【機械類畢業(yè)論文中英文對照文獻翻譯】雷達天線伺服系統(tǒng)結構與控制
【機械類畢業(yè)論文中英文對照文獻翻譯】雷達天線伺服系統(tǒng)結構與控制,機械類畢業(yè)論文中英文對照文獻翻譯,機械類,畢業(yè)論文,中英文,對照,對比,比照,文獻,翻譯,雷達,天線,伺服系統(tǒng),結構,控制,節(jié)制
黃河科技學院畢業(yè)設計(文獻翻譯) 第 11 頁
雷達天線伺服系統(tǒng)結構與控制
摘要
雷達天線的性能主要取決于其伺服系統(tǒng)的設計水平。伺服系統(tǒng)的設計包括結構設計和控制設計兩部分,這兩部分是相互影響緊密耦合的。一般所采用的設計方法是對結構系統(tǒng)和控制系統(tǒng)先分別設計,然后再根據(jù)要求進行調校,這往往會導致產(chǎn)品研制的周期長、成本高、性能差、結構笨重,不能保證伺服系統(tǒng)總體的綜合性能最優(yōu)。針對雷達天線伺服系統(tǒng)設計中存在的結構設計與控制設計相分離的問題,提出一種結構與控制集成優(yōu)化設計的模型,給出求解策略與方法,并進而應用于三個典型例子,取得了滿意的結果。數(shù)值例子和實物試驗都驗證了上述雷達天線伺服系統(tǒng)結構與控制的集成設計模型與方法的有效性和正確性。該模型與方法對其他伺服系統(tǒng)的設計也具有一定的參考和借鑒價值。
1 簡介
機電系統(tǒng)是由機構(或結構)與控制兩個子系統(tǒng)組成的,兩者的集成設計是十分必要的。結構與控制集成設計的研究自 20 世紀 80 年代開始以來,國內外學者進行了卓有成效的研究,主要集中在如下 3 個方面:① 太空系統(tǒng)結構與控制的集成設計,尤其是柔性結構系統(tǒng),選擇結構桿件的橫截面為設計變量,結構的質量和控制能量為目標,但不適應于可變結構(或機構)問題;② 直流電動機的結構與控制的集成設計問題,以直流電動機為例,從狀態(tài)空間模型入手,研究了結構和控制之間的耦合,指出集成設計的必要性,但是對于復雜機構來說,其狀態(tài)空間模型并不容易獲得; ③ 機構系統(tǒng)中機構與控制的集成(或協(xié)同、并行)設計問題,根據(jù)集成的理念來設計機構。這些都未曾考慮機構的固有頻率、動態(tài)目標跟蹤控制的穩(wěn)定性、準確性及快速性等非線性約束,也未見給出可同時實現(xiàn)機構輕量化與跟蹤控制穩(wěn)、準、快的詳細集成設計模型。
2 提出問題
雷達天線的指向精度與快響應等性能取決于其伺服系統(tǒng)的設計水平,而伺服系統(tǒng)的設計包括結構設計與控制設計兩部分。結構設計將影響到控制性能的實現(xiàn),如伺服控制帶寬的實現(xiàn)依賴于結構固有頻率。反過來,控制又會影響到結構設計,如伺服系統(tǒng)中驅動力的大小將影響天線座結構的設計。因此,為實現(xiàn)“看得準”與“看得清”的目標要求,結構與控制必須進行集成設計。
遺憾的是,傳統(tǒng)的雷達天線伺服系統(tǒng)設計卻是結構設計和控制設計相分離的,即單獨設計機械結構和控制系統(tǒng),再進行調校以達到要求的指標。而事實上,雷達天線伺服系統(tǒng)中結構和控制卻是相互耦合的,尤其在高性能跟蹤中,二者的耦合非常緊密。如果在控制設計時未能充分考慮伺服結構的特性,將導致伺服跟蹤性能降低,甚至無法達到要求的性能指標;另一方面,在結構設計時如未能充分考慮控制作用,就不能得到最優(yōu)設計,甚至無法設計出滿足性能要求的結構。這種分離設計方法導致產(chǎn)品研制的周期長、成本高、性能差、結構笨重。
