購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
XX大學(xué)XX學(xué)院
本科畢業(yè)設(shè)計(論文)中期報告
題目:SC200施工電梯爬升架設(shè)計
系 (部):
專 業(yè):機械設(shè)計制造及其自動化
班 級:
學(xué) 生:
學(xué) 號:
指導(dǎo)教師:
1.設(shè)計(論文)進展?fàn)顩r
論文研究工作經(jīng)過選題、開題到現(xiàn)在已完成了以下方面的工作:
2 完成外文文獻翻譯。
⑵ 通過閱讀參考資料,了解了現(xiàn)有SC200施工電梯爬升架機構(gòu)組成及其工作情況。
3 完成了施工電梯爬升架的鋼結(jié)構(gòu)的有限元分析,包括標(biāo)準(zhǔn)節(jié)應(yīng)力,附
墻架應(yīng)力,腹桿應(yīng)力的有限元分析等。
4 完成了施工電梯爬升架電機和減速機的計算和選取。
2.存在問題及解決措施
存在問題:
(1)計算數(shù)據(jù)比較粗糙,部分結(jié)果有待完善。
(2)對SC200施工電梯爬升架還沒有更加深入了解。
(3)對SC200施工電梯爬升架部分校核計算尚未計算完全。
(4)由于對以前所學(xué)基礎(chǔ)知識掌握的不牢固,導(dǎo)致在此次設(shè)計中有明顯的阻力。
(5)有限元部分掌握的不夠好。
解決措施:
(1) 對計算過程進行詳細(xì)檢查,糾正一些錯誤的結(jié)果。
(2) 更深入的研究SC200施工電梯爬升架,掌握重要參數(shù)資料。
(3) 多去圖書館鞏固以前所學(xué)基礎(chǔ)知識,爭取對專業(yè)知識有一個更深入的了解,認(rèn)真完成此次設(shè)計。
(4) 在有限元部分重點加強。
3.后期工作安排
(1)9-13周 完善SC200施工電梯爬升架設(shè)計的數(shù)據(jù)和校核;
(2)14-15周 完善SC200施工電梯爬升架設(shè)計的裝配圖;
(3)16-17周 撰寫畢業(yè)論文;
(4)18周 畢業(yè)答辯。
以激光技術(shù)為基礎(chǔ)的解除機器人路徑跟蹤系統(tǒng)塔式起重機
摘要
隨著高層建筑數(shù)量的增加,塔式起重機的使用,在韓國其數(shù)量現(xiàn)在每年不斷增加。因此,工作區(qū)和高重復(fù)的工作效率問題的安全問題出現(xiàn)的解除材料到高的地方的過程。作為對傳統(tǒng)的塔式起重機替代方案,我們正在開發(fā)一種機器人塔式起重機系統(tǒng)。通過開發(fā)一種機器人吊臂系統(tǒng),我們期望生產(chǎn)率增長9.9%-50%的基礎(chǔ)上改善以往的研究結(jié)果。在這項研究中,我們研究了激光的可行性,以科技為本的解除機器人路徑塔式起重機系統(tǒng)的跟蹤系統(tǒng)。有努力開發(fā)機器人塔式起重機,但他們可以通過預(yù)先計劃的旅行路徑停止的問題。我們提出用激光裝置,編碼器機器人塔式起重機系統(tǒng),以及一個加速計,并測試了在室內(nèi),室外和擺動系統(tǒng)的可行性條件。在這個過程中,我們開發(fā)了一個軟件應(yīng)用程序能夠接收和記錄,從激光設(shè)備中的數(shù)據(jù)。試驗結(jié)果表明了在各種戶外條件下機器人塔式起重機的擬議取消的可行性路徑跟蹤系統(tǒng)。
關(guān)鍵詞:激光測距;機器人塔式起重機;自動升降系統(tǒng)
1.導(dǎo)言
世界上許多國家的建設(shè)有競爭力的建筑技術(shù)和材料工程的進步推動高層建筑和摩天大樓。阿聯(lián)酋,例如,正在建設(shè)'迪拜塔',這將是一個800多米的世界最高的,美國正在建立“自由塔”約540米的高度,韓國還計劃在龍山和塔仁川松島建立標(biāo)志性建筑。據(jù)孫鐘康,負(fù)責(zé)的迪拜塔項目,超過1000米的建設(shè)項目經(jīng)理是在目前的施工技術(shù)范圍,考慮到施工技術(shù)的發(fā)展速度,建設(shè)高度超過4000米將在50年內(nèi)可行。塔式起重機使用量已大幅上升之后,每年全球Manhattanization趨勢。表1顯示了從2001年至2005年每年塔式起重機在韓國使用的增幅率。
表1 2001年年度至2005年塔式起重機在韓國使用的增加率
年份
2001
2002
2003
2004
2005
塔式起重機的數(shù)量
2104
2951
3100
2985
3278
年均增長率
–
40.3%
5.0%
??3.7%
9.8%
表2預(yù)期減少解除機器人采用建筑起重機系統(tǒng)的時間
研究員
起重機類型
建議系統(tǒng)
測試方法
在取消的時間減少
埃弗里特和斯洛克姆
移動式起重機
監(jiān)控系統(tǒng)
現(xiàn)場測試
16%–21%
羅森菲爾德
塔吊
一般概念機器人塔式起重機
小規(guī)模的實驗室測試使用的是龍門起重機
15%–50%
Lee等
塔吊
監(jiān)控系統(tǒng)
現(xiàn)場測試
9.9%–38.9%
在這項研究中,我們提出塔式起重機使用激光技術(shù)和報告的室內(nèi)和室外的可行性測試結(jié)果的提升路徑跟蹤系統(tǒng)。擬議的系統(tǒng)包括:兩個核心模塊的解除路徑規(guī)劃模塊和解除路徑跟蹤模塊?;咀鳂I(yè)的概念是相似的GPS汽車如圖所示導(dǎo)航系統(tǒng)。
如圖1:
圖1運行過程中的機器人塔式起重機
