七年級數學下學期期中試卷(含解析) 蘇科版5
《七年級數學下學期期中試卷(含解析) 蘇科版5》由會員分享,可在線閱讀,更多相關《七年級數學下學期期中試卷(含解析) 蘇科版5(19頁珍藏版)》請在裝配圖網上搜索。
江蘇省鹽城市東臺市八校2015-2016學年聯考七年級(下)期中數學試卷 一、選擇題(本大題共8小題,每小題3分,共24分.在每小題所給出的四個選項中,恰有一項是符合題目要求的,請將正確選項前的字母代號填涂在答題卡相應位置上) 1.下列計算正確的是( ?。? A.x﹣2x=x B.x6x3=x2 C.(﹣x2)3=﹣x6 D.(x+y)2=x2+y2 2.已知是方程kx﹣y=3的一個解,那么k的值是( ?。? A.2 B.﹣2 C.1 D.﹣1 3.下列能平方差公式計算的式子是( ?。? A.(a﹣b)(b﹣a) B.(﹣x+1)(x﹣1) C.(﹣a﹣1)(a+1) D.(﹣x﹣y)(﹣x+y) 4.如圖,△ABC中,∠ACB=90,沿CD折疊△CBD,使點B恰好落在AC邊上的點E處,若∠A=25,則∠BDC等于( ?。? A.44 B.60 C.67 D.70 5.根據圖中數據,計算大長方形的面積,通過不同的計算方法,你發(fā)現的結論是( ?。? A.(a+b)(a+2b)=a2+3ab+2b2 B.(3a+b)(a+b)=3a2+4ab+b2 C.(2a+b)(a+b)=2a2+3ab+b2 D.(3a+2b)(a+b)=3a2+5ab+2b2 6.下列等式由左邊至右邊的變形中,屬于因式分解的是( ?。? A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣4+3x=(x+2)(x﹣2)+3x C.x2﹣9=(x+3)(x﹣3) D.(x+2)(x﹣2)=x2﹣4 7.如圖,∠1,∠2,∠3,∠4是五邊形ABCDE的外角,且∠1=∠2=∠3=∠4=68,則∠AED的度數是( ?。? A.88 B.92 C.98 D.112 8.若M=(a+3)(a﹣4),N=(a+2)(2a﹣5),其中a為有理數,則M、N的大小關系是( ?。? A.M>N B.M<N C.M=N D.無法確定 二、填空題(本大題共10小題,每小題3分,共30分.不需寫出解答過程,請把答案直接填寫在答題卡相應位置上) 9.展開計算:(x+3)2=______. 10.一個正多邊形的內角和是1440,則這個多邊形的邊數是______. 11.已知AD是△ABC的中線,且△ABC的面積為3cm2,則△ADB的面積為______cm2. 12.若4x2+kx+9是完全平方式,則k=______. 13.寫出二元一次方程3x+y﹣8=0的正整數解共有______對. 14.如圖,直線a∥直線b,將一個等腰三角板的直角頂點放在直線b上,若∠2=34,則∠1=______. 15.若a﹣b=﹣2,則(a2+b2)﹣ab=______. 16.今年植樹節(jié)那天,學校組織七年級(2)班的11名同學去公園植樹,規(guī)定男生每人植4棵,女生每人植3棵,李老師分給第一小組40棵樹的任務.已知該組有男生x人,女生y人,列出關于x、y的二元一次方程組為:______. 17.已知x2+x﹣1=0,則x3﹣2x+4的值為______. 18.有3張邊長為a的正方形紙片,4張邊長分別為a,b(b>a)的矩形紙片,5張邊長為b的正方形紙片,從其中取出若干張紙片,每種紙片至少取一張,把取出的這些紙片拼成一個正方形(按原紙張進行無隙、無重疊拼接),則拼成的正方形的邊長最長可以為______. 三、解答題(本大題共8小題,共66分.解答應寫出文字說明、證明過程或演算步驟) 19.化簡: (1)(m﹣2n)(m+2n) (2)(x+3)(x﹣3)﹣(x﹣2)2. 20.分解因式: (1)﹣36x2+12xy﹣y2 (2)(a+b)2﹣25(a﹣b)2. 21.(10分)(2016春?