3 雷達天線系統(tǒng)的結構分析
結構設計的目的旨在設計滿足伺服性能要求的機械結構。為得到優(yōu)良的伺服跟蹤性能,一般要求機械結構質量小、剛性好,然而這些要求往往是矛盾的。為此,引入結構優(yōu)化方法,即對質量分布、傳動形式和拓撲結構進行優(yōu)化設計,在保證剛度要求的情況下達到總質量或占用空間最小。在機構的運動過程中,其構型隨著時間不斷變化。為此,可將其提為一個多工況(不妨設為 n1 種工況)的結構優(yōu)化問題(圖 1)。
圖1 雷達天線系統(tǒng)結構優(yōu)化設計
求解
式中,d 為雷達伺服結構的設計量, n2 為設計變量總數(shù)。
目標函數(shù)為結構的總質量最小
式中,a、b 分別為簡單結構參數(shù)(如主體尺寸、材料等)和依賴于控制的結構設計要素(如驅動力等),n3 為雷達伺服結構的構件數(shù), Vi 為第 i 個構件的體積, ?i 為第 i 個構件的材料密度。約束包括第一階固有頻率約束、應力和位移約束
式中, frei 為第 i 個工況下的結構基頻, f re1 為第一階固有頻率的最小容許值; ej 與工況下第 e 個單元應力的實際值與最大容許值;ij與 i 分別為第 j 個工況下第 i 個位移約束的實際值與最大容許值。
同時,還必須滿足第 j 個工況下結構的動力微分方程
式中, m j 、 c j 、 k j 分別為結構在第 j 個工況下對應的質量矩陣、阻尼矩陣和剛度矩陣。
求解此非線性規(guī)劃問題,可得設計變量的最優(yōu)取值和與之相對應的依賴于結構的控制設計要素A(包括 m、c、k、frel 等),作為控制增益優(yōu)化設計的基礎。
4 雷達天線控制系統(tǒng)分系統(tǒng)設計
控制分系統(tǒng)設計的目的是在結構給定的前提下設計滿足性能要求的控制系統(tǒng)。一般情況下,要求系統(tǒng)具有穩(wěn)、快、準的性能,即所設計的控制器應在保證穩(wěn)定的前提下,實現(xiàn)快速、準確地跟蹤目標。為此,可引入控制優(yōu)化設計方法,即對控制器增益p 進行優(yōu)化設計,使系統(tǒng)具有優(yōu)異的伺服跟蹤性能,同時得到依賴于控制的結構設計要素 B(如驅動力等 )。于是該問題可描述為一個非線性規(guī)劃問題(圖 2)。
圖2 雷達天線伺服系統(tǒng)的最優(yōu)控制增益設計
求解
式中, pi 為第 i 個控制增益變量, n6 為增益設計變量總數(shù)。目標函數(shù)為最小化累積跟蹤誤差 J , J 反映了對跟蹤性能“快”與“準”的要求
式中,T0 為一個運動周期, e(t) 為跟蹤誤差。
約束包括穩(wěn)定性約束、調節(jié)時間約束、超調量約束和力矩約束
式中,polei 為系統(tǒng)的第 i 個極點,n7 為極點總數(shù),ts為調節(jié)時間, ò 為超調量, F (t) 為控制器在時域中的驅動力或力矩。
5 雷達天線伺服系統(tǒng)的結構與控制的集成設計
對于高性能的雷達伺服系統(tǒng),即使分別對結構和控制進行優(yōu)化設計,往往仍然達不到要求的性能指標,因為上述方法不能保證所設計的伺服系統(tǒng)在總體上是最優(yōu)的。可能的結果是依據(jù)結構優(yōu)化設計的結果進行控制設計時,難以獲得滿足性能指標的解,或者得到與結構優(yōu)化設計相矛盾的設計要素 B。為此,有必要進行結構與控制的集成優(yōu)化設計,即將結構優(yōu)化和控制優(yōu)化綜合起來。具體講,就是對于給定的結構參數(shù) a 和控制參數(shù) u,通過尋求最優(yōu)的綜合性指標H找到結構設計變量d和控制增益P的最優(yōu)值。從而可將問題描述為非線性規(guī)劃問題(圖3)。