擬議的工作過程假定施工現(xiàn)場部署1的BIM(建筑信息模型)的過程。首先,系統(tǒng)收到的材料標(biāo)識符解除從一個中央數(shù)據(jù)庫存儲了施工進度和3D的BIM模型。帶有集成全球定位系統(tǒng)和RFID讀取器領(lǐng)域的工人發(fā)現(xiàn)的材料的升降機從料場(圖1(a))。起重路徑是使用作為出發(fā)點和從作為目標(biāo)位置的中央數(shù)據(jù)庫(圖1安裝位置放養(yǎng)材料位置(b)項)。一旦虛擬路徑是由解除路徑規(guī)劃模塊生成,因此移動塔式起重機(圖1(c)項)。實際路徑,但是,可能是不同的道路,由于計劃的不同纏繞電纜或解除的材料重量電纜的長度變化是取消這些變量。這些差異可能導(dǎo)致安全事故,因此,解除監(jiān)管的實際路徑是至關(guān)重要的,如果這些分歧已偵破的解除路徑規(guī)劃模塊必須立即發(fā)送修改計劃路徑塔式起重機(圖1(d)項)。起重路徑規(guī)劃方法,取得了很大進展。
2.以前的研究
目前已在努力制定一個高層建筑施工機器人系統(tǒng)。主要的動機包括在工人,由于低出生率,在技術(shù)工人的數(shù)量減少數(shù)量減少,以及需要改進生產(chǎn)力和建設(shè)進程。在SMART(清水制造系統(tǒng)的先進機器人技術(shù))系統(tǒng)是一個完全自動化的高層建筑建設(shè)系統(tǒng)。機器人全站儀由幾個電機和非常敏感的光學(xué)傳感器。因此,即使其價格下跌了,機器的耐用性需要進行檢查。表3總結(jié)了長處和考慮的替代性的問題。
表3 考慮的替代性和問題
考慮替代
強項
問題
機器視覺
相對便宜
不準(zhǔn)確
非常敏感,室外光照條件不符
待盲點問題
RTK技術(shù),國內(nèi)禁止的貨物
精確的
非常昂貴
受電力供應(yīng)問題
除與鉤塊信號干擾問題
阿配對GPS系統(tǒng)
廉價
電力供應(yīng)問題
除與鉤塊信號干擾問題
單一的激光測量裝置
相對便宜和簡單
待盲點問題
絞車上的一個電位器
相對便宜
不準(zhǔn)確
阿機器人全站儀
精確的
非常昂貴
待盲點問題
不耐用
在審查了各類最新的傳感器技術(shù),我們發(fā)現(xiàn)有相對便宜,耐用,準(zhǔn)確的激光可以在我們的系統(tǒng)使用的傳感器。除了激光傳感器,我們的系統(tǒng)使用了編碼器和加速計來測量旋轉(zhuǎn)角度。我們首先解釋這些傳感器的工作,并描述選定激光模塊的特點,更多的細(xì)節(jié)。
3.建議
本研究提出了作為一個機器人塔式起重機,這是該起重系統(tǒng)和旋轉(zhuǎn)組成部分可控鉤塊解除路徑跟蹤系統(tǒng)。如導(dǎo)言解釋,提升系統(tǒng)是由一解除路徑規(guī)劃系統(tǒng)和解除路徑跟蹤系統(tǒng)。阿旋轉(zhuǎn)控制鉤塊是鉤塊可以旋轉(zhuǎn)解除材料,理想的角度,以適應(yīng)兩欄之間的材料后,取消到目標(biāo)位置。我們已經(jīng)開發(fā)了旋轉(zhuǎn)控制鉤塊。圖。二是發(fā)達旋轉(zhuǎn)圖片可控鉤塊。它不是完全自動化,但遠(yuǎn)程通過在一個大樓的頂層工人控制。
圖2旋轉(zhuǎn)可控鉤塊
本研究的重點是提升路徑跟蹤系統(tǒng)使用激光儀器來測量直線距離和一個編碼器和加速計來測量水平和垂直角度。這項建議制度,適用于塔式起重機和變幅起重機略有變化。在塔式起重機情況下,兩個激光裝置和一個編碼器使用(圖3(a))。一個激光設(shè)備,固定的臂和桅桿交集,措施的水平距離(R值)到實時手推車。其他激光設(shè)備連接到一臺車和措施的垂直距離(即Z值)的一個鉤子塊。去年,一個旋轉(zhuǎn)的角度(θ)是衡量一個編碼器上讀取的值傳感器連接到轉(zhuǎn)盤。
圖3擬議的系統(tǒng)上的塔式起重機安裝和變幅起重機
(a)擬議系統(tǒng)塔式起重機安裝 (b)擬議的系統(tǒng)上的變幅起重機安裝
在起重機專家咨詢,我們了解到,最安全的方式操作塔式起重機將朝著一個方向的起重材料,然后在另一個第一:即,在垂直方向上,水平方向則。道路的材料被撤銷,可以由一個3組系列為代表的dimenstional直角坐標(biāo)(x,Y,Z軸)或極坐標(biāo)上(R,θ,z)的,從收到的激光裝置。 x的定義,y和z在不同的系統(tǒng)上開發(fā)的原點定義(例如,經(jīng)營者的塔式起重機或材料庫存地點客艙)而定。我們的系統(tǒng)接收來自傳感器的數(shù)據(jù)極坐標(biāo)。這些極坐標(biāo)值可以很容易地轉(zhuǎn)換成直角坐標(biāo)值使用的三角。對于變幅起重機,又沒有車,水平距離可以衡量衡量一個臂傾角。在一個變幅起重機,激光設(shè)備,編碼器的情況,并使用一個加速計(圖3(b)項)。一個激光設(shè)備連接到一個變幅舉報吊臂來衡量的垂直距離為一鉤塊(在z值)。編碼器是用來衡量一個塔式起重機(即θ值)水平旋轉(zhuǎn)角度。此外,一個加速計是用來衡量一個臂(即θ'值)傾角。計算公式如下,其余的值可以通過采用R值上述公式計算出來的。(1) r=l*cosθ′
其中r ——從一個解除物質(zhì)水平距離的臂結(jié)束;
l——一個臂長;
′——臂的斜坡。
這些值被發(fā)送到一個可視監(jiān)控系統(tǒng),視覺悅目,比較有計劃的道路和實際路徑圖4。如果有任何計劃,從實際的路徑偏離道路,計劃路徑實時再生。
圖4 阿激光測量模塊連接到超便攜式電腦
4.范圍和領(lǐng)域的方法適用性試驗
導(dǎo)言中5個潛在的問題,在解除路徑跟蹤系統(tǒng),如下:
- 盲點問題
- 電力供應(yīng)問題
- 龍起重距離問題
- 材料擺動問題
- 耐久性問題。
我們的系統(tǒng)沒有盲點。也沒有任何供電,因為它們是連接到一臺車,或一個,而不是一個鉤塊是在一個移動電纜,掛臂頭傳感器技術(shù)問題。目前已經(jīng)在提供電力的小車市場的商業(yè)產(chǎn)品。因此,本研究對其余三個問題,重點如下核查地盤我們的制度的可行性:
–是可行的測量在100-200米的距離?
–是盡可能精確的測量,即使材料是由風(fēng)或搖擺,還是由于慣性?
–是否有灰塵,如天氣條件或外部因素造成的其他問題?
