530 履帶牽引車輛變速器改進設計(有cad圖+中英文翻譯)
530 履帶牽引車輛變速器改進設計(有cad圖+中英文翻譯),530,履帶牽引車輛變速器改進設計(有cad圖+中英文翻譯),履帶,牽引,車輛,變速器,改進,改良,設計,cad,中英文,翻譯
履帶牽引車輛變速器改進設計
摘 要
本設計為履帶牽引車輛變速器的改進設計。變速器的功用是:改變傳動比,擴大驅動輪轉矩和轉速的變化范圍,同時使發(fā)動機在有利的工況下工作;在發(fā)動機旋轉方向不變的前提下,使拖拉機能倒退行駛;利用空檔,中斷動力傳遞。變速器的設計滿足必要的動力性和經濟性指標。
本改進型變速箱為了簡化結構,減少齒輪數量采用空間多軸組成式結構,主變速在前、區(qū)段換檔副變速在后來實現4(3+1)檔;為了提高齒輪傳動嚙合質量采用嚙合套換檔,常嚙合斜齒圓柱齒輪傳動;主、副變速采用兩根變速桿分別操縱,采用自鎖及互鎖裝置、倒檔安全裝置,可使操縱可靠,不跳檔、亂檔、自動脫檔和誤掛倒檔,為了保留一定的工藝繼承性和能投入的較少,保持原來變速箱孔中心距及相對位置不變。
為了必要的分析拖拉機的牽引性和燃料的經濟性本設計還繪制了拖拉機的牽引特性曲線,在說明書的校核部分,主要對齒輪的彎曲疲勞強度和接觸疲勞強度,軸的剛度和強度以及軸承的壽命進行了計算,設計的零件均滿足要求。
關鍵詞: 變速器,組成式結構,牽引特性,嚙合套
The improvement of the track draws the vehicle gear box
Abstract
Originally designed the improvement that the track draws the vehicle gear box to design. The function of the gear box is: It change by transmission than,expand by torque and the change ranges of rotational speed drive wheel, more make engine unable to work at favorable operating mode at the same time; Under the circumstances that the engine rotates the prerequisite that the direction does not change , enable tractor to fall back and go ; Utilize the noload position, cut off motive force to transmit . Essential motive force and economic index that the design of the gear box is satisfied .
Originally the improving type gearbox, in order to simplify the structure, it is last axle making up type structures many not to reduce by gear wheel the quantities ,it change speed mainly in before, change sector it is vice that if changing speed , realize later to shelf 4 ( 3+ 1) Shelf; For improve gear wheel transmission meshing quality adopt , clench the teeth set change shelf , clench the teeth oblique tooth cylinder gear wheel transmission often; Main fact , pair change speed , adopt two gearshift levers handle separately , adopt from the lock and lock the device , pour the safety device of the shelf each other, can make , handle reliable , jump the shelf , haphazard shelf , automatic and out of supply and hanging and pouring the shelf by mistake , it is less in order to keep certain craft succession and can be put into, the hole centre-to-centre spacing of gearbox and relative position did not change that kept originally.
And economy of fuel originally design and also draw drawing the curve of characteristic of the tractor for essential analysis person who draw of tractor, in the check part of the manual , the crooked fatigue strength and contacting fatigue strength mainly to the gear wheel, having calculated in rigidity of the axle and life-span of intensity and bearing, the part designed meets the demands .