一般設計問題結合最小化結構方面目標構成一個最優(yōu)設計問題。因為控制力(力矩)都是控制增益 p 的函數(shù),所以一般控制問題也可以描述為一個一般增益問題;一般增益問題結合最小化控制方面目標構成一個最優(yōu)增益問題。而最優(yōu)設計問題和最優(yōu)增益問題之間是相互耦合的,即求解最優(yōu)設計問題可得到依賴于結構的控制設計要素 A(包括 m、c、k、frel 等),作為最優(yōu)增益問題的基礎;而求解最優(yōu)增益問題可得到依賴于控制的結構設計要素。
6 數(shù)值模擬與試驗
為驗證本文所提方法的可行性和有效性,特將其應用于如下 3 個典型例子,取得了滿意的結果??紤]到篇幅所限,第 1 個和第 3 個例子僅為數(shù)值試驗結果,而第 2 個則同時具有數(shù)值試驗和實物驗證。
例 1:曲柄滑塊機構式反射面天線(圖 4)。圖 4所示的曲柄滑塊機構,在曲柄 OA 上施加控制力矩M,在連桿 AB 上選取某個位置 á 點安裝天線, áa對應其指向。目的是通過調整控制力矩和結構設計,使天線跟蹤目標。角度的變化范圍為 10°~80°。
圖 4 曲柄連桿機構式反射面天線
曲柄和連桿均為空心圓管,r1、r2 分別為曲柄和連桿的橫截面中徑,δa、δb 分別為壁厚。PID 控制器的比例、積分和微分增益參量分別為 p1、p2、p3。在動力學建模中,視曲柄為剛體,連桿為彈性體,其彈性變形為簡支梁前 ne 階振形的疊加,本例取 ne =3。
集成與分離設計的結果對比如表 1 所示。圖 5、6 分別為前 0.2 s 的響應和驅動力矩的對比曲線,因為 0.2 s 以后兩者的差別不大??梢姡稍O計的結果要明顯優(yōu)于分離優(yōu)化的結果,如調整時間 ts 減少了 13.5%(由 0.074 s 降到 0.064 s),固有頻率 f re1 提高了 58.12%(由 11.52 Hz 提高到 18.2 Hz),總質量 m下降了 30.57% (由 0.268 9 kg 降到 0.186 7 kg)。
圖5 集成、分離設計的運動仿真對比圖
圖6 集成、分離設計的驅動力矩對比圖
例 2:某伺服試驗臺系統(tǒng)(圖 7)??紤]由齒輪減速器構成的伺服系統(tǒng),設等效到電動機軸上的轉動慣量分別為 J1、J2 和 J3,相應軸的扭轉剛度分別為 k1、k2,阻尼系數(shù)為 b1、b2,3 個軸承處的摩擦因數(shù)為1 、2 和3 。
設負載和電動機已定,受外形幾何參數(shù)限制,電動機軸和負載軸的軸距已定,控制器采用傳統(tǒng)的數(shù)字 PID 控制。要求設計相應的結構參數(shù)(包括負載軸長度 L、半徑 R、主動軸半徑 r、減速比 i、PID控制增益 p1、p2 和 p3),使系使系統(tǒng)在滿足所要求的性能指標(單位階躍響應下的超調量 ò ≤ 2% ,調節(jié)時間ts ≤ 0.3 s )的前提下具有總體最優(yōu)的性能。
采用相同的初始值 (伺服試驗臺的初始設計 )時,分別進行分離設計和集成設計,并采用序列二次規(guī)劃法進行了求解,結果如表 2 所示,相應系統(tǒng)的單位階躍響應如圖 8 所示。
圖8 系統(tǒng)的單位階躍響應圖