首先,適用范圍和允許的誤差范圍的定義進行了實驗。這項研究的范圍有限的樓宇低于200米,因為在城市建筑物一般不超過200米實驗共進行激光設(shè)備,只是因為有一些外部因素影響的編碼器或加速度計的準(zhǔn)確性。在激光器件允許誤差限度定在10厘米鑒于激光裝置的精度和材料的準(zhǔn)確位置,即使是錯誤的方向50厘米,可能是接受的,因為材料通常在寬度超過30厘米。實驗共進行了三個不同的地方。第一個實驗是在室內(nèi)進行的外來環(huán)境變量(包括光線條件下),可以很容易地控制,測試的激光裝置的整體表現(xiàn)。二是做戶外測試的室外環(huán)境和長途測量精度的影響。然后,在現(xiàn)場進行試驗,發(fā)現(xiàn)任何意外的因素。
5.選擇激光裝置
為了選擇一個激光傳感器適合我們的需要,我們采訪了12個建設(shè)機器人專家 - 7來自學(xué)術(shù)界和業(yè)界的5個。以下九個考慮因素作為重要的討論:實時測量距離,最大可測距離,誤差范圍,激光安全性,耐久性,與其他設(shè)備,體積,重量的兼容性和價格。表4顯示了9個因素的名單和每個因素的激光裝置,我們幾位候選人中選出(MDL公司LaserAce ?即時R150)的值。沒有太多的候選人能夠滿足我們的標(biāo)準(zhǔn)。由于開發(fā)的,只有少數(shù)激光想辦法進行實時1萬元以下的時間測量。此外,有更少的設(shè)備,小到可以連接到一個手推車,有一個裝置,測量數(shù)據(jù)傳輸?shù)狡渌O(shè)備。
表4 選擇一個激光設(shè)備的標(biāo)準(zhǔn)
激光模塊
軍事分界線LaserAce ?即時R150
實時測量
可能
最大可測距離(反射時獨家使用)
600?m
精度
100?mm
激光安全
Class 1
耐久性(IP代碼,耐久性)
IP67
與其它設(shè)備的兼容性
RS232, USB
尺寸(長×寬×高)
103?×?54?×?38?mm3
重量(kg)
0.26
價格
約 $3000
激光安全分為標(biāo)準(zhǔn)化,階級和階層人數(shù)降低,更好的安全。例如,第1類設(shè)備的安全比第2類的。對于電子設(shè)備,IP代碼耐久性用于代表罩周圍的灰塵和液體電子設(shè)備環(huán)保。的第一個IP地址位代表對固體物體的保護(如灰塵),第二個對液體保護。第一個6位數(shù)字意味著具有完善的設(shè)備,而第二次對7位是指設(shè)備的證明是完全液體固體物體的保護。因此,IP 67代表了最好的耐久性。例如,一個產(chǎn)品的額定等級IP54,我們考慮。這意味著,該產(chǎn)品可能維持在高水損害大雨條件。另一方面,軍事分界線LaserAce ?即時R150,我們選擇的產(chǎn)品,額定等級IP67,因此是完全防塵,防水。 與其他設(shè)備的兼容性是衡量的數(shù)量和端口的一個激光設(shè)備支持的類型。許多人1萬元以下激光測量設(shè)備有內(nèi)置的數(shù)據(jù)指標(biāo),但沒有一個單獨的數(shù)據(jù)端口,因此,不可能發(fā)送測量數(shù)據(jù)。另一方面,軍事分界線LaserAce ?即時R150可以把數(shù)據(jù)傳送通過RS232和USB接口的個人電腦,盡管它記錄自己的數(shù)據(jù)缺乏。因此我們的研究人員開發(fā)出一種單獨的數(shù)據(jù)記錄軟件應(yīng)用程序,可以傳輸和存儲測量數(shù)據(jù)傳輸?shù)経MPC(超級移動個人計算機實時)。圖5顯示了激光模塊連接到超便攜式電腦。
圖5 可視化監(jiān)測系統(tǒng)
6.實驗一 - 戶外測試
在室外實驗,我們試圖找出錯誤和系統(tǒng)的應(yīng)用程度,潛在的問題地盤,因為錯誤可能發(fā)生由于激光射線的干擾因素(在不同亮度的對象正由光,干擾測量在光束的路徑,以及夜間環(huán)境)。一般紙板被用作一部分默認(rèn)設(shè)置和測量距離越來越1,5,10,20,50,100和200米室外的實驗表明,測量距離可能只達240米,遠(yuǎn)遠(yuǎn)超過了600米中描述的最大測量距離減去手冊激光測距模塊。但是,當(dāng)進行測量,從200米至240米,一個微妙的調(diào)整,以確保垂直度,需要,有時是無法衡量的距離。高達200米的地方進行測量的,測量誤差距離為10厘米或不到0.05和95%置信水平顯著性概率(表6)少。在晚間工作的審議,進行試驗,太陽落山后,但與室內(nèi)試驗,測量是不可能的,由于從街燈干擾。
表6. 室外測試結(jié)果 — 直線運動
距離(米)
最大誤差
模式
平均
標(biāo)準(zhǔn)差
t
自由度
顯著性水平(單尾)
1
0.06
1.04
1.04
0.009
897.61
69
0.000
5
0.07
5.04
5.04
0.009
4360.18
69
0.000
10
0.04
10.02
10.02
0.013
6586.96
69
0.000
20
0.06
20.03
20.03
0.008
22,077.32
69
0.000
50
0.03
50.00
50.00
0.011
36,439.95
69
0.000
100
0.09
99.98
100.01
0.032
26,141.91
69
0.000
150
??0.09
149.99
149.99
0.031
40,832.96
69
0.000
200
??0.12
199.91
199.92
0.022
76,565.48
69
0.000
7.實驗二 - 實地測試
現(xiàn)場試驗在一塔,天安,Chungchungnamdo起重機租賃公司進行。在現(xiàn)場試驗是確定的揮桿問題,這可能對實際情況和其他突發(fā)事件發(fā)生附加激光設(shè)備的手推車的原意。但是,我們不能這樣做,因為我們的試驗計劃,由于管理人員對安全問題的關(guān)注。相反,激光裝置設(shè)置在地上,被取消的材料是綁在鉤來測試鉤擺動的影響(圖6和圖7)。