東臺市期中)如圖,每個小正方形的邊長為1個單位,每個小方格的頂點叫格點. (1)畫出△ABC的AB邊上的中線CD; (2)畫出△ABC向右平移4個單位后得到的△A1B1C1; (3)圖中AC與A1C1的關系是:______; (4)能使S△ABQ=S△ABC的格點Q,共有______個,在圖中分別用Q1、Q2、…表示出來. 22.先化簡,再求值: (1),其中x=﹣3. (2),其中a=2,b=1. 23.如圖,已知AB∥CD,∠ABE和∠CDE的平分線相交于F,∠E=140,請求出∠BFD的度數. 24.已知3x+2?5x+2=153x﹣4,求(x﹣1)2﹣3x(x﹣2)﹣4的值. 25.(10分)(2013秋?膠州市期末)實驗證明,平面鏡反射光線的規(guī)律是:射到平面鏡上的光線和被反射出的光線與平面鏡所夾的銳角相等. (1)如圖,一束光線m射到平面鏡上,被a反射到平面鏡b上,又被b鏡反射,若被b反射出的光線n與光線m平行,且∠1=50,則∠2=______,∠3=______; (2)在(1)中,若∠1=55,則∠3=______,若∠1=40,則∠3=______; (3)由(1)、(2)請你猜想:當兩平面鏡a、b的夾角∠3=______時,可以使任何射到平面鏡a上的光線m,經過平面鏡a、b的兩次反射后,入射光線m與反射光線n平行,請說明理由. 26.(10分)(2012?珠海)觀察下列等式: 12231=13221, 13341=14331, 23352=25332, 34473=37443, 62286=68226, … 以上每個等式中兩邊數字是分別對稱的,且每個等式中組成兩位數與三位數的數字之間具有相同規(guī)律,我們稱這類等式為“數字對稱等式”. (1)根據上述各式反映的規(guī)律填空,使式子稱為“數字對稱等式”: ①52______=______25; ②______396=693______. (2)設這類等式左邊兩位數的十位數字為a,個位數字為b,且2≤a+b≤9,寫出表示“數字對稱等式”一般規(guī)律的式子(含a、b),并證明. 2015-2016學年江蘇省鹽城市東臺市八校聯考七年級(下)期中數學試卷 參考答案與試題解析 一、選擇題(本大題共8小題,每小題3分,共24分.在每小題所給出的四個選項中,恰有一項是符合題目要求的,請將正確選項前的字母代號填涂在答題卡相應位置上) 1.下列計算正確的是( ?。? A.x﹣2x=x B.x6x3=x2 C.(﹣x2)3=﹣x6 D.(x+y)2=x2+y2 【考點】同底數冪的除法;合并同類項;冪的乘方與積的乘方;完全平方公式. 【分析】根據合并同類項,可判斷A,根據同底數冪的除法,可判斷B,根據積的乘方,可安段C,根據完全平方公式,可判斷D. 【解答】解:A、合并同類項系數相加字母部分不變,故A錯誤; B、同底數冪的除法底數不變指數相減,故B錯誤; C、積的乘方等于乘方的積,故C正確; D、和的平方等于平方和加積的二倍,故D錯誤; 故選:C. 【點評】本題考查了同底數冪的除法,熟記法則并根據法則計算是解題關鍵. 2.已知是方程kx﹣y=3的一個解,那么k的值是( ?。? A.2 B.﹣2 C.1 D.﹣1 【考點】二元一次方程的解. 【分析】知道了方程的解,可以把這對數值代入方程,得到一個含有未知數k的一元一次方程,從而可以求出k的值. 【解答】解:把代入方程kx﹣y=3,得: 2k﹣1=3, 解得k=2. 故選:A. 【點評】解題的關鍵是把方程的解代入原方程,使原方程轉化為以系數k為未知數的方程,利用方程的解的定義可以求方程中其它字母的值. 3.下列能平方差公式計算的式子是( ?。? A.(a﹣b)(b﹣a) B.(﹣x+1)(x﹣1) C.(﹣a﹣1)(a+1) D.(﹣x﹣y)(﹣x+y) 【考點】平方差公式. 【分析】由能平方差公式計算的式子的特點為:(1)兩個兩項式相乘;(2)有一項相同,另一項互為相反數,即可求得答案,注意排除法在解選擇題中的應用. 