Keyword: gear box,making up type structure, the characteristic of traction, meshing set
目 錄
前言―――――――――――――――――――――――6
第一章 概述―――――――――――――――――――7
第二章 傳動方案的確定――――――――――――― 8
§ 2.1傳動機構布置方案分析―――――――――――8
§ 2.2部件結構方案分析――――――――――――――9
第三章 變速器主要參數選擇―――――――――――9
§ 3.1 檔數―――――――――――――――――― 9
§ 3.2 傳動比――――――――――――――――― 9
§ 3.3 中心距――――――――――――――――――13
§ 3.4 齒輪參數――――――――――――――――13
§ 3.5 軸承參數――――――――――――――― 15
第四章 拖拉機的牽引特性曲線――――――――15
第五章 校核――――――――――――――― 17
§ 5.1 齒輪強度計算―――――――――――― 17
§ 5.2 軸的校核―――――――――――――― 21
§ 5.3 軸承的壽命計算――――――――――― 29
設計總結――――――――――――――――――― 33
參考文獻――――――――――――――――――――34
致謝―――――――――――――――――――――― 35
附錄―――――――――――――――――――――― 36
英文原文――――――――――――――――――――37
中文翻譯――――――――――――――――――――45
前 言
雖然自動變速器在近年來有很大發(fā)展,但手動機械變速器在拖拉機傳動中仍占有很大比例。在我國相當長的時間里,手動變速器會占有很高的比例。
現有履帶式拖拉機的變速箱結構大同小異,有4+2、6+2檔變速型式,功率流傳動路徑相同。該傳動方案結構簡單可靠,傳動效率高但仍有不足之處:
1、受結構限制,該變速箱難以實現較大的速比范圍,使拖拉機的工作速度區(qū)段較窄。東方紅13202R履帶拖拉機6個前進擋的速度范圍為4.02~16.07 Km/h,顯然,缺少4 km/h以下的低速作業(yè)檔及缺少20km/h以上的高速作業(yè)檔。
2、 由于現有履帶式拖拉機采用滑動齒輪換擋,變速箱只能采用直齒圓柱齒輪傳動,致使齒輪傳動嚙合質量不是很高。
3、 由于發(fā)動機轉速由1500r/min提高倒2300r/min,使齒輪工作時的嚙合線速度及固定在軸上的各檔被動齒輪的齒頂圓線速度均大幅度提高,致使變速箱噪聲大,油溫高。
基于上述原因就現有東方紅履帶拖拉機變速箱有改進的必要。
進些年來,為了適應拖拉機對傳動系統(tǒng)的多檔位、大扭矩和寬速比范圍等日益增多的需求,變速器在在結構和技術方面都有很大的發(fā)展。傳統(tǒng)的的三軸式變速器由于自身容量限制,已遠不足以滿足上述要求。傳統(tǒng)結構變速器的最大容量,檔位數一般最多只能布置到6個前進擋和2個倒檔?,F在拖拉機需要8~16個前進擋。由此,倍檔、半檔、雙中間軸和組成式變速器被研制出來,滿足了上述要求。
改進型變速箱主要改變功率流程、采用組成式結構實現多檔化;采用常嚙合斜齒圓柱齒輪傳動,嚙合套換擋,主、副變速箱采用兩根變速桿操作。參考相關設計內容,采用統(tǒng)計和類比的方法初步確定變速箱的主要參數。
第一章 概述
機械式變速箱主要應用了齒輪傳動的降速原理。簡單的說,變速箱內有多組傳動比不同的齒輪副,而汽車行駛時的換檔行為,就是通過操縱機構使變速箱內不同的齒輪副工作。在低速時,讓傳動比大的齒輪副工作,而在高速時,讓傳動比小的齒輪副工作。
變速器用于轉變發(fā)動機曲軸的轉距和轉速,以適應汽車在起步、加速、行駛以及克服各種路障等不同條件下對驅動車輪牽引力及車速的不同要求的需要,用變速器轉變發(fā)動機轉距、轉速的必要性在于內燃機轉距—轉速變化特性的特點是具有相對小的對外部載荷改變的適應性。