圖6 白色泡沫板和卷尺連接到一個鉤塊:激光裝置,放在地上,由于安全問題。
圖7 在空中鉤塊
材料可能動搖或擺動控制時,被一輛手推車,鉤塊和轉(zhuǎn)盤運輸?,F(xiàn)場試驗表明,當(dāng)小車和鉤塊的行動中,幾乎沒有發(fā)生搖擺,不像我們一般的期望,因為這種材料被撤銷,是極其沉重的鉤塊的支持,兩個或四個鋼絲繩。當(dāng)轉(zhuǎn)盤轉(zhuǎn)動,但是,對旋轉(zhuǎn)方向擺動發(fā)生因鉤塊慣性和材料。一般而言,風(fēng)的影響也小不像我們所期望的,因為法律規(guī)定必須建設(shè)工作必須停止,如果風(fēng)速超過10米/秒在當(dāng)天的試驗最大風(fēng)速為17米/秒測定的距離在2,5,10,20的距離,離地面36米的手推車。在實驗過程相似,以往實驗,并測量了距離附上一份卷尺的材料證實,被解除。當(dāng)激光設(shè)備無法檢測到一個反射面,它返回了99999錯誤信號。在實驗中,當(dāng)擺動材料出去的探測范圍,由于強風(fēng),激光器件返回一個錯誤的信號。當(dāng)擺動的材料,通過激光檢測范圍獲得通過,立即感受到了物質(zhì)和恢復(fù)正常的值。在數(shù)據(jù)分析,錯誤信號被過濾掉了。表7顯示的結(jié)果。結(jié)果表明,測量是可能的錯誤方向每測量部分不到10厘米。
表7 場測試 — 垂直運動
距離(米)
最大誤差
模式
平均
標(biāo)準(zhǔn)差
t
自由度
顯著性水平(單尾)
2
0.10
2.07
2.07
0.035
??3.016
9
0.0075
5
0.13
5.07
5.07
0.05293
??1.972
9
0.0400
10
0.08
10.05
10.05
0.03018
??5.238
9
0.0005
20
0.11
20.07
20.07
0.04864
??2.016
9
0.0375
36
0.09
36.06
36.06
0.02224
??6.400
9
0.0000
激光束直去,而且在一定距離擴散。由于這種效果,它可以測量距離,即使反射板是一點點從中心(圖8)引入歧途。為了確定在何種距離時,可以測量材料的波動和決定的反射板適當(dāng)?shù)拇笮〕潭壬?,我們進行更多的試驗。我們逐漸從中心的反射板外,直到激光設(shè)備無法測量的距離。如表8所示,激光器件工作,直到反射董事會關(guān)閉約0.15米(15厘米)的中心。換句話說,測量仍然有可能甚至在材料搖擺達到約0.15米(15厘米)。
圖8 可測量的水平范圍
表8 戶外測試結(jié)果—搖擺運動
距離(米)
0.5
5
10
20
50
150
200
最大。衡量的水平范圍(米)
0.665
0.660
0.668
0.667
0.678
0.692
0.693
然而,即使是小秋千可能導(dǎo)致很大的偏差和鉤塊很大影響時,電纜長度達200米一個可能的解決這個問題,正如以前所說的在上一節(jié),是附加一個機器人帶電動多上,而不是一個固定的角度激光裝置和一個“棱鏡”的鉤塊,而不是一個手推車軸運動全站儀反射。今天,機器人全站儀是能自動追蹤棱鏡棱鏡,即使一秒鐘消失了。但是,他們?nèi)匀环浅0嘿F,并有可能很容易破碎時,上車,而不斷震動,動搖上。另一個解決辦法是擴大反射板,但有一個大小的限制,什么可以附加到一個鉤子塊。還可以反射角度偏離和反射光束可能無法返回到激光設(shè)備。在反射角可以解決的問題在一定程度上使用“角立方體retroflector?!奔捉橇⒎襟wretroflector(或一個角落里立方體或在短角反射器)是一個光學(xué)設(shè)備(反射),反映來自任何方向的光線回到他們的源使用三個正交放置鏡子,不論對角立方體方向。然而,一個角落立方體不是因為它限制在可能的設(shè)置規(guī)模和灰塵和雨水問題的最終解決方案。另一種解決方案是使用一種算法,進行無意義的數(shù)據(jù)過濾器。在下一節(jié)“的算法來解決揮桿問題”,將討論和深入的討論這個問題。
8.一種算法,解決問題的秋千
下面的算法,建議處理正確的數(shù)據(jù)則不會傳輸問題。建議的調(diào)整算法采用一種方法,措施,垂直升降矢量值(即取消會員的速度),然后計算并存儲垂直升降值(Z值)使用的速度達到一定的一點,而不是實際的速度測量,如果測出速度偏離設(shè)定的范圍。一般來說,如果水平移動距離是無法衡量的通常是因為激光束不能達到反射板,一輛手推車與地面的距離來衡量,其價值將遠(yuǎn)遠(yuǎn)大于正常值。所建議的算法可以描述如下通過使用偽代碼:
z0 = current z value
z1 = new z value
dt = time interval
velocity1 = (z1 ? z0)/dt // new velocity
vmax = the maximum velocity of a lifted material in a normal situation
if 0 < velocity1 and velocity1 < vmax // a normal case
z0 = z1 // Replace the current z value (z0) with the new z value (z1).
velocity0 = velocity1 // Replace the current velocity value with the new velocity value.
else // an abnormal case
z2 = z0 + (velocity0 dt) // Calculate the assumingly normal z value (vertical location).
velocity0 = (z2 ? z0)/dt // Recalculate and replace current velocity value with new velocity value.