【解答】解:A、(a﹣b)(b﹣a)中兩項均互為相反數,故不能平方差公式計算,故本選項錯誤; B、(﹣x+1)(x﹣1)中兩項均互為相反數,故不能平方差公式計算,故本選項錯誤; C、(﹣a﹣1)(a+1)中兩項均互為相反數,故不能平方差公式計算,故本選項錯誤; D、(﹣x﹣y)(﹣x+y)=x2﹣y2,故本選項正確. 故選D. 【點評】此題考查了平方差公式的應用條件.此題難度不大,注意掌握平方差公式:(a+b)(a﹣b)=a2﹣b2. 4.如圖,△ABC中,∠ACB=90,沿CD折疊△CBD,使點B恰好落在AC邊上的點E處,若∠A=25,則∠BDC等于( ?。? A.44 B.60 C.67 D.70 【考點】直角三角形的性質;翻折變換(折疊問題). 【分析】由△ABC中,∠ACB=90,∠A=25,可求得∠B的度數,由折疊的性質可得:∠CED=∠B=65,∠BDC=∠EDC,由三角形外角的性質,可求得∠ADE的度數,繼而求得答案. 【解答】解:∵△ABC中,∠ACB=90,∠A=25, ∴∠B=90﹣∠A=65, 由折疊的性質可得:∠CED=∠B=65,∠BDC=∠EDC, ∴∠ADE=∠CED﹣∠A=40, ∴∠BDC=(180﹣∠ADE)=70. 故選D. 【點評】此題考查了折疊的性質、三角形內角和定理以及三角形外角的性質.此題難度不大,注意掌握折疊前后圖形的對應關系,注意數形結合思想的應用. 5.根據圖中數據,計算大長方形的面積,通過不同的計算方法,你發(fā)現的結論是( ?。? A.(a+b)(a+2b)=a2+3ab+2b2 B.(3a+b)(a+b)=3a2+4ab+b2 C.(2a+b)(a+b)=2a2+3ab+b2 D.(3a+2b)(a+b)=3a2+5ab+2b2 【考點】多項式乘多項式. 【分析】大長方形的長為3a+2b,寬為a+b,表示出面積;也可以由三個邊長為a的正方形,2個邊長為b的正方形,以及5個長為b,寬為a的長方形面積之和表示,即可得到正確的選項. 【解答】解:根據圖形得:(3a+2b)(a+b)=3a2+5ab+2b2. 故選:D. 【點評】此題考查了多項式乘多項式,弄清題意是解本題的關鍵. 6.下列等式由左邊至右邊的變形中,屬于因式分解的是( ?。? A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣4+3x=(x+2)(x﹣2)+3x C.x2﹣9=(x+3)(x﹣3) D.(x+2)(x﹣2)=x2﹣4 【考點】因式分解的意義. 【分析】根據因式分解的定義:把一個多項式化為幾個整式的積的形式,這種變形叫做把這個多項式因式分解,判斷求解. 【解答】解:A、右邊不是積的形式,故A錯誤; B、右邊不是積的形式,故B錯誤; C、x2﹣9=(x+3)(x﹣3),故C正確. D、是整式的乘法,不是因式分解. 故選:C. 【點評】此題主要考查因式分解的定義:把一個多項式化為幾個整式的積的形式,這種變形叫做把這個多項式因式分解. 7.如圖,∠1,∠2,∠3,∠4是五邊形ABCDE的外角,且∠1=∠2=∠3=∠4=68,則∠AED的度數是( ?。? A.88 B.92 C.98 D.112 【考點】多邊形內角與外角. 【分析】根據多邊形的外角和定理即可求得與∠AED相鄰的外角,從而求解. 【解答】解:根據多邊形外角和定理得到:∠1+∠2+∠3+∠4+∠5=360, ∴∠5=360﹣468=88, ∴∠AED=180﹣∠5=180﹣88=92. 故選:B. 【點評】本題主要考查了多邊形的外角和定理:多邊形的外角和等于180. 8.若M=(a+3)(a﹣4),N=(a+2)(2a﹣5),其中a為有理數,則M、N的大小關系是( ) A.M>N B.M<N C.M=N D.無法確定 【考點】多項式乘多項式. 【分析】把M與N代入M﹣N中計算,判斷差的正負即可得到結果. 【解答】解:∵M﹣N=(a+3)(a﹣4)﹣(a+2)(2a﹣5)=a2﹣a﹣12﹣2a2+a+10=﹣a2﹣2≤﹣2<0, ∵M<N. 