為說明結果的正確性,特對初始參數(shù)下的數(shù)值結果在試驗臺上進行了實物驗證。圖 9 為采用初始設計時,實測的單位階躍響應和仿真結果的對比。由于未考慮電動機和伺服放大器的動態(tài)特性和制造精度,試驗結果與仿真結果存在一定差異(最大誤差小于 5%)。需要指出的是,若要做針對優(yōu)化結果的試驗,須特別定做齒輪、軸以及相應的結構,不太現(xiàn)實。不過,初始參數(shù)下的試驗說明了模型建立的準確性。
圖9 系統(tǒng)單位階躍響應(初始設計)的仿真與試驗曲線
例 3:某 40 m 天線伺服系統(tǒng)(圖 10)。該 40 m天線座方位回轉系統(tǒng)如圖 10 所示。天線反射體通過支撐座安裝在叉臂上。方位伺服電動機產(chǎn)生的驅動力矩經(jīng)減速器、傳動軸和齒圈作用在轉臺上,從而帶動天線反射體繞方位軸旋轉。天線反射體質量為65 t,要求其跟蹤精度為 30′′。假定方位回轉系統(tǒng)的減速比、叉臂的結構形式和外部尺寸(包括叉臂截面長 La、寬 wa、內腔長 Lb、內腔寬 wb)以及轉臺的結構形式已定。優(yōu)化設計的目的是通過調整控制力矩和結構設計,使天線跟蹤性能提高,方位回轉系統(tǒng)的質量降低。結構設計變量包括:上、下支臂箱形結構的外圈壁厚 δa,上、下支臂箱形結構的內圈壁厚 δb,轉臺結構的壁厚 δc,天線支撐座的壁厚 δd,傳動軸半徑 R;控制設計變量為 PID 增益系數(shù)(p1、p2 和 p3)。
在優(yōu)化中,取 M max = 18 kN m ,ts+ = 2.0 s ,òmax =2% , f re1 = 5 Hz ,[ó ] = 30 MPa,結果對比如表 3 所示。表 3 為相應的參數(shù)對比。由表 3 可知:通過集成優(yōu)化設計,調整時間 ts 減少了 14.3% (由 1.890 s 到1.620 s),固有頻率 f re1 提高了 22.42% (由 6.870 Hz到 8.407 Hz),累積跟蹤誤差減少了 16.12%(由 0.003 1到 0.002 6),總質量 m 略增加了 0.42% (由 77.905 t到 78.239 t)??梢姡瑥恼w上說,集成設計的結果優(yōu)于分離設計的結果。
上述數(shù)值模擬與實物驗證說明,結構與控制分離設計很難甚至無法獲得最優(yōu)的總體性能,集成設計可有效地解決此問題。集成設計尤其適用于伺服系統(tǒng)的方案設計。
7 結論
(1) 本文提出了雷達天線伺服系統(tǒng)的一種集成設計模型,可同時實現(xiàn)結構的輕質量和控制穩(wěn)、準、快的目標,解決了以往兩者分離設計所帶來的顧此失彼、很難甚至不能獲得系統(tǒng)的綜合性能最佳的問題。
(2) 研究了集成設計模型的非線性特點,并據(jù)此給出了求解的策略與方法,數(shù)值模擬結果,說明了模型與方法的可行性和有效性。但如果機構模型更為復雜,設計變量更多時,用本文方法建模求解可能會比較困難。
(3) 為進一步驗證本文所提出的模型、方法及軟件的正確性和有效性,就某實際的伺服試驗臺,進行了實物驗證,結果良好。為使該試驗臺的結果更有說服力,應考慮在下面的工作中,進行離散變量的優(yōu)化設計,即在試驗臺所給定參量可變范圍內進行,因為這個變化范圍往往僅是有限而離散的選擇。
(4) 本文所提出的模型與方法,對其他伺服系統(tǒng)的設計也具有一定的參考和借鑒價值。
參考資料
[1] TOUMI K Y. Modeling, design and control integration:Anecessary step in mechatronics[J]. IEEE/ASME Trans.Mechatronics, 1996, 1(1):29-37.