z0 = z2 // Replace the current z value (z0) with the newly calculated z value (z2).
end if
關(guān)于允許的速度范圍,它預(yù)計將超過1.5公里的最大價值減去/小時取消實際上是在兩個不同的建筑地盤的調(diào)查速度的平均值分別為0.5公里/小時,0.86公里每小時,其標(biāo)準(zhǔn)偏差分別為0.3公里/小時,0.6公里每小時分別。然而,更多的數(shù)據(jù)需要有一個可靠的范圍內(nèi)允許的速度,因為這個結(jié)果是從某一天工作的試驗和對某些解除任務(wù)(鋼筋和鋁的具體形式)。
9.結(jié)論
本研究提出了自動解除機器人路徑塔式起重機,它使用后,考慮機器視覺,全球定位系統(tǒng),一個單一的激光裝置等的建議的可行性,通過激光器件,編碼器和一個加速度跟蹤系統(tǒng)在建筑地盤系統(tǒng)通過各種實驗驗證。
主要考慮因素的解除路徑跟蹤系統(tǒng)包括1)可能高達200米,2)沒有盲點防止跟蹤,3)擺動問題的審議中長距離跟蹤,4)穩(wěn)定的電力供應(yīng),以及5)對耐久性戶外接觸粉塵或雨。在實驗分三個階段進行核實適用性強的一所建議的系統(tǒng)的施工現(xiàn)場。該實驗的結(jié)果如下。
塵?;蛱鞖鈼l件并不妨礙在建議的方案因素。激光設(shè)備可以讀取的距離時,反射是灰塵或潮濕的。此外,該裝置是灰塵和水隔音。如果下雨或下雪嚴(yán)重,塔無法操作。因此,惡劣的天氣條件不是我們所關(guān)心。然而,塵埃,氣候條件,不斷振動和其他突發(fā)因素的地盤就擬議制度的效果有待進一步檢驗。雖然該系統(tǒng)的可行性進行了驗證,通過各種測試,以保證安全和在實際建設(shè)項目建議制度的適用,應(yīng)測試全在不久的將來大規(guī)模測試。此外,我們不能忽視的問題,可能會完全不在建設(shè)的技術(shù)問題和部署現(xiàn)場塔式起重機的機器人,如某建筑物或勞動法規(guī)相沖突的擬議吊車系統(tǒng)采用機器人。我們現(xiàn)在正在建設(shè)一個全面系統(tǒng)的過程和規(guī)劃部署在真正的建設(shè)項目在明年。我們期望我們能夠識別和解決在這個全面的系統(tǒng)測試過程中這些問題和其他實際問題。
畢業(yè)設(shè)計(論文)外文資料翻譯
院 (系): 機電信息系
專 業(yè):機械設(shè)計制造及其自動化
班 級: B070203
姓 名: 韋力
學(xué) 號: B06020822
外文出處: 國外英文期刊
附 件:1. 原文 2. 譯文
2011年5月
Laser technology-based robot path-tracking system lifting tower crane
Abstract:With the increasing number of high-rise buildings and also the use of tower cranes, their number now tops 3,000 a year in South Korea. Therefore, the working area and high-repetition-the work of the security problems the efficiency of the lifting of materials to high places process. As an alternative to the traditional tower cranes, we are developing a robot tower crane system. Through the development of a robotic crane system, we expect productivity growth of 9.9% -50% based on the improvement of the previous research findings. In this study, we studied the feasibility of laser-, technology-based robot path lifting tower crane system, tracking system. There are efforts to develop robots tower cranes, but they can travel through the pre-planned path or just blind to stop the problem. We propose to use laser devices, the encoder robot tower crane system, and an accelerometer, and tested in the indoor, outdoor, and swing the feasibility conditions. In this process, we have developed a software application capable of receiving and recording data from the laser equipment. Experimental results show the robot in a variety of outdoor conditions, tower cranes, the feasibility of the proposed abolition of the path tracking system. Several restrictions have also been recognized.