故選:B. 【點評】此題考查了多項式乘多項式,以及非負數的性質,熟練掌握運算法則是解本題的關鍵. 二、填空題(本大題共10小題,每小題3分,共30分.不需寫出解答過程,請把答案直接填寫在答題卡相應位置上) 9.展開計算:(x+3)2= x2+6x+9?。? 【考點】完全平方公式. 【分析】原式利用完全平方公式展開即可得到結果. 【解答】解:(x+3)2=x2+6x+9, 故答案為:x2+6x+9. 【點評】此題考查了完全平方公式,熟練掌握完全平方公式是解本題的關鍵. 10.一個正多邊形的內角和是1440,則這個多邊形的邊數是 10?。? 【考點】多邊形內角與外角. 【分析】根據多邊形的內角和公式列式求解即可. 【解答】解:設這個多邊形的邊數是n, 則(n﹣2)?180=1440, 解得n=10. 故答案為:10. 【點評】本題考查了多邊形的內角和公式,熟記公式是解題的關鍵. 11.已知AD是△ABC的中線,且△ABC的面積為3cm2,則△ADB的面積為 1.5 cm2. 【考點】三角形的面積. 【分析】根據三角形的中線將三角形分成面積相等的兩部分,可得△ADB的面積是△ABC的面積的一半,據此用三角形△ABC的面積除以2,求出△ADB的面積為多少即可. 【解答】解:如圖: , 因為AD是△ABC的中線, 所以△ADB的面積是△ABC的面積的一半, 即△ADB的面積為: 32=1.5(cm2). 故答案為:1.5. 【點評】此題主要考查了三角形的面積的求法,以及三角形的中線的含義,要熟練掌握,解答此題的關鍵是要明確:三角形的中線將三角形分成面積相等的兩部分. 12.若4x2+kx+9是完全平方式,則k= 6?。? 【考點】完全平方式. 【分析】利用完全平方公式的結構特征判斷即可得到結果. 【解答】解:∵4x2+kx+9是完全平方式, ∴2k=12, 解得:k=6. 故答案為:6 【點評】此題考查了完全平方式,熟練掌握完全平方公式是解本題的關鍵. 13.寫出二元一次方程3x+y﹣8=0的正整數解共有 2 對. 【考點】二元一次方程的解. 【分析】把方程化為用一個未知數表示成另一個未知數的形式,再根據x、y均為正整數求解即可. 【解答】解: 方程3x+y﹣8=0可化為y=8﹣3x, ∵x、y均為正整數, ∴8﹣3x>0, 當x=1時,y=5, 當x=2時,y=2, ∴方程3x+y﹣8=0的正整數解共有2對, 故答案為:2. 【點評】本題主要考查方程的特殊解,用一個未知數表示成另一個未知數是解題的關鍵. 14.如圖,直線a∥直線b,將一個等腰三角板的直角頂點放在直線b上,若∠2=34,則∠1= 56?。? 【考點】平行線的性質. 【分析】由直角三角板的性質可知∠3=180﹣∠2﹣90,再根據平行線的性質即可得出結論. 【解答】解:如圖所示, ∵∠2=34, ∴∠3=180﹣∠2﹣90=180﹣34﹣90=56, ∵a∥b, ∴∠1=∠3=56. 故答案為:56. 【點評】本題考查的是平行線的性質,用到的知識點為:兩直線平行,同位角相等. 15.若a﹣b=﹣2,則(a2+b2)﹣ab= 2 . 【考點】提公因式法與公式法的綜合運用. 【分析】原式提取,利用完全平方公式分解,把已知等式代入計算即可求出值. 【解答】解:∵a﹣b=﹣2, ∴原式=(a2+b2﹣2ab)=(a﹣b)2=2. 故答案為:2. 【點評】此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵. 16.今年植樹節(jié)那天,學校組織七年級(2)班的11名同學去公園植樹,規(guī)定男生每人植4棵,女生每人植3棵,李老師分給第一小組40棵樹的任務.已知該組有男生x人,女生y人,列出關于x、y的二元一次方程組為: ?。? 【考點】由實際問題抽象出二元一次方程組. 【分析】設該組有男生x人,女生y人,根據男生與女生植樹棵數的數量關系列出方程組求解即可. 【解答】解:設該組有男生x人,女生y人, 由題意得:. 