購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
附錄1 譯 文
摘 要:錘片磨損會破壞錘片式粉碎機轉子的平衡,加劇轉子振動。該文的研究目的是基于虛擬樣機技術探討錘片磨損對轉子振動的影響規(guī)律。采用MDT和vN4D建立了SFSP112×30型錘片式粉碎機轉子的虛擬樣機模型,對不同錘片磨損情況下粉碎機轉子的振動進行了仿真。結果表明:錘片磨損后,轉子振動頻率組成變化不大,而振動幅值和強度變化較大,其中低頻段振動強度增強,高頻段振動強度降低;導致轉子質心徑向偏移的錘片磨損使轉子振動幅值和強度均變大,而導致質心軸向偏移的磨損對轉子振動影響不大;同樣由于轉子質心的徑向偏移,轉子受迫振動頻率強度增加較多。因此,為了降低子運轉時的振動,最好避免轉子質心發(fā)生徑向偏移。
關鍵詞:錘片式粉碎機;錘片;虛擬樣機(VP);磨損;振動
簡 介
能從谷物中的營養(yǎng)提取出來的飼料粉碎機已經發(fā)展很多年了。但是因為他只能處理特殊的原料,像谷類食品和礦石,所以除了丕林島(地名)的少數人在研究飼料粉碎機外,很少人去研究他。盡管飼料粉碎機已經可以解決很多問題,比如振動、噪音、堵塞,用他特有的結構來解決問題,而且可以連續(xù)工作并達到一定的精度。
雖然一些方法,比如比較低的回轉速度,寬的轉子直徑被采用,好轉了他的性能,但是那些問題不能扯得的被解決。最近,分析了飼料粉碎機在工作狀態(tài)下轉子的轉速,旋轉的速度能被粉碎機控制在稍低或者稍高的程度。轉子的轉速在正常工作下都是不變的,除了在長時間工作摩擦后。由于錘片的排列或者是其他的因素,產生轉子的離心力不固定,所以錘片的磨損是不均衡的,因此,我們要學習掌握錘片要磨損時候的特征,為了使粉碎機振動保持穩(wěn)定。
實質上的原型技術(VP)是一個用cad加工程序代替真實的模型,為了測試這種產品的特性和特征。這就像電腦的硬件和軟件的發(fā)展,網絡技術通過vp技術開展起來。同時,傳統(tǒng)的模擬技術對VP的認識理解很有基礎。除了高科技種田,VP技術還適用于日益發(fā)展的農業(yè)機械設計。作者努力的將VP技術應用于工程分析技術。
對于飼料粉碎機中轉子單一的動力模型,被用來發(fā)展轉子動力學,轉子有效的運動模型被MDT和VN4D當做虛擬原型來用。VP技術模擬不同情況的磨損下,研究轉子轉動時的震動和錘片磨損的分析。
1.單一化轉子的模型
SFSP112×30的轉子的錘片被均勻的排列,它是由定子、滾球軸承、錘片、軸子組成,最大轉速為1480r/min。所以它的最大頻率應該是1480/60=24.6Hz。
圖一 SFSP112×30的轉子圖表
基于集總的單一化原則叁數方法 被單一化的模型應該有同樣的總質量,瞬間的轉動慣量有最初的質心位置決定。粉碎機的轉子被單一化的分別運行在六個圓盤里。在這系統(tǒng)里,每一個自我排列的定子,會在壓力的作用下自己運行到指定的位置,能夠計算出他們最后的位置。
2.轉子的虛擬原型
轉子的3D模型需要建立在一個MDT的三維建模軟件上,VP的技術原本是用來實現Vn4D的,其中包括重要的參數從轉子的發(fā)動機的功率。一些重要參數列出如下
(1)定子連接上,平鍵連接被強固連接完全代替;
(2)強固連接也被用來連接圓盤;
(3)因為軸子被用來限制錘片的位置,所以強固連接被用來限制軸子和錘片的位置;
(4)在錘片和螺釘通過強固連接,來限制彼此的旋轉動作,來完成軸的夾緊;
(5)球軸承被軸襯所代替,軸襯確定參數。
(6)電動機的限制被增加到左邊的結束,他的參數、轉力矩輸出功能被設置在平衡的感電電動機上
3.VP技術的模擬分析
為了要加速模擬速度,唯一的沒有外部的那些環(huán)境應用的負荷被模擬,同時,粉碎機需要非常短的加速時間,沒有負載的環(huán)境是不可能的。粉碎機需要加速的這段時間內,轉子跑到他的位置上。 錘片的排列的結果,在研磨中起作用的軸通常用不同種型號,錘片通過定子的排列的長短來確定。因此質心上的轉子偏離最初的位置。根據概率公差,質心的方向也就是軸運動的方向,磨損的方向是在情理之中的。此外,和磨損情形對比,錘片的磨損也是模擬的。
根據模擬的結果列出表1