變速器有變速傳動機構和操縱機構組成。
變速箱的分類:變速器按其傳動比的改變方式分為有極式和無極式。無極式又可分為機械式、液力式和電力式幾種,它的特點是:在一定的范圍內可獲得任何傳動比,從發(fā)動機的功率的利用和提高生產率方面都有一定的優(yōu)越性;但由于傳動效率、制造成本和結構方面問題處于研究試制階段。有極式可分為雙軸式、三軸式和組成式,它的特點就是結構簡單被廣泛應用。
為保證變速器具有良好的工作性能,對變速器提出以下設計要求:
1、保證拖拉機必要的動力性和經濟性。
2、設置空檔,用來切斷發(fā)動機動力向驅動輪的傳輸。
3、設置倒檔,使汽車能倒退行駛。
4、設置動力輸出裝置,需要時能進行功率輸出。
5、換擋迅速,省力方便。
6、工作可靠,行駛過程中不得有跳檔、亂檔及換檔沖擊等現象發(fā)生。
7、有高的工作效率和工作噪聲低。
除此之外,還應滿足輪廓尺寸和質量小,制造成本低,維修方便等要求。
第二章 傳動方案的確定
機械式變速器因結構簡單、體積較小、制造成本低、傳動效率高和工作可靠等優(yōu)點,所以至今仍不失為主要的拖拉機變速系統(tǒng),并得到廣泛應用。
§2.1傳動機構布置方案分析
改進型變速箱傳動簡圖
有級變速器的傳動效率與所選用的傳動方案有關,包括傳遞力的齒輪副數目、轉速、傳遞的功率、潤滑系統(tǒng)的有效性、齒輪及軸及殼體等零件的制造精度、剛度等。
三軸式與兩軸式變速器的比較:三軸式的優(yōu)點直接檔的傳動效率高,磨損及噪聲也最小,在齒輪中心距較小的情況下可獲得大的一檔傳動比,缺點是:除直接檔外其他各檔的傳動效率有所降低;兩軸式的優(yōu)點:結構簡單緊湊,除最高檔外其他各檔的傳動效率高、噪聲低,它方便于前置發(fā)動機的布置且使傳動系結構簡單,缺點是:它沒有直接檔,因此在高檔工作時,齒輪和軸承均承載,故噪聲教大,也增加了磨損。
但因為本變速器變速范圍比較大,采用兩軸式、三軸式,結構比較復雜齒輪較多,為了簡化結構和齒輪數量,本設計采用組成式結構4(3+1)檔,A,B為主變速器的嚙合套,主變速器的嚙合套;C,D為副變速器的嚙合套。
§2.2 部件結構方案分析
一、齒輪形式
斜齒輪有使用壽命長,工作時噪聲低,傳動效率高等優(yōu)點;但制造時比較復雜、工作時有軸向力。
本變速器齒輪1~17均采用斜齒輪;齒輪18,19采用直齒輪。
二、換擋機構形式
變速器換擋機構有直齒滑動齒輪、嚙合套和同步器換擋三種形式。
本設計因滑動齒輪換擋只能采用直齒圓柱齒輪傳動,限制了齒輪傳動嚙合質量進一步提高,還有本設計檔位之間公比小,換擋機構連接件之間的角速度差小,所以采用嚙合套換擋。它能降低制造成本,減少變速器的長度。
三、軸承的選擇
變速器軸承常采用圓柱滾子軸承、球軸承、滾針軸承、圓錐滾子軸承等。
因本設計采用斜齒輪傳動,齒輪工作時會產生軸向力,軸前端和后端均采用角接觸軸承;齒輪繞軸轉時采用滾針軸承。
第三章 變速器主要參數選擇
§3.1 檔數
變速器檔位數的增多可提高發(fā)動機的功率利用率、汽車的燃料經濟性及平均車速,從而可提高運輸效率,降低運輸成本。
本設計為了實現較大的速比范圍使用12+4檔。
§3.2 傳動比
一、 各檔傳動比的確定
前進:
倒退:
其中:-傳動器傳動比2.733;-輪邊傳動比5.5;-變速箱傳動比
變速箱前進擋傳動比成等比數列,等比基數;倒檔
各前進檔傳動比:
各后退檔傳動比:
二、分配傳動比并確定各對齒輪的傳動比
主變速器:
副變速器:
初選 經計算得
三、定總齒數及各齒輪齒數
由中心距、模數和螺旋角可以確定總齒數
由各對嚙合齒輪傳動比確定各齒輪齒數
=34 =15 =25.8° =23.8°
=27 =22 =25° °
° =25°
° °
°
°
°
取 則
° ° °
?。?3 則=25
° °