故答案為:. 【點評】本題考查了由實際問題抽象出二元一次方程組,解答本題的關鍵是讀懂題意,設出未知數,找出合適的等量關系,列方程. 17.已知x2+x﹣1=0,則x3﹣2x+4的值為 3?。? 【考點】因式分解的應用. 【分析】根據x2+x﹣1=0,得出x2+x=1,x2=1﹣x,再將所求的代數式前兩項提取公因式x,再把已知條件整理后整體代入法求解即可. 【解答】解:∵x2+x﹣1=0, ∴x2=1﹣x,x2+x=1, ∵x3﹣2x+4, =x(x2﹣2)+4 =x(1﹣x﹣2)+4 =x(﹣1﹣x)+4 =﹣x2﹣x+4, =﹣(x2+x)+4 =3. 故答案為:3. 【點評】此題主要考查整體代入思想的運用,對所求代數式部分項提取公因式后整理成已知條件的形式是解題的關鍵,也是求解的難點. 18.有3張邊長為a的正方形紙片,4張邊長分別為a,b(b>a)的矩形紙片,5張邊長為b的正方形紙片,從其中取出若干張紙片,每種紙片至少取一張,把取出的這些紙片拼成一個正方形(按原紙張進行無隙、無重疊拼接),則拼成的正方形的邊長最長可以為 a+2b?。? 【考點】完全平方公式的幾何背景. 【分析】根據3張邊長為a的正方形紙片的面積是3a2,4張邊長分別為a、b(b>a)的矩形紙片的面積是4ab,5張邊長為b的正方形紙片的面積是5b2,得出a2+4ab+4b2=(a+2b)2,再根據正方形的面積公式即可得出答案. 【解答】解;3張邊長為a的正方形紙片的面積是3a2, 4張邊長分別為a、b(b>a)的矩形紙片的面積是4ab, 5張邊長為b的正方形紙片的面積是5b2, ∵a2+4ab+4b2=(a+2b)2, ∴拼成的正方形的邊長最長可以為(a+2b), 故答案為:a+2b. 【點評】此題考查了完全平方公式的幾何背景,關鍵是根據題意得出a2+4ab+4b2=(a+2b)2,用到的知識點是完全平方公式. 三、解答題(本大題共8小題,共66分.解答應寫出文字說明、證明過程或演算步驟) 19.化簡: (1)(m﹣2n)(m+2n) (2)(x+3)(x﹣3)﹣(x﹣2)2. 【考點】平方差公式;完全平方公式. 【分析】(1)直接套用平方差公式展開即可; (2)用平方差公式和完全平方公式展開,再去括號、合并同類項可得. 【解答】解:(1)原式=m2﹣(2n)2=m2﹣4n2; (2)原式=x2﹣9﹣(x2﹣4x+4) =x2﹣9﹣x2+4x﹣4 =4x﹣13. 【點評】本題主要考查平方差公式和完全平方公式,熟練掌握公式是解題的關鍵. 20.分解因式: (1)﹣36x2+12xy﹣y2 (2)(a+b)2﹣25(a﹣b)2. 【考點】提公因式法與公式法的綜合運用. 【分析】(1)先提取公因式,再用完全平方公式即可, (2)直接用平方差公式分解即可. 【解答】解:(1)﹣36x2+12xy﹣y2=﹣(36x2﹣12xy+y2)=﹣(6x﹣y)2, (2)(a+b)2﹣25(a﹣b)2=[(a+b)+5(a﹣b)][(a+b)﹣5(a﹣b)]=4(3a﹣2b)(2b﹣3a), 【點評】此題是提公因式和公式法的綜合運用,主要用到提取公因式法,平方差公式,完全平方公式分解因式,解本題的關鍵是熟練掌握分解因式的方法. 21.(10分)(2016春?東臺市期中)如圖,每個小正方形的邊長為1個單位,每個小方格的頂點叫格點. (1)畫出△ABC的AB邊上的中線CD; (2)畫出△ABC向右平移4個單位后得到的△A1B1C1; (3)圖中AC與A1C1的關系是: 平行且相等?。? (4)能使S△ABQ=S△ABC的格點Q,共有 4 個,在圖中分別用Q1、Q2、…表示出來. 【考點】作圖-平移變換;三角形的面積. 【分析】(1)根據中線的定義得出AB的中點即可得出△ABC的AB邊上的中線CD; (2)平移A,B,C各點,得出各對應點,連接得出△A1B1C1; (3)利用平移的性質得出AC與A1C1的關系; (4)首先求出S△ABC的面積,進而得出Q點的個數. 