Key words: laser ranging; robot tower crane; Auto-Lift System
1.Introduction
Many of the world nation-building and competitive construction techniques and materials engineering to promote the progress of high-rise buildings and skyscrapers. United Arab Emirates, for example, is building 'Burj Dubai', this will be a more than 800 meters of the world's highest, the U.S. is to establish a "Freedom Tower" about 540 meters height of South Korea also plans to Yongsan and Songdo, Incheon, Incheon Tower landmark. According to Sun ZHONG Kang, responsible for the Dubai tower project, more than 1000 meters of the construction project manager in the current range of construction technology, taking into account the pace of development of construction technology and building height of more than 4000 meters will be feasible within 50 years. The use of tower cranes have gone up, the annual global Manhattanization trends. Table 1 shows that from 2001 to 2005 annual use of tower cranes in Korea, rates of increase.
Table 1 in 2001 to the year 2005 the use of tower cranes in South Korea the rate of increase
Year
2001
2002
2003
2004
2005
The number of tower cranes
2104
2951
3100
2985
3278
Average annual growth rate of
–
40.3%
5.0%
??3.7%
9.8%
Table 2 is expected to reduce the use of construction cranes lift the robot system, the time
Fellow
Crane types
Recommended system
Test Method
The abolition of less time
Everett and Slocum
Mobile crane
Monitoring System
Field Test
16%–21%
Rosenfeld
Crane
General concept of robot tower crane
Small-scale laboratory tests using a gantry crane
15%–50%
Lee, etc.
Crane
Monitoring System
Field Test
9.9%–38.9%
In this study, we propose the use of laser technology, tower cranes and report the feasibility of indoor and outdoor test results raise the path tracking system. The proposed system includes: two core modules of the lifting of the path planning module and the lifting of the path tracking module. The concept of the basic operation is similar as shown in Figure GPS car navigation systems.
Figure 1:
Figure 1 during operation of the robot tower cranes
The proposed construction site of the work process assumes that the deployment of one of the BIM (Building Information Model) process. First, the system receives the material identifier to lift from a central database to store the construction progress and 3D-BIM model. With an integrated global positioning systems and RFID readers workers in the field of materials found in a lift from the yard (Figure 1 (a)). Lifting path is used as a starting point and from the target location as a central database (Figure 1 stocked materials, installation location location (b) above). Once the virtual path is generated by the lifting of the path planning module, so mobile tower cranes (Figure 1 (c) above). The actual path, however, may be a different path, as the program wound cable or lifting of the different weight of the material change in the length of cable is to remove these variables. These differences may lead to security incidents, therefore, the actual path of deregulation is essential, and if these differences have been detected, the lifting of the path planning module must immediately send the revised plan the path of tower cranes (Figure 1 (d) above). Lifting path planning method, has made great progress.
2. Previous research
Has Currently in efforts to develop a high-rise building construction robot system. The main motivation for including in the workers, due to the low birth rate, decrease in the number of workers in technology reduce the number of and the need to improve productivity and building process. In the SMART (Shimizu Manufacturing system's advanced robot technology) system is a fully automated high-rise building construction system. Robotic total station by several motor and a very sensitive optical sensor. Therefore, even if their prices, and the durability of the machine needs to be checked. Table 3 summarizes the strengths and consider alternative questions.
Table 3 and issues to consider alternative
Consider alternative
Strengths
Issue
Machine Vision
Relatively inexpensive
Inaccurate
Is very sensitive, does not match outdoor light conditions
The problem to be blind spots
RTK technology, domestically prohibited goods
Accurate
Very expensive
By the power supply problems
In addition to signal interference problems with the hook block
A matching GPS System
Cheap
Power supply
In addition to signal interference problems with the hook block
A single laser measuring device
Relatively cheap and simple
The problem to be blind spots
Winch on a potentiometer
Relatively inexpensive
Inaccurate
A robotic total station
Accurate
Very expensive
The problem to be blind spots
Non-durable
After reviewing the various types of the latest sensor technology, we found a relatively inexpensive, durable, accurate laser can be used in our system sensors. In addition to laser sensors, our system uses encoders and accelerometers to measure the rotation angles. We first explain these sensors work, and describe the characteristics of the selected laser modules, more details.