[2] ONODA J, HAFTKA R T. An approach to structure/control simultaneous optimization for large flexible spacecraft[J]. AIAA Journal, 1987, 25(8):1133-1138.
[3] RAO S S. Combined structural and control optimizationof flexible structures[J]. Engineering Optimization, 1988,13:1-16.
[4] YAMAKAYA H. A unified method for combined struct-ural and control optimization of nonlinear mechanical andstructural systems[J]. Computer Aided Optimum Designof Structures, 1989, 287-298.
[5] REYER J A, FATHY H K, PAPALAMBROS P Y.Comparison of combined embodiment design of control optimization strategies using optimality conditions[C]//]ASME Design Engineering Technical Conferences &
Computers and Information in Engineering Conference,September 9-12, 2001, Pittsburgh, Pennsylvania. New
York:ASME, 2001:1-10.
[6] REYER J A, PAPALAMBROS P Y. Combined optimaldesign and control with application to an electric DC
motor[J]. Journal of Mechanical Design, 2002, 124(6):183-191.
[7] WU F X, ZHANG W J, LI Q, et al. Integrated designand PD control of high-speed closed-loop mechanisms[J].Journal of Dynamic Systems, Measurement, and Control,2002, 124:522-528.
黃河科技學院畢業(yè)設計(外文資料) 第 13 頁
Structure And Control Radar Antenna Servo System
Summary
Radar antenna mainly depends on the level of its servo system design. Design of servo system design including design and control of two parts, interaction between these two parts are tightly coupled. General system design method is used to structure and control system design, respectively, and then adjusted according to the requirements, which often leads to long product development cycles, high cost, poor performance, structure of heavy, cannot ensure the overall performance of optimal servo system. For the radar antenna servo system design of structure and control design of phase separation problem, proposed a model of integrated optimization design of structure and control, gives the solution strategies and methods, and in turn, applied to the three typical examples, made satisfactory results. Numerical examples and real tests have verified the above radar antenna servo system integrated structure and control of the validity and correctness of the design models and methods. The model and method for other designs also have some reference of the servo system and its reference value.
1 Introduction
Mechanical and electrical system is a body (or structure) and the control of two subsystems, integrated design of both is necessary. Structure and control integrated design of research since in the 1980 of the 20th century began yilai, both at home and abroad scholars for has fruitful of research, main set in is as follows 3 a area: ① space system structure and control of integrated design, especially flexible structure system, select structure rod pieces of cross section for design variable, structure of quality and control energy for target, but does not adaptation Yu variable structure (or institutions) problem; ② DC motor of structure and control of integrated design problem, to DC motor for cases, from state space model start, Study on coupling between the structure and control, pointed out the need for integrated design, but for complex institutions, its state space model are not easy to obtain; ③ system bodies and control integration (or collaborative, parallel) design problem, according to the concept of integrated design agency. Natural frequencies of these institutions was not considered, dynamic target tracking control of nonlinear constraints such as stability, accuracy and speed, is no lightweight and gives both the institution and tracking control for more integrated design model of stable, accurate and fast.
2 Ask a question
Radar antenna pointing precision and fast response of performance depends on the level of its servo system design, design of servo system design including design and control of two parts. Realization of structure design affects performance, such as the realization of servo bandwidth depends on the natural frequency of the structure. In turn, the control will affect the structure of the design, such as driving force of servo system will affect the size of antenna pedestal structure design. Therefore, in order to achieve the "look" and "clearly" targets, structure design and controls must be integrated.