【解答】解:(1)如圖所示: ; (2)如圖所示: ; (3)根據平移的性質得出,AC與A1C1的關系是:平行且相等; (4)如圖所示:能使S△ABQ=S△ABC的格點Q,共有4個. 故答案為:平行且相等;4. 【點評】此題主要考查了平移的性質以及三角形面積求法以及中線的性質,根據已知得出△ABC的面積進而得出Q點位置是解題關鍵. 22.先化簡,再求值: (1),其中x=﹣3. (2),其中a=2,b=1. 【考點】整式的加減—化簡求值. 【分析】兩式去括號合并得到最簡結果,將字母的值代入計算即可求出值. 【解答】(1)解:原式=2x3+4x﹣x2﹣x+3x2﹣2x3=x2+3x, 把x=﹣3代入上式得:原式=(﹣3)2+3(﹣3)=24﹣9=15; (2)解:原式=6a2+4ab﹣6a2﹣2ab+b2=2ab+b2, 把a=2,b=1代入上式得:原式=221+1=5. 【點評】此題考查了整式的加減﹣化簡求值,涉及的知識有:去括號法則,以及合并同類項法則,熟練掌握法則是解本題的關鍵. 23.如圖,已知AB∥CD,∠ABE和∠CDE的平分線相交于F,∠E=140,請求出∠BFD的度數. 【考點】平行線的性質. 【分析】過點E作EG∥AB,根據平行線的性質可得“∠ABE+∠BEG=180,∠GED+∠EDC=180”,根據角的計算以及角平分線的定義可得“∠FBE+∠EDF=(∠ABE+∠CDE)2=110”,再依據四邊形內角和為360結合角的計算即可得出結論. 【解答】解:過點E作EG∥AB,如圖所示. 則可得∠ABE+∠BEG=180,∠GED+∠EDC=180, ∴∠ABE+∠CDE+∠BED=360; 又∵∠BED=140, ∴∠ABE+∠CDE=220. ∵∠ABE和∠CDE的平分線相交于F, ∴∠FBE+∠EDF=(∠ABE+∠CDE)2=110, ∵四邊形的BFDE的內角和為360, ∴∠BFD=110. 【點評】本題考查了平行線的性質、三角形內角和定理以及四邊形內角和為360,解題的關鍵是找出∠FBE+∠EDF=110.本題屬于基礎題,難度不大,解決該題型題目時,根據平行線的性質得出相等(或互補)的角是關鍵. 24.已知3x+2?5x+2=153x﹣4,求(x﹣1)2﹣3x(x﹣2)﹣4的值. 【考點】冪的乘方與積的乘方. 【分析】首先由3x+2?5x+2=153x﹣4,可得3x+2?5x+2=(15)x+2=153x﹣4,即可得方程x+2=3x﹣4,解此方程即可求得x的值,然后化簡(x﹣1)2﹣3x(x﹣2)﹣4,再將x=3代入,即可求得答案. 【解答】解:∵3x+2?5x+2=(15)x+2=153x﹣4, ∴x+2=3x﹣4, 解得:x=3, ∴(x﹣1)2﹣3x(x﹣2)﹣4 =x2﹣2x+1﹣3x2+6x﹣4 =﹣2x2+4x﹣3 =﹣29+43﹣3 =﹣9. 【點評】此題考查了積的乘方的性質與化簡求值問題.此題難度適中,注意由3x+2?5x+2=153x﹣4,得到方程x+2=3x﹣4是解此題的關鍵. 25.(10分)(2013秋?膠州市期末)實驗證明,平面鏡反射光線的規(guī)律是:射到平面鏡上的光線和被反射出的光線與平面鏡所夾的銳角相等. (1)如圖,一束光線m射到平面鏡上,被a反射到平面鏡b上,又被b鏡反射,若被b反射出的光線n與光線m平行,且∠1=50,則∠2= 100 ,∠3= 90?。? (2)在(1)中,若∠1=55,則∠3= 90 ,若∠1=40,則∠3= 90??; (3)由(1)、(2)請你猜想:當兩平面鏡a、b的夾角∠3= 90 時,可以使任何射到平面鏡a上的光線m,經過平面鏡a、b的兩次反射后,入射光線m與反射光線n平行,請說明理由. 【考點】平行線的判定與性質;三角形內角和定理. 【分析】根據入射角與反射角相等,可得∠1=∠4,∠5=∠6. (1)根據鄰補角的定義可得∠7=80,根據m∥n,所以∠2=100,∠5=40,根據三角形內角和為180,即可求出答案; (2)結合題(1)可得∠3的度數都是90; (3)證明m∥n,由∠3=90,證得∠2與∠7互補即可. 