磨損的圖被展現在圖4上,第四個錘片和軸子被標在Ⅰ和Ⅳ上,當從軸向觀察,每組的錘片,每組都標著1到8平行的定子,在圖4A磨損程度每個錘片是平等的。圖 4B條的磨損程度,每個錘片的一組是不平等的,而相應的錘片組有Ⅰ ,Ⅲ 同樣的磨損程度。至于Fig.4c和Fig.4d的磨損程度的錘片是不相同完全。圖5顯示振動加速度和動力頻譜圖的球軸承收集在這一過程中,該轉子轉過第一第二輪之后, 14號實線代表的振動響應左軸承和虛線代表是正確的。 圖4示意圖磨損形式。錘片的磨損的主體部分的振動頻率之前和之后沒有變化。 但強度在每一個頻率是完全不同的圖5振動響應每個軸承從相應的頻率,損壞轉子。在低頻階段加強和強度削弱了在高頻率的階段。特別是根據“甚至磨損”形勢的變化很大大于其他情況下。和同樣的結論可以發(fā)現振動擴增管轉子。通過對比Fig.5b和Fig.5c , 可以推斷,徑向偏移嚴重破壞了平衡的轉子。這一結論也可以通過Fig.5d和 Fig.5e的對比得到。由于徑向偏移量“相鄰不均勻磨損“顯然是大于“不對稱不均勻磨損” 。強度在強迫振動頻率(24.67赫茲)增加多少更根據“甚至耐磨”和“相鄰不均勻磨損”的情況,雖然有點變化根據以上兩種情況對比。
4結論
?(1)磨損形式并不影響能使錘片的振動頻率改變的轉子。然而,它確實帶來了明顯的變化強度的頻率,其中的強度低頻率的階段,同時加強這一高頻率階段的削弱。
(2)徑向偏移現實出來是不穩(wěn)定的轉子相對于軸向偏移。振幅和強度大大增加時質心偏離徑向。
(3)強度的強迫振動頻率大大提高時,會出現無論是錘片磨損均勻或鄰近群體錘片磨損不均等方面的磨損情況。它需要較大的徑向力來抵消這兩個磨損形式,結果是不穩(wěn)定的轉子。
(4)基于以上這些結論,為了控制飼料粉碎機的轉子的振動,飼料粉碎機的轉子不應徑向偏移。因此,轉子需要很好的平衡特別是需要在達到動態(tài)平衡之前進入正常的運行。
附錄2 英文參考資料
Vibration generated by the abrasion of the hammer slicein feed-grinder based on virtual prototype technology
Abstract: The abrasion of the hammer slice can cause the rotor of the feed-grinder to lose balance and then make the grinder vibrate. A virtual prototype (VP) based on the rotor of SFSP112×30 feed-grinder was set up by using MDT and vN4D for investigating the relationship between the abrasion of the hammer slice and the vibration of the rotor. By simulating the VP with various abrasion forms, it has been found that the abrasion form does not influence the makeup of the vibration frequency but the intensity. That is, the intensity of the low-frequency stage strengthens but that of the high-frequency stage weakens when the hammer slices are worn out. The vibration amplitude and intensity both increase when the abrasion makes the centroid of the rotor offset radially. However, they do not change much when the centroid offsets axially. The intensity of the forced vibration frequency also greatly rises when the center of mass offsets radially.