3. Proposed system
This study proposes a robot as a tower crane, which is the lifting system and the rotating components of controllable lifting hook block the path tracking system. Such as the introduction explained to upgrade system is a lifting of the path planning system and the lifting of the path tracking system. A rotary control is a hook block hook block can be rotated to lift materials, the ideal angle to suit the material between the two columns after the abolition of the target location. We have developed a rotary control hook block. Fig. Second, rotate the picture developed controllable hook block. It is not fully automated, but the remote through a top-level workers in control of the building.
Figure 2 rotating hooks control block
The focus of this study is to raise the path tracking system uses laser instruments to measure the linear distance and an encoder and accelerometer to measure the horizontal and vertical angles. The proposed system is suitable for luffing crane tower crane and a slight change. In the case of tower cranes, two laser device and an encoder to use (Figure 3 (a)). A laser device, a fixed arm and mast intersection, of the horizontal distance (R value) to the real-time trolley. Other laser device is connected to a vehicle and measures the vertical distance (ie, Z values) of a hook block. Last year, a rotation angle (θ) is a measure of an encoder to read the value of the sensors connected to the turntable.
Figure 3 of the proposed tower crane on the system installation and luffing crane
(A) the proposed system of tower crane installation (b) the proposed system on a luffing crane installation
In the crane expert advice, we understand that the safest way to operate a tower crane will move in the direction of lifting material, and then in another first: namely, in the vertical direction, horizontal direction is. The road material is removed, can be a Group 3, represented by dimenstional Series Cartesian coordinates (x, Y, Z axis) or the polar coordinates (R, θ, z), from receipt of the laser device. x The definition, y and z in the different systems developed on the origin of the definition (for example, the operator of the tower crane or material inventory cabin location) may be. Our system receives the data from the sensors in polar coordinates. The polar coordinates can be easily converted into rectangular coordinates using triangulation. For the luffing crane, and no car to measure a horizontal distance can be measured arm angle. In a luffing crane, laser equipment, encoders, and to the use of an accelerometer (Figure 3 (b) above). A laser device is connected to a luffing crane to report to measure the vertical distance of a hook block (in the z value). Encoder is used to measure a tower crane (ie, θ value) the level of rotation angles. In addition, an accelerometer is used to measure an arm (ie, θ 'values) inclination. The formula is as follows, and the rest through the use of R value can be calculated from the value of the above formula. (1) r = l * cosθ '
Where r - the lifting of material from a horizontal distance of the arm end; l - an arm length; θ'- arm of the slopes.
These values are sent to a video monitoring system, visually pleasing to the eye, comparing the planned path and actual path of Figure 4. If there are any plans to deviate from the actual path of the road, plan the path real-time regeneration.
Figure 4 A laser measurement module connected to the Ultra-Mobile PCs
4.The scope and applicability of the field test methods
Introduction to the five potential problems, the lifting of the path tracking system, as follows:
- Blind spot problem
- Power supply problems
- Long distance problem Lifting
- Material swing problems
- Durability.
Our system is not blind. Nor is there any electricity, because they are connected to a car, or a, instead of a hook block in a moving cable, the first sensor arm hanging technical problems. Now the car market in the provision of electricity in commercial products. Therefore, this study on the remaining three issues, focused on the following verification of the site of our system's viability:
- It is feasible to measure the distance of 100-200 meters?
- Is measured as accurately as possible, even if the material is made from wind or swing, or because of inertia?
- Whether there is dust, such as weather conditions or other problems caused by external factors?
First, the scope and range of error allowed the definition of the experiment. This study a limited range of buildings less than 200 meters, because the buildings in the city is generally not more than 200 m experiments were carried out laser equipment, simply because there are some external factors affect the encoder or the accuracy of the accelerometer. The margin of error in the laser device is allowed to be set at 10 cm in view of the accuracy of laser devices and materials, the exact location, even in the wrong direction, 50 cm may be acceptable, because the material is usually more than 30 centimeters in width. Experiments were carried out in three different places. The first experiment was carried out outside the indoor environment variables (including the light conditions) and can be easily controlled, test the overall performance of laser devices. The second is to do the outdoor environment and outdoor testing long-distance measurement accuracy. Then, in the field tests, found no unexpected factors.
5.Choose laser system
In order to select a laser sensor suited to our needs, we interviewed 12 experts in the building of robots - 7 from academia and industry 5. The following nine factors for consideration as an important discussion: Real-time measurement of distance, maximum distance measurement error range, laser safety, durability, and other equipment, volume, weight, compatibility and price. Table 4 shows the list of nine factors, and each factor of laser devices, we have to elect the candidates (MDL's LaserAce ? Instant R150) value. There is not much a candidate can meet our standards. As the development of only a few laser-think of a way less than 10,000 yuan in real-time time measurement. In addition, there are fewer devices, small enough to be connected to a trolley, there is a device, measurement data transfer to other devices.