Traditional radar antenna servo system design is the design of phase separation of design and control that individual design of mechanical structure and controlling system, adjusted to meet required targets. As a matter of fact, structure and control radar antenna servo system is coupled to each other, especially in the high-performance tracking and coupling of the two are very close. If you failed to fully consider the servo to control design structure characteristics, will cause a reduction in performance of servo tracking, even unable to meet the requirement of performance indicators on the other, who fails to fully consider the control at design time, you can't be optimal design, could not even designed to meet the performance requirements of the structure. This design method of separation results in long product development cycles, high cost, poor performance and structure of heavy.
3 Structural analysis of radar antenna systems
Aims of structural design of mechanical structure design of servo performance requirements are met. To get a good servo to track performance, small quality general requirements for mechanical structure, good rigidity, however these requirements tend to be contradictory. To this end, the introduction of structural optimization, on quality and topology structure optimization design of distribution, transmission, stiffness requirements to achieve total quality guarantee or take up minimum space. In the body during exercise and its configuration changes over time. To this end, to mention it as a multiple-condition (it may be set to N1 indifferent conditions) of structure optimization problem (Figure 1).
Figure 1 structure optimization design of radar antenna systems
Solution
In the d radar servo structure design, N2 is total number of design variables.
Objective function for the total mass of the structure of the minimum
Type a and b respectively for simple structural parameters (such as body size, material, and so on) and depends on the structure design of control elements (such as driving), N3 for radar servo number of members structure, Vi as a component volume I, I for the I component of the material density. Constraints include first-order natural frequency constraints and stress and displacement constraints
In the structure under Frei as I pitch, f RE1 first-order natural frequencies of the smallest allowable value; e-unit under EJ and stress of actual value to the maximum allowable value; IJ I and j, respectively a condition I displacement under constraints of practical value to the maximum allowable value.
At the same time, must also meet the j structure under a power differential equation
M j, c j in j, k, j, respectively structure under a matrix, damping and stiffness matrix of corresponding quality.
For this non-linear programming problem, design the optimal value of a variable and depends on the structure of the corresponding control design elements of a (including m, c, k, frel, etc), as a basis for optimization design of control gain.
4 System design of radar antenna control system
Control system design in structure is the purpose of the given premise controlsystemdesigned to meet the performance requirements. Under normal circumstances,requires that the system has a stable, fast, accurate performance, the design of controller should be on the premise of ensuring stability, achieving fast, accurate tracking. To this end, the introduction of optimization design method for control, that is, to optimization design of the controller gain p, servo track system with excellent performance, and b at the same time are dependent on the structure design of control elements (such as drivers). So the problem can be described as a nonlinear programming problem (Figure 2).
Figure 2 radar antenna servo system design of optimal control gain
Solution
In the PI as I gain control variable, N6 to gain total number of design variables. To minimize the objective function accumulate tracking errors j, j reflects on the track "fast" and "quasi" requirements
Type, T0 is a motor cycle, e (t) for tracking errors.
Constraints include the regulation stability constraints, time constraints,overshootand torque constraints
Polei for System I, N7 is the total number of Poles, TS to adjust time, overshoot, f (t) to the controller in the field of driving force or torque.
5 Radar antenna servo system of integrated design of structure and control
Radar servo system for high performance, even if separately for optimum design of structure and control for, often still do not meet the requirements of performance indicators, because this method does not guarantee that the overall design of servo system is optimal. Possible results are based on structure optimum design results of control design, solution of limited access to meet performance targets, or are b and contradicts the structure optimization design of design elements. To this end, there is a need for integrated optimization design of structure and control, optimization of structure and control together. Specifically, that is, for a given structure parameters of control parameter a and u, found by seeking optimal comprehensive index of h p d and control gain optimal structure design variable values. So problems can be described as a nonlinear programming problem (Figure 3).