Therefore, to damp the vibration of the feed-grinder the centroid of the rotor had better not offset radially.
Key words feed-grinder; hammer slice; virtual prototype (VP); abrasion; vibration
Vibration generated by the abrasion of the hammer slice in feed-grinder based on virtual prototype technology[J]. As one of the kernel equipment in feedstuff processing industry, the feed-grinder has been developed for years. But because of its special processing object, like cereal and mineral, there are few theoreti- cal studies on the feed-grinder except some experimen- tal researches. However, while the feed-grinder runs into many problems such as vibration, noise and clog- ging which mainly result from its own structure char- acteristics, running environment and fitting precision.
Although some methods such as lower rotational speed and wider rotor diameter have been adopted to im-prove its performance, those problems cannot be thor- oughly solved. Recently, et al has analyzed the vibration of the feed-grinder by calculat- ing the natural frequency of the rotor. Therefore, the rotation speed can be adjusted to be lower or high- er than the resonance speed to damp the vibration of the pulverator. But the natural frequency of the rotor is not constant, especially after long time grinding. On account of the array of the hammer slices and other factors, the hammer slices usually abrade unevenly, which causes the eccentricity of the rotor and then make the grinder vibrate[9]. Therefore, studying the characteristics when the hammer slices abrade is quite practical for taking better action to damp the vibration of the pulverator.
Virtual prototype (VP) technology is a process ofusing a CAD model, instead of a physical prototype, to test and evaluate the specific characteristics of a product or a manufacturing process[1]. The develop- ment of hardware and software of computer and network technology widely expands the application of VP. Meanwhile, traditional optimization and simula- tion techniques provide essential foundation to realize VP. Except for the hi-tech field, VP technology has also been applied to agricultural machinery design increasingly[10]. The authors attempt to apply VP technology to the engineering analysis of general machinery.
In this paper a simplified dynamic model for the rotor of the feed-grinder was developed based on rotor dynamics and the corresponding virtual prototype of the rotor was generated by using MDT and vN4D. By simulating the VP under different abrasion situations, the vibration characteristics of the rotor when the hammer slices abrade was analyzed.
1 Simplified model of the rotor
The rotor of SFSP112×30 feed-grinder with the symmetrical hammer slice array is shown in Fig.1. It consists of spindle, ball bearings, disk boards, ham-mer slices, pins and sleeves and its full-load rotational speed is 1480 r/min. So its frequency of the forced vibration should be 1480/60=24.67Hz.
Fig.1 Diagram of the rotor of SFSP112×30 feed-grinder
Based on the simplification principle of lumped parameter method[2]that the simplified model should have the same gross mass, moment of inertia and posi- tion of centroid to the original, the rotor of the pulver- ator was simplified into a one-span six-disc rotor system with two springs' support, as shown in Fig.2. The right end of the spindle and the center of each ball bearing and disk board are chosen as the positions of six disks. Fig.2 Simplified model of the rotor
The ball bearing is generally considered that it only provides stiffness because of its small damping[3]. In the system each self-aligning bearing on one side of the spindle is modeled as a spring, the stiffness of which can be calculated in the light of the following equation[4]:
2 Virtual prototype of the rotor
The 3D model of the rotor which only includes parts related to the simulation was built in MDT, a three- dimensional modeling software. The initialization of VP was fulfilled in vN4D, including importing the 3D model from MDT, modifying constraints between the parts and appending motor power[5]. Some important steps are listed below:
1) Instead of flat key joint each disk board is attached to the spindle by rigid joint which locks two bodies together absolutely.
2)Rigid jointis also used to fasten the pin with the disk board.
3) Because sleeves are used to limit the positions of the hammer slices, rigid joint is set as the constraint between the sleeve and the pin.
4) Constraint between the hammer slice and the pin is revolution joint, which is used to limit the motion of two bodies so that one body only rotates about a certain axis with respect to the other body.
5) The ball bearings are replaced by bushing constraint which can simulate the function of ball bearings. Eq. (1) is set as the stiffness function parameter of bushing constraint.
6) A motor constraint is added to the left end .
