高考數(shù)學(xué)一輪復(fù)習(xí) 3-7 正弦定理和余弦定理課件 文.ppt
《高考數(shù)學(xué)一輪復(fù)習(xí) 3-7 正弦定理和余弦定理課件 文.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)一輪復(fù)習(xí) 3-7 正弦定理和余弦定理課件 文.ppt(29頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第七節(jié) 正弦定理和余弦定理,最新考綱展示 掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題.,一、正弦定理和余弦定理,1.在△ABC中,已知a,b和A,利用正弦定理時(shí),會(huì)出現(xiàn)解的不確定性,一般可根據(jù)“大邊對(duì)大角”來(lái)取舍.另外也可按照下面的方式來(lái)判斷解的情況:,答案:A,2.(2013年高考陜西卷)設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若bcos C+ccos B=asin A,則△ABC的形狀為( ) A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不確定,答案:B,4.△ABC中,B=120°,AC=7,AB=5,則△ABC的面積為_(kāi)_______.,利用正、余弦定理解三角形(師生共研),,規(guī)律方法 (1)正、余弦定理可以處理四大類解三角形問(wèn)題,其中已知兩邊及其一邊的對(duì)角,既可以用正弦定理求解也可以用余弦定理求解. (2)利用正、余弦定理解三角形其關(guān)鍵是運(yùn)用兩個(gè)定理實(shí)現(xiàn)邊角互化,從而達(dá)到知三求三的目的.,,例2 (2015年吉林模擬)在△ABC中,a,b,c分別表示三個(gè)內(nèi)角A,B,C的對(duì)邊,如果(a2+b2)sin(A-B)=(a2-b2)·sin(A+B),試判斷該三角形的形狀.,三角形形狀的判斷(師生共研),規(guī)律方法 判定三角形形狀的兩種常用途徑: (1)通過(guò)正弦定理和余弦定理,化邊為角,利用三角變換得出三角形內(nèi)角之間的關(guān)系進(jìn)行判斷. (2)利用正弦定理、余弦定理,化角為邊,通過(guò)代數(shù)恒等變換,求出邊與邊之間的關(guān)系進(jìn)行判斷. 提醒:在判斷三角形形狀時(shí)一定要注意解是否唯一,并注重挖掘隱含條件.另外,在變形過(guò)程中要注意角A,B,C的范圍對(duì)三角函數(shù)值的影響.,2.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且2asin A=(2b+c)sin B+(2c+b)sin C. (1)求A的大??; (2)若sin B+sin C=1,試判斷△ABC的形狀.,三角形的面積問(wèn)題(師生共研),- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)一輪復(fù)習(xí) 3-7 正弦定理和余弦定理課件 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 正弦 定理 余弦 課件
鏈接地址:http://ioszen.com/p-2188742.html