General design issues to minimize structural objectives constitute an optimal design problems. Because the control force (torque) is to control the gain function of p, so the average control can also be described as a general gain problem usually gain problem with minimized optimal gain control objectives constitute a problem. On the optimal design and optimal gain issues are coupled to each other, that for optimal design problems can be dependent on the structure of the design elements of a control (including m, c, k, frel, etc), as based on the optimal gain and optimal gain problem solving can be dependent on structure design of control elements.
6 Numerical simulation and experiment
To verify the feasibility and effectiveness of the methods mentioned in this article, apply it to the following 3 example, made satisfactory results. Given the limited space, the 1th and the 3rd example are numerical test results only, and the 2nd one is both a numerical and physical verification.
Example 1-reflector antenna with slider-crank mechanism (Figure 4). Crank-slider mechanism, as shown in Figure 4, m control torque applied to crank on OA, select a location to install the antenna on the connecting rod AB, corresponding to point to. Purpose and is controlled by adjusting the torque structure design, antenna tracking goals. Changes range from 10 ° from the angle of ~80 °.
Figure 4 crank reflector antenna
Crank and connecting rods are hollow tubes, R1 and R2, respectively in the cross section of the crank and connecting rod diameter, δ, δ b, respectively wall thickness. PID controller for proportional, integral and differential gain parameter P1, P2, P3, respectively. In dynamic modeling, crank for rigid body, connecting rod for elastomers, elastic deformation as the former ne-order vibration of simply-supported beam stack, take this example ne=3.
Design integration and separation of the results as shown in table 1. Figures 5 and 6 respectively 0.2 s before responding and comparison of driving torque curve, because 0.2 s later there's little difference. Visible results to be significantly better than separation of the integrated design optimization results, such as reduced adjustment time TS by 13.5% (0.074 s down to 0.064 s), natural frequency f RE1 improves 58.12% (11.52 Hz up to 18.2 Hz), total mass m down 30.57% (0.268 9 kg down to 0.186 7 kg).
Figure 5 integration, separation and design simulation comparison chart
Figure 6 integration and isolation design of driving torque comparison chart
Example 2: a servo test-bed system (Figure 7). Considering servo systems made up of gear reducer, set equivalent to the moment of inertia of the motor shaft, J1, J2 and J3, respectively, the torsional rigidity of the shaft respectively as K1, K2, damping coefficient for B1, B2,3 bearing friction factors are 1, 2, and 3.
Load and motor has been established, overall geometry parameter limits, motor shaft and bearing axle wheelbase has been fixed, the digital PID controller using the traditional control. Requires the design of the structure parameters (including load axis radius r, length l, drive shaft radius r, I, PID control gain reduction ratio P1, P2 and P3), cause the system to meet the demands of performance indicators (under the unit step response overshoot ≤ 2%, adjusting time TS ≤ 0.3 s) has provided the overall best performance.
Using the same initial values (initial design of servo test-bed), separate isolation design and integrated design, and sequential quadratic programming method for solving, results are shown in table 2, the unit step response of the system as shown in Figure 8.
Figure 8 the unit step response of the system diagram
To illustrate the correctness of results, under the initial physical validated numerical results on the test bench. Figure 9 to the initial design, measuring the unit step response and comparison of simulation results. Because of not considering dynamic characteristics of motor and servo amplifiers and manufacturing precision, experimental results and simulation results there is a difference (the maximum error is less than 5%). It is to be noted that, to optimize the results of tests shall be special made to order gears, shafts, as well as the corresponding structure, is not very realistic. However, under the initial description of the test the accuracy of the model.