Table 4 to select a standard laser equipment
Laser Module
Military Demarcation Line LaserAce ? Instant R150
Real-time measurement
May
Maximum measuring distance (reflection, when exclusive use)
600?m
Accuracy
100?mm
Laser Safety
Class 1
Durability (IP code, durability)
IP67
Compatibility with other devices
RS232, USB
Dimensions (L × W × H)
103?×?54?×?38?mm3
Weight (kg)
0.26
Price
About $ 3000
Laser Safety is divided into standardized, reducing the number of classes and strata, and better security. For example, the safety of Class 1 equipment, than the first two classes. For electronic equipment, IP code for durability, used to represent the surrounding dust cover and liquid electronic equipment environmental protection. The first IP address of a representative of the protection of solid objects (such as dust), the second liquid protection. The first 6 digits means having a sound device, while the second refers to the seven devices proved to be completely liquid solid objects of protection. Therefore, IP 67 represents the best durability. For example, a product of the rated grade IP54, our consideration. This means that the product may be maintained at a high-water damage to heavy rain conditions. On the other hand, the military demarcation line LaserAce ? Instant R150, we have chosen the product, rated grade IP67, therefore, completely dust and waterproof. Compatibility with other devices is a measure of the number and the port of a laser device support type. In 1 million or less in many laser measuring devices have built-in data indicators, but not a separate data port, therefore, impossible to send the measured data. On the other hand, the military demarcation line LaserAce ? Instant R150 can send data through RS232 and USB interface to personal computers, despite its record of its own lack of data. Therefore, our researchers have developed a stand-alone data logging software applications that can transmit and store measurement data transmitted to the UMPC (ultra-mobile personal computer real-time). Figure 5 shows a laser module to connect to the Ultra-Mobile PCs.
Figure 5 Visualization Monitoring System
?
?
6.Experiment 1 - Outdoor Test
In the outdoor experiment, we tried to find errors and systematic application of the degree of potential problem sites, because the error may occur due to the interference of laser radiation factors (in the brightness of the object being examined by a different light, interference measurements in the beam path, as well as night-time environment, ). Cardboard is used as part of a general default settings, and measure distances more 1,5,10,20,50,100 and 200-meter outdoor experiments show that measuring the distance may only be up to 240 meters, far exceeding the 600 meters as described in Maximum measuring distance minus the manual laser rangefinder module. However, when measured from 200-240 m, a subtle change in order to ensure perpendicularity, needs, and sometimes is impossible to measure distance. Up to 200 meters measured, the measurement error distance of 10 centimeters or less than 0.05 and 95% confidence level significance probability (table 6) little. Consideration of work in the evening to carry out tests, after sunset, but laboratory testing, measurement is impossible, due to interference from the street lights.
Table 6. Outdoor test results - Linear Motion
Distance (m)
Maximumerror
Pattern
Average
Standard deviation
t
DOF
Significance level (one-tailed)
1
0.06
1.04
1.04
0.009
897.61
69
0.000
5
0.07
5.04
5.04
0.009
4360.18
69
0.000
10
0.04
10.02
10.02
0.013
6586.96
69
0.000
20
0.06
20.03
20.03
0.008
22,077.32
69
0.000
50
0.03
50.00
50.00
0.011
36,439.95
69
0.000
100
0.09
99.98
100.01
0.032
26,141.91
69
0.000
150
??0.09
149.99
149.99
0.031
40,832.96
69
0.000
200
??0.12
199.91
199.92
0.022
76,565.48
69
0.000
7. Experiment 2 - field test
Field test in a tower, Cheonan, Chungchungnamdo crane rental companies. In the field test is to identify the swing issue, which may be the actual situation, and other unexpected incidents in the attached laser equipment trolley intended. However, we can not do that, because our pilot scheme, due to management of security issues. On the contrary, the laser device installed in the ground, has been canceled material is tied to the hook swing hook to test the impact (Figure 6 and Figure 7).
Figure 6 white foam board and tape connected to a hook block: laser device, placed on the ground, due to security issues
Figure 7 in the air, hook block
Materials may shake or swing control, was a trolley, hook block and wheel transportation. Field tests showed that when the car and hook block operations, almost no swing, unlike our hope that, because this material was withdrawn, it is extremely heavy hook block support, two or four wire rope. When the turntable rotation, however, rotating hook blocks of the direction of swing occurred because of inertia and materials. In general, the small impact of wind like we had hoped, because the law required the construction work must stop, if the wind speed over 10 meters / second test day, maximum wind speed of 17 m / s measured distance of 2,5 , 10,20 the distance between the ground 36 meters from the trolley. During the experiment, similar to the previous experiment, and measured the distance the material attached to a tape measure confirmed to be dismantled. When the laser equipment can not detect a reflective surface, it returned to the 99999 error signal. In the experiment, when the swing out of the detection range of materials, due to strong winds, the laser device to return a wrong signal. When the swing of material, by laser detection range is passed, immediately felt the material and return to normal values. In the data analysis, the error signal is filtered out. Table 7 shows the results. The results showed that measurement is possible in the wrong direction less than 10 cm for each measurement part.
Table 7 Field Test - Vertical Movement
Distance (m)
Maximum error
Pattern
Average
Standard deviation
t
DOF
Significance level (one-tailed)
2
0.10
2.07
2.07
0.035
??3.016
9
0.0075
5
0.13
5.07
5.07
0.05293
??1.972
9
0.0400
10
0.08
10.05
10.05
0.03018
??5.238
9
0.0005
20
0.11
20.07
20.07
0.04864
??2.016
9
0.0375
36
0.09
36.06
36.06
0.02224
??6.400
9
0.0000
Laser beam go straight, but also in the proliferation of a certain distance. Because of this effect, it can measure distances, even if the reflector plate is a little bit from the center (Figure 8) astray. In order to determine what kind of distance, can be measured fluctuations in th