3 VP simulation and analysis
In order to accelerate the simulation speed, only those circumstances without external applied load were simulated. Meanwhile, since the pulverator needs a very short accelerating time, only the stage when the rotor runs stably is considered in this paper. As a result of the permutation of the hammer slices, the axial distribution of the material in the mill housing is often inhomogeneous and so does the wear extent of each hammer slice along the spindle. There- fore, the centroid of the rotor deviates from its original position. According to the probable deviation direction of the centroid, namely, radial, axial and both directions, four kinds of abrasion forms were specified. Furthermore, to contrast with the vibration under abrasion situations the performance with undamaged hammer slices was also simulated. The results of simulation are listed in Table 1.Table 1 VP simulation results with five abrasion forms of hammer slices
The diagrammatic sketch of the assumed abrasion forms is shown in Fig. 4. The four pin-and-sleeve groups were labeled fromⅠtoⅣclockwise when viewed from the axial direction and the hammer slices in each group are all marked from 1 to 8 parallel to the spindle. In Fig.4a the worn extent of each hammer slice is equal. In Fig. 4b the worn extent of each hammer slice in one group is unequal while the corresponding hammer slices in groupⅠandⅢhave the same worn extent. As for Fig.4c and Fig.4d the worn extent of the hammer slice is not identical entirely.
Figure 5 shows the vibration acceleration and power spectrum diagram (PSD) of the ball bearings collected in the process that the VP of the rotor ran for one second after it had wheeled for 14 s. Real line represents the vibration response of the left bearing and dashed line represents that of the right one. Fig.4 Sketch of abrasion forms.
The component of the vibration frequency changes little before and after the hammer slices are worn out. But the intensity at each frequency is quite different Fig.5 Vibration response of each bearing from the corresponding frequency of undamaged rotor.
At low-frequency stage the intensity strengthens and weakens at high-frequency stage. Especially the intensity under " even abrasion" situation changes much greater than that under other situations. And the same conclusion can be found for the vibration amplitude of the rotor. By contrasting Fig.5b and Fig.5c, it can be inferred that the radial offset of the centroid badly destroyed the balance of the rotor. This conclusion can also be acquired by contrasting Fig.5d and Fig.5e because the radial offset quantity of "adjacent uneven abrasion" is obviously larger than that of "asymmetric uneven abrasion". The intensity at the forced vibration frequency (24.67Hz) increases much more sharply under " even abrasion" and " adjacent uneven abrasion" situations while it changes a little under the other two situations.
4 Conclusions
1) The abrasion form of hammer slice does not influence the makeup of the vibration frequency of the rotor. However it really brings obvious changes to the intensity of the frequency, which exhibits that the intensity of low-frequency stage strengthens while that of high-frequency stage weakens.
2) The radial offset of the centroid can markedly disrupt the balance of the rotor compared with the axial offset. The vibration amplitude and intensity both increase greatly when the center of mass deviates radially.
3) The intensity at the forced vibration frequency is greatly raised when either the hammer slices wear evenly or the adjacent hammer slice groups wear unevenly with respect to other abrasion forms. It owes to the larger radial centroidal offset of these two abrasion forms that results in the imbalance of the rotor.
4) Based on these conclusions above, in order to damp the vibration of the feed-grinder the centroid of the rotor should not present radial offset. So the rotor needs to be well balanced especially in the dynamic balance test before going into operation.
