevent the intrusion of chips and cutting fluid. Often this isdone with purge air and a labyrinth seal.A standardized tool interface such as HSK and SK is placed at the spindles front end. Aclamping system is used for fast automatictool changes. Ideally, an unclamping unit (drawbar)which can also monitor the clamping force is needed for reliable machining. If cutting fluid has tobe transmitted through the tool to the cutter, adequate channels and a rotary union become requiredfeatures of the clamping system.Today, nearly every spindle is equipped with sensors for monitoring the motor temperature(thermistors or thermocouples) and the position of the clamping system. Additional sensors formonitoring the bearings, the drive and the process stability can be attached, but are not common inmany industrial applications.1.3. State of the artSpindles with high power and high speeds are mainly developed for the machining of largealuminum frames in the aerospace industry. Spindles with extremely high speeds and low powerare used in electronics industry for drilling printed circuit boards (PCB).1.4. Actual development areas in industryCurrent developments in motor spindle industrial application focus on motor technology,improving total cost of ownership(TCO) and condition monitoring for predictive maintenanceAnother central issue is the development of drive systems which neutralize the existing constraintsof power and output frequency while reducing the heating of the spindle shaft.Particular attention was paid to the increase of the reliable reachable rotational speeds in the past.However, the focus has changed towards higher torque at speeds up to 15,000 rpm. Because ofIncreased requirements in reliability, life-cycle and predictable maintenance the conditionmonitoring systems in motor spindles have become more important. Periodic and/or continuousobservation of the spindle status parameters is allowing detection of wear, overheating andimminent failures.Understanding the life cycle cost (LCC) of the spindles has steadily gained importance inpredicting their service period with maintenance, failure and operational costs.2. Fields of application and specific demandsSpindles are developed and manufactured for a wide range of machine tool applications with acommon goal of maximizing the metal removal rates and part machining accuracy.The work materials range from easy to machine materials like aluminum at high speeds withhigh power spindles, to nickel and titanium alloys which require spindles having high torque andstiffness at low speeds. Cutting work materials with abrasive carbon or fiber-reinforced plastics(FRP) content need good seals at the spindle front end.Spindles for drilling printed circuit boards operate in the angular speed range of 100,000 to300,000 rpm. The increase in productivity and speed in this application field over the last fewyears was possible with the development of precision air bearings.Spindles used in die and mould machining have to fulfill the roughing operations (highperformance cutting, HPC) at high feed rates as well as the finishing processes (high-speed cutting,HSC) at high cutting speeds. Depending on the strategy and the machinery of the mould and dieshop either two different machine tools equipped with two different spindles are used or onemachine is equipped with a spindle changing unit. Another possibility is to use a spindle which canfulfill both, HSC and HPC conditions, but this still remains a compromise regarding overallproductivity.Aerospace spindles are defined by high power as well as high rotational speeds. Todaysspindles allow a material removal rate(MRR) of more than 10 l of aluminum per minute.Grinding is a finishing operation where high accuracy is necessary, which requires stiff spindleswith bearings having minimum runout. The present internal cylindrical grinding spindles have arunout requirement of less than 1 mm.Spindle units which are used mainly for boring and drilling operations require high axialstiffness, which is achieved by using angular contact bearings with high contact angles. On thecontrary, high-speed milling operations use spindles with bearings having small contact angles inorder to reduce the dependency of radial stiffness on the centrifugal forces.Contemporary machining centers tend to have multi functions where milling, drilling, grindingand sometimes honing operations can be realized on the same work piece. The bottleneck for theenhancement of the multi-technology machines is still the spindle, which cannot satisfy all themachining operations with the same degree of performance. Reconfigurable and modular machinetools require interchangeable spindles with standardized mechanical, hydraulic, pneumatic andelectrical interfaces.3. Spindle analysisThe aim of modeling and analysis of spindle units is to simulate the performance of the spindleand optimize its dimensions during the design stage in order to achieve maximum dynamicstiffness and increased material removal rate with minimal dimensions and power consumption.The mechanical part of the spindle assembly consists of hollow spindle shaft mounted to a housingwith bearings. Angular contact ball bearings are most commonly used in high-speed spindles dueto their low-friction properties and ability to withstand external loads in both axial and radialdirections. The spindle shaft is modeled by beam, brick or pipe elements in finite elementenvironment. The bearing stiffness is modeled as a function of ball bearing contact angle, preloadcaused by the external load or thermal expansion of the spindle during operation. The equation ofmotion is derived in matrix form by including gyroscopic and centrifugal effects, and solved toobtain natural frequencies, vibration mode shapes and frequency response function at the toolattached to the spindle. If the bearing stiffness is dependent on the speed, or if the spindle needs tobe simulated under cutting loads, the numerical methods are used to predict the vibrations alongthe spindle axis as well as contact loads on the bearings.Spindle simulation models allow for the optimization of spindle design parameters either toachieve maximum dynamic stiffness at all speeds for general operation, or to reach maximum axialdepth of cut at the specified speed with a designated cutter for a specificmachining application.The objective of cutting maximum material at the desired speed without damaging the bearingsand spindle is the main goal of spindle design while maintaining all other quality and performancemetrics, e.g. accuracy and reliability.does not always lead to accurate identification of the spindles dynamicparameters; A.3.2. Theoretical modelingTheoretical models are based on physical laws, and used to predict and improve theperformance of spindles during the design stage. The models provide mathematical relationbetween the inputs F (force, speed) and the outputs q (deflections, bearing loads, and temperature).The mathematical models can be expressed in state space forms or by a set of ordinary differentialequations. In both cases linear or nonlinear behavior of the spindles can be modeled.3.2.1. Mechanical modeling of shaft and housingFinite element (FE) methods are most commonly used to model structural mechanics anddynamics of the spindles. The method is based on discretization of the structure at finite elementlocations by partial derivative differential equations. The analysis belongs to the class of rotor-dynamic studies where the axis-symmetric shaft is usually modeled by beam elements, which leadto construction of mass (Me) and stiffness (Ke) matrices.Timoshenko beam element is most commonly used because it considers the bending, rotaryinertia and shear effects, hence leads to improved prediction of natural frequencies and modeshapes of the spindle .The element PIPE16 of the commonly known FEA software ANSYS is alsoan implementation of the Timoshenko theory and use the mass matrix and stiffness matrixAs an example in the finite element model in Fig. 1, the black dots represent nodes, and eachnode has three Cartesian translational displacements and two rotations . The pulley is modeled as arigid disk, the bearing spacer as a bar element, and the nut and sleeve as a lumped mass. Thespindle in this case has two front bearings in tandem and three bearings in tandem at the rear. Thefive bearings are in overall back-to-back configuration. The tool is assumed to be rigidlyconnected to the tool holder which is fixed to the spindle shaft rigidly or through springs withstiffness in both directions translation and rotation. The flexibility of the spindle mounting has tobe reflected in the model of the spindle-machine system. Springs are also used between the spindlehousing and spindle head, whose stiffness is obtained from experience.Fig. 1. The finite element model of the spindle-bearing-machine-tool system
收藏