Figure 9 Unit step response of the system (initial design) simulation and experiment of curve
Example 3: a 40 m antenna servo system (Figure 10). The 40 m antenna pedestal azimuth rotation system as shown in Figure 10. By supporting the installation of antenna on the fork arm. Direction of servo motor drive torque gearbox, drive shaft and the ring gear on the turn table, so as to drive the antenna azimuth rotation. Antenna weight to 65 t, its track in 30 ' precision '. Reduction ratio of the assumed position Rotary system, structure and the external dimension of the fork arm (including fork arm length in the section long La, w WA, Lb, cavity width WB) and table structures has been fixed. Purpose is controlled by adjusting the torque of the optimized design and structural design, the antenna tracking performance improvement, azimuth rotation system of reduced quality. Structural design variables include: upper and lower arm of box-shaped structure of the outer ring wall thickness δ a, upper and lower arm of box-shaped structure of inner wall thickness δ b, wall thickness δ c of table structure, antenna supporting wall thickness δ d, drive shaft radius r; for PID control design variable gain coefficient (P1, P2 and P3).
In optimization, take the m-max 18 kN m, TS 2.0 s, Max 2%, f RE1 5 Hz, 30 MPa, results such as shown in table 3. Table 3 comparison for the corresponding parameter. Table 3: integrated optimization design, reduced the time TS 14.3% (1.890 s to 1.620 s), natural frequency f RE1 improves 22.42% (6.870 Hz to 8.407 Hz), reduced the cumulative tracking error 16.12% (from 0.003 to 0.002), total mass m increases 0.42% (from 77.905 t to 78.239 t). Visible, said on the whole, results than isolation design of integrated design results.
Numerical simulation and physical verification of the above descriptions, separation of structure and control design is hard to even get the best overall performance, integrated design can be an effective solution to this problem. Integrated design especially suitable for servo-system design.
7 Conclusion
(1) presented a radar antenna servo system of an integrated design model, at the light quality of the structure and control of stable, accurate and fast target, solved the design brought about by the separation of the two in the past have too many things to take care of at the same time, it's hard to even get the overall performance of the system the best question.
(2) study on Nonlinear characteristics of integrated design model, and thus gives the solution to some of the strategies and methods, numerical simulation results, describes the feasibility and effectiveness of the models and methods. But if the agency model is more complex, more design variables, using this method of modeling to solve can be difficult.
(3) to further verify this article's correctness and validity of models, methods and software, a practical servo test rig, physical verification, good results. To make the test results more convincing, should be taken into account in the work of the following, for discrete variable optimization design, that is, on the test bench the given parameters within the scope of a variable, because often only the scope of the change is limited and discrete choices. (4) models and methods proposed in this article, the other servo system design also has a certain reference and reference value.
Reference materials
[1] TOUMI K Y. Modeling, design and control integration:Anecessary step in mechatronics[J]. IEEE/ASME Trans.Mechatronics, 1996, 1(1):29-37.
[2] ONODA J, HAFTKA R T. An approach to structure/control simultaneous optimization for large flexible spacecraft[J]. AIAA Journal, 1987, 25(8):1133-1138.
[3] RAO S S. Combined structural and control optimizationof flexible structures[J]. Engineering Optimization, 1988,13:1-16.
[4] YAMAKAYA H. A unified method for combined struct-ural and control optimization of nonlinear mechanical andstructural systems[J]. Computer Aided Optimum Designof Structures, 1989, 287-298.
[5] REYER J A, FATHY H K, PAPALAMBROS P Y.Comparison of combined embodiment design of control optimization strategies using optimality conditions[C]//]ASME Design Engineering Technical Conferences &
Computers and Information in Engineering Conference,September 9-12, 2001, Pittsburgh, Pennsylvania. New
York:ASME, 2001:1-10.
[6] REYER J A, PAPALAMBROS P Y. Combined optimaldesign and control with application to an electric DC
motor[J]. Journal of Mechanical Design, 2002, 124(6):183-191.
[7] WU F X, ZHANG W J, LI Q, et al. Integrated designand PD control of high-speed closed-loop mechanisms[J].Journal of Dynamic Systems, Measurement, and Control,2002, 124:522-528.
收藏