目錄
一.設計目的及意義 2
二.設計的基本條件及技術要求 2
三.總體設計說明及計算 2
3.1傳動裝置 3
3.1.1電機選擇(Y系列三相交流異步電動機) 3
3.1.2 V帶設計 3
3.2零件計算及選擇 5
3.2.1軸的設計 5
3.2.2錘片的設計 6
3.2.3 錘片架的設計 7
3.2.4 篩片的設計 7
3.2.5校核 8
3.2.6主要尺寸及數據 9
3.2.7錘片式粉碎機常用故障分析 9
3.2.8 錘片式粉碎機安裝,技術參數分析及其檢修 10
四.評價 11
參考文獻 12
一.設計目的及意義
在現代人們的生活中,機器已經進入了大部分家庭中,它幫助我們完成各種工作,讓我們可以生活的更加輕松和方便。現在家庭中,有許多的小型機器,在農業(yè)生產、房屋建設中,機器更是不可或缺的幫手?,F在人們已經很習慣機器給我們打來的巨大便利,所以會有更多的機器的產生。同樣的,在畜牧喂養(yǎng)上,人們也發(fā)明了很多機器,例如:自動喂水、喂食機,自動擠奶機,在雞舍里會有自動控制溫度和濕度的機器。但是現在的飼料有時買回來不能直接就喂給動物,需要切碎后喂食,所以我就有想法,可以做一個自動切碎飼料的機器,這樣可以使人們的工作輕松、方便,也可以節(jié)省很多時間。
二.設計的基本條件及技術要求
轉子直徑:560mm 錘篩間隙:5mm 小帶輪轉速:3800r/min 篩孔直徑:760mm
錘片數:16 篩孔數量:0.75 篩片寬度:200mm 外型尺寸:320寸
動力:7.5kw 生產能力:600公斤/時
工作條件:連續(xù)單向運轉,工作時有輕微振動,使用期限為10年,小批量生產,每天工作時間為8小時。
三.總體設計說明及計算
錘片式飼料粉碎機的主要結構有:機架、粉碎箱、主軸、錘片架、錘片、進料口、出料口等組成。
3.1傳動裝置
3.1.1電機選擇(Y系列三相交流異步電動機)
配用動力機械的功率(N)的大小,要根據粉碎機的生產能力(Q)來決定,不宜過大或過小。一般應按下式計算:N=(6.4---10.5)Q。N的單位是千瓦,Q的單位是噸/小時。如要求粉碎的較細,系數的值可取大一點,如要求粉碎的較粗,系數的值可取小一點。本粉碎機加工的是谷物類飼料,對加工的飼料粉碎程度有多種選擇,故選擇參數較大一些,這里選擇10,加工能力為0.6噸/小時,所以配用的電機功率為N=6kw 查找書 機械設計課程設計,根據電機選擇標準選擇N=7.5kw。具體參數如下:
型號=Y132S2-2
額定功率\kw=7.5
同步轉速\r/min=3000
滿載轉速\r/min=2900
滿載時效率\%=86.2
滿載功率因數\cosθ=0.88
堵轉電流/額定電流= 7
堵轉轉矩/額定轉矩=2
最大轉矩/額定轉矩=2.2
技術數據:額定功率() 7.5 滿載轉速(r/min)2900
額定轉矩()2.0 最大轉矩()2.2
3.1.2 V帶設計
外傳動帶選為 普通V帶傳動:
主軸帶輪轉速:
=V*60*1000/3.14*290
=45*60*1000/3.15*290
=2965r/min
1. 確定V帶型號
工作情況系數K 由書 機械設計 表6-9 K=1.2
計算功率
V帶型號 根據p輪和n知為A型
2. 確定帶輪基準直徑、
=100mm
=(n/)
=1440/2965*100
=48.56
取整 =50mm
3. 驗算帶速 v
v=**n/60000
=3.14*100*1440/60000
=7.53m/s
要求帶轉速在5—25m/s范圍
4. 確定V帶長度L和中心距a