【解答】解:(1)100,90. ∵入射角與反射角相等,即∠1=∠4,∠5=∠6, 根據鄰補角的定義可得∠7=180﹣∠1﹣∠4=80, 根據m∥n,所以∠2=180﹣∠7=100, 所以∠5=∠6=(180﹣100)2=40, 根據三角形內角和為180,所以∠3=180﹣∠4﹣∠5=90; (2)90,90. 由(1)可得∠3的度數都是90; (3)90(2分) 理由:因為∠3=90, 所以∠4+∠5=90, 又由題意知∠1=∠4,∠5=∠6, 所以∠2+∠7=180﹣(∠5+∠6)+180﹣(∠1+∠4), =360﹣2∠4﹣2∠5, =360﹣2(∠4+∠5), =180. 由同旁內角互補,兩直線平行,可知:m∥n. 【點評】本題是數學知識與物理知識的有機結合,充分體現了各學科之間的滲透性. 26.(10分)(2012?珠海)觀察下列等式: 12231=13221, 13341=14331, 23352=25332, 34473=37443, 62286=68226, … 以上每個等式中兩邊數字是分別對稱的,且每個等式中組成兩位數與三位數的數字之間具有相同規(guī)律,我們稱這類等式為“數字對稱等式”. (1)根據上述各式反映的規(guī)律填空,使式子稱為“數字對稱等式”: ①52 275 = 572 25; ② 63 396=693 36?。? (2)設這類等式左邊兩位數的十位數字為a,個位數字為b,且2≤a+b≤9,寫出表示“數字對稱等式”一般規(guī)律的式子(含a、b),并證明. 【考點】規(guī)律型:數字的變化類. 【分析】(1)觀察規(guī)律,左邊,兩位數所乘的數是這個兩位數的個位數字變?yōu)榘傥粩底?,十位數字變?yōu)閭€位數字,兩個數字的和放在十位;右邊,三位數與左邊的三位數字百位與個位數字交換,兩位數與左邊的兩位數十位與個位數字交換然后相乘,根據此規(guī)律進行填空即可; (2)按照(1)中對稱等式的方法寫出,然后利用多項式的乘法進行證明即可. 【解答】解:(1)①∵5+2=7, ∴左邊的三位數是275,右邊的三位數是572, ∴52275=57225, ②∵左邊的三位數是396, ∴左邊的兩位數是63,右邊的兩位數是36, 63369=69336; 故答案為:①275,572;②63,36. (2)∵左邊兩位數的十位數字為a,個位數字為b, ∴左邊的兩位數是10a+b,三位數是100b+10(a+b)+a, 右邊的兩位數是10b+a,三位數是100a+10(a+b)+b, ∴一般規(guī)律的式子為:(10a+b)[100b+10(a+b)+a]=[100a+10(a+b)+b](10b+a), 證明:左邊=(10a+b)[100b+10(a+b)+a], =(10a+b)(100b+10a+10b+a), =(10a+b)(110b+11a), =11(10a+b)(10b+a), 右邊=[100a+10(a+b)+b](10b+a), =(100a+10a+10b+b)(10b+a), =(110a+11b)(10b+a), =11(10a+b)(10b+a), 左邊=右邊, 所以“數字對稱等式”一般規(guī)律的式子為:(10a+b)[100b+10(a+b)+a]=[100a+10(a+b)+b](10b+a). 【點評】本題是對數字變化規(guī)律的考查,根據已知信息,理清利用左邊的兩位數的十位數字與個位數字變化得到其它的三個數字是解題的關鍵.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 七年級數學下學期期中試卷含解析 蘇科版5 年級 數學 下學 期期 試卷 解析 蘇科版
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://ioszen.com/p-11751122.html