初取中心距:a=700mm,初算帶的基準長度L
L=2a+(+)/2+(-)/4a
=2*700+3.14*(100+95)/2+(100-95)/4*700
=1706.1mm
按書 機械設計 表6-5 取整=1800mm
a=a+(-L)/2
=700+(1800-1706)/2
=747mm
5. 驗算小帶輪包角
α=180-(-)/a*57.3=179.6>120
6. 確定V帶根數
單根V帶實驗條件下許用功率查
=1.15kw
傳遞功率增量△查表知:包角系數=1 長度系數=1.01
Z=/(+△)//
=8.25/(1.15+0.13)/1/1.01
=6.38
7. 計算單根V帶初拉力,由式(6-25)得
q由書 機械設計 表6-6查得
8. 計算帶傳動作用在軸上的載荷,有式(6-26)得
9. 確定帶輪的結構尺寸
小帶輪基準直徑=50mm 采用實心式結構。大帶輪基準直徑=100mm,采用孔板結構。
3.2零件計算及選擇
3.2.1軸的設計
1.選擇軸的材料及熱處理
根據粉碎機轉子的工作強度,選擇常用材料45鋼,調質處理
2.初估軸徑
按扭矩初估軸的直徑,查書 機械設計 表11-2,得c=107至118,考慮到安裝聯(lián)軸器的軸段僅受扭矩作用.取c=117則:
Dmin=15mm
3.初選軸承
Ⅰ軸選軸承為61805
根據軸承確定各軸安裝軸承的直徑為 D=25mm
4.確定尺寸
⑴各軸直徑的確定
初估軸徑后,句可按軸上零件的安裝順序,從左端開始確定直徑.該軸軸段1安裝軸承61805,故該段直徑為25mm。2段裝軸承,為了便于安裝,取2段為31mm。計算得軸肩的高度為3mm,3段安裝螺帽,其固定錘架盤的作用。定為36mm。4段裝鐵錘架,直徑為40mm。5段安裝螺帽和三段相同,六段安裝毛氈,起防止飼料粉進入軸承的作用,取6段31mm。7段裝小帶輪,取為25mm>dmin 。
⑵各軸段長度的確定
軸段1的長度為軸承61805的寬度和軸承到箱體外壁的距離取L1=40mm。2段的寬度取為L2=15mm。3段的長度是螺紋帽的寬度L3=10mm,4段為粉碎機中最關鍵的部分,該長度對飼料粉碎機的生產效率影響很大,根據加工要求取:L4=150mm。L5和L3同寬取L5=10mm。L6=15mm,7段同小帶輪連接,取L7=80mm。
⑶軸上零件的周向固定
為了保證良好的對中性,帶輪和錘片架與軸選用過盈配合H7/r6。與軸承內圈配合軸勁選用k6,齒輪與大帶輪均采用A型普通平鍵聯(lián)接,分別為10*146 GB1096-1979及鍵12*80 GB1096-1979。
⑷軸上倒角與圓角
為保證6008軸承內圈端面緊靠定位軸肩的端面,根據軸承手冊的推薦,取軸肩圓角半徑為1mm。其他軸肩圓角半徑均為2mm。根據標準GB6403.4-1986,軸的左右端倒角均為1*45。
3.2.2錘片的設計
由國家機械行業(yè)標準規(guī)定了錘片的型式,規(guī)格和設計要求。根據本機的設計要求選擇
I型,其具體設計圖形如下:
具體參數如下:a=120 b=950.5 c=40 d=16.5 e=3.5
由于錘片是粉碎機加工的核心部件,所以要求較高。本錘片選擇的金屬材料是65Mn鋼,且經過熱處理。熱處理淬火區(qū)硬度為50-57HRC,非淬火區(qū)硬度不超過28HRC。其淬火
區(qū)如下圖所示:
本錘片的設計使用壽命為大于400h,質量為0.2kg,錘片的寬度定位3mm,錘片的個數定位18個,且每個錘片之間的相差質量小于5g.
3.2.3 錘片架的設計
轉盤架的直徑設為290mm,厚度為4mm.其質量為0.4kg具體形狀如下圖:
計算出轉子的工作直徑為430mm
3.2.4 篩片的設計
按照國標GB-T3943-1983的設計標準,粉碎機篩片應按GB/T3943的Ⅰ型制造。優(yōu)先采用Ⅰa型篩片。選取篩孔的直徑為4(篩片號為40),孔間距為5mm,錘篩間距6mm,篩分面積比為58:40.其尺寸由轉子的工作直徑可算出,篩片的長度為220*∏=691.15=690mm,曬片的厚度定位1.5mm.篩片的寬度定為200mm。
3.2.5校核
1.鍵的校核
鍵1 10×8 L=80 GB1096-79
則強度條件為
查表許用擠壓應力
所以鍵的強度足夠
鍵2 12×8 L=63 GB1096-79
則強度條件為
查表許用擠壓應力
所以鍵的強度足夠
2.聯(lián)軸器的選擇
聯(lián)軸器選擇為TL8型彈性聯(lián)軸器 GB4323-84
3.滾動軸承的潤滑
因潤滑油中的傳動零件的圓周速度V>>1.5~2m/s所以采用飛濺潤滑。
3.2.6主要尺寸及數據
箱體尺寸:
箱體壁厚
箱蓋壁厚
箱座凸緣厚度b=25mm
箱蓋凸緣厚度b1=25mm
箱座底凸緣厚度b2=25mm
地腳螺栓直徑df=M10
地腳螺栓數目n=4
軸承旁聯(lián)接螺栓直徑d1=M10
聯(lián)接螺栓d2的間距l(xiāng)=160mm
軸承端蓋螺釘直徑d3=M8
定位銷直徑d=6mm
軸承旁凸臺半徑R1=15mm
凸臺高度根據低速軸承座外半徑確定
外箱壁至軸承座端面距離L1=40mm
大齒輪頂圓與內箱壁距離△1=10mm
齒輪端面與內箱壁距離△2=10mm
箱蓋,箱座肋厚m1=m=7mm
軸承端蓋外徑D2 :凸緣式端蓋:D+(5~5.5)d3
以上尺寸參考書 機械設計課程設計
3.2.7錘片式粉碎機常用故障分析
錘片式粉碎機廣泛用于糧食和飼料的粉碎,現將粉碎機常見的幾種故障產生原因分析如下:
1. 錘片嚴重磨損的原因:①表面熱處理不當,因錘片是用優(yōu)質鋼制成,頭部經滲碳、淬火處理,淬火硬度為HRC60-65,若熱處理不當,使用中會很快磨損;②錘片的厚度小,因粉碎機常用矩形雙銷孔錘片,其使用壽命為200-500小時,厚度小雖可減輕重量而使粉碎生產率提高,但使用壽命短,一般粉碎糧食的錘片選用2-3mm,粉碎豆餅及礦物的選用6-8mm;③吸風量太大,因錘片式粉碎機一般都采取吸風措施來降低機內溫度、濕度,并防止粉塵外泄,但吸風量太大也會造成錘片不均勻磨損,應適當控制風量;④錘片與篩片的間隙太小,一般應保持在4-12mm,粉碎谷物為4-8mm,粉碎秸稈為10-14mm。
2. 機器運轉中有震動和噪音的原因:①機座安裝不牢固,緊固螺絲松動;②錘片磨損后沒有同時成對更換,或錘片磨損不均勻,致使錘片重量相差大;③轉子轉動不平衡,轉速超過額定轉速;④物料中混有石塊或金屬等異物而引起噪音,同時會損壞錘片、篩片。
3. 生產率顯著下降的原因:①電動機功率不足或配套動力不合適;②轉子轉速過低或皮帶打滑,應檢查皮帶輪尺寸是否符合要求,或調整皮帶松緊度;③喂料不勻使粉碎機轉速不穩(wěn),導致生產率下降;④錘片嚴重磨損,錘與篩的間隙過大;⑤物料含水量過高。
4. 成品過粗的原因:①篩片和篩架貼合不嚴或側面間隙過大;②篩片磨損嚴重或有孔洞,應修補孔洞或更換新篩片。
3.2.8 錘片式粉碎機安裝,技術參數分析及其檢修
一)安裝
1、 粉碎機長期固定使用時,應將粉碎機架安裝在水泥基礎上,也可將粉碎機單獨固定在車架上使用。
2、 所有電器設備及線路必須安裝正確可靠。
3、 安裝后各轉動部件要運轉靈活,進行空運轉半小時,檢查有無卡碰及不正常響聲,連接是否牢靠。
4、 三角帶轉動部分必須安裝防護罩,尺寸見附圖。安裝固定點為機器軸承座固定螺栓和電機座固定螺栓。
二)錘片式粉碎機是飼料加工機械中主要耗能設備, 它的性能好壞直接影響生產率和單位能耗。影響粉碎機工作性能的因素很多, 其中最主要是粉碎機本身的結構參數。因此, 研究和合理選擇錘片式粉碎機結構參數, 對提高性能指標和降低成本具有重要的經濟意義。影響錘片式粉料機性能的技術參數較多。錘片末端線速度是影響粉碎機工作性能的重要因素。錘片式粉碎機的工作原理, 靠高速旋轉的錘片對物料打擊、剪切和挫擦等綜合作用, 把錘片的功能變?yōu)槲锪系姆鬯槟堋eN片的功能與線速度平方成正比, 大量試驗證明, 在一定范圍內提高線速度可以提高生產率和度電產量, 并減少粉料的粗細度。近年來, 國內外錘片式粉碎機的線速度都在提高。
三)飼料粉碎機的檢修的三大點
一、篩網的修理和更換。篩網是由薄鋼板或鐵皮沖孔制成。當篩網出現磨損或被異物擊穿時,若損壞面積不大,可用鉚補或錫焊的方法修復;若大面積損壞,應更換新篩。安裝篩網時,應使篩孔帶毛刺的一面朝里,光面朝外,篩片和篩架要貼合嚴密。環(huán)篩篩片在安裝時,其搭接里層茬口應順著旋轉方向,以防物料在搭接處卡住。
二、軸承的潤滑與更換。粉碎機每工作300小時后,應清洗軸承。若軸承為機油潤滑,加新機油時以充滿軸承座空隙1/3為宜,最多不超過1/2,作業(yè)前只需將常蓋式油杯蓋旋緊少許即可。當粉碎機軸承嚴重磨損或損壞,應及時更換,并注意加強潤滑;使用圓錐滾子軸承的,應注意檢查軸承軸向間隔,使其保持為0.2-0.4毫米,如有不適,可通過增減軸承蓋處紙墊來調整。
三、齒爪與錘片的更換。粉碎部件中,粉碎齒爪及錘片是飼料粉碎機中的易損件,也是影響粉碎質量及生產率的主要部件,粉碎齒爪及錘片磨損后都應及時更換。齒爪式粉碎機更換齒爪時,應先將圓盤拉出。拉出前,先要開圓盤背面的圓螺母鎖片,用鉤形扳手擰下圓螺母,再用專用拉子將圓盤拉出。為保證轉子運轉平衡,換齒時應注意成套更換,換后應做靜平衡試驗,以使粉碎機工作穩(wěn)定。齒爪裝配時一定要將螺母擰緊,并注意不要漏裝彈簧墊圈。換齒時應選用合格件,單個齒爪的重量差應不大于1.0-1.5克。
錘片式粉碎機的錘片有的是對稱式,當錘片尖角磨鈍后,可反面調角使用;若一端兩角都已磨損,則應調頭使用。在調角或調頭時,全部錘片應同時進行,錘片四角磨損后,應全部更換,并注意每組錘片重量差不得大5克;主軸、圓盤、定位套、銷軸、錘片裝好后,應做靜平衡試驗,以保持轉子平衡,防止機組振動。此外,固定錘片的銷軸及安裝銷軸的圓孔由于磨損,銷軸會逐漸磨細、圓孔會逐漸磨大,當銷軸直徑比原尺寸縮小1毫米,圓孔直徑較原尺寸磨大1毫米時,應及時焊修或更換。
四.評價
我設計的錘片式飼料粉碎機我個人覺得不是做的很好,錘片之間的距離分配做的不是很適合??赡茉诠ぷ鞯臅r候不能達到太細的粉碎程度。
參考文獻
[1] 張祖立主編. 機械設計. 中國農業(yè)出版社. 2004.5
[2] 鞏云鵬 田萬祿 張祖立 黃秋波主編. 機械設計課程設計. 東北大學出版社.2000.12
[3] 楊薩蘭編.飼料粉碎機.湖南科學技術出版社.1985
[4] 中國標注出版社譯.中國機械工業(yè)標準匯編.中國標注出版社.2002.11
[5] 魏文軍 高英武 張云文主編.機械原理.中國農業(yè)大學出版社.2005.8
[6] 徐廼霆撰.粉碎機械.商務印書館.1952
[7] 周恩浦著.粉碎機械的理論與應用.中南大學出版社.2004
- 12 -