=25 =28
四、各檔最終傳動比、速度及誤差
=4.9% =4.81km/h
=6%
=4.8%
=6.8%
=1.1%
=0.3%
=2.2%
=0.01%
=2%
=0.5%
=0.2%
=2.4%
=2.5%
=3.6%
§3.3 中心距A
本改進型變速箱保持原變速箱孔中心距及相對位置不變,具有良好的工藝繼承性。
1—-3軸中心距135mm 3-—2軸中心距152.5mm
3――4軸中心距144mm 2――4軸中心距142.5mm
2――5軸中心距133mm
§3.4 齒輪參數
一、齒輪模數
齒輪模數m直接決定齒輪彎曲強度,從增強彎曲強度出發(fā),應選用大模數。但是在中心距和速比一定的情況下,若選用小模數,則可以增加齒數,使重疊系數增大,傳動平穩(wěn)性和齒輪接觸強度都有所改善。因此,在滿足彎曲強度的前提下應用較小的模數。
根據經驗公式=5mm 其中 :模數系數0.35 ; :最低檔轉矩2926.9n.m
二、 齒寬
在一定范圍內b大強度就高,但變速箱的軸向尺寸和重量亦增大。實踐證明,齒寬過分增大,由于沿齒寬方向負荷分布不均勻性增大,反而使齒輪承載能力隨之下降。
對于直齒b=(4.4~7)m=65=30mm
斜齒b=(6~9.5)m=7.25=36mm
三、 螺旋角
當斜齒輪軸向重疊系數為1時,則斜齒輪廓表面的接觸線長度不變,使傳動平穩(wěn),由此觀點確定螺旋角。 =~ ?。?
四、 壓力角
一般采用標準齒形進行變位,壓力角取。
五、斜齒圓柱與直齒齒輪參數表
斜齒圓柱齒輪參數
齒輪代號
齒數
法面模數(mm)
螺旋角(°)
法面壓力角(°)
法面齒頂高系數
分度圓直徑(mm)
齒頂高(mm)
齒頂圓直徑(mm)
齒根圓直徑(mm)
1
34
5
25.8
20
1
188
5
193
181.75
2
15
5
23.8
20
1
82
5
87
75.75
3
37
5
25.5
20
1
206
5
211
199.75
4
27
5
25
20
1
149
5
154
142.75
5
22
5
24.6
20
1
122
5
127
115.75
6
33
5
26.3
20
1
183
5
188
176.75
7
20
5
24.6
20
1
110
5
115
103.75
8
29
5
25
20
1
160
5
165
153.75
9
13
5
23.7
20
1
71
5
76
69.75
10
36
5
25.2
20
1
199
5
204
177.75
11
19
5
26.3
20
1
106
5
111
99.75
12
19
5
26.3
20
1
106
5
111
99.75
13
36
5
25.2
20
1
199
5
204
192.75
14
14
5
23
20
1
76
5
81
69.75
15
38
5
24.6
20
1
209
5
214
202.75
16
23
5
26
20
1
128
5
133
126.75
17
25
5
25
20
1
138
5
143
136.75
直齒圓柱齒輪參數
參數
齒輪18
齒輪19
齒數
25
28
模數(mm)
5
5
壓力角(°)
20
20
齒頂高系數
1
1
分度圓直徑(mm)
126
140
齒頂高(mm)
5
5
齒頂圓直徑(mm)
131
145
齒根高(mm)
6
6
齒根圓直徑(mm)
120
134
§3.5 軸承選擇
1(輸入)軸選用角接觸球軸承7311C;3軸選用角接觸球軸承7312C;2(輸出)軸選用角接觸球軸承7314C。
第四章 拖拉機的牽引特性曲線
一、牽引特性曲線的意義
把拖拉機的各項牽引性和燃料經濟性指標綜合在一起,比較全面而具體地反映出拖拉機的各種性能指標之間的聯系,可用以分析、比較和評價拖拉機的牽引性和燃料經濟性。
二、理論牽引特性曲線的繪制
繪制之前須知:
發(fā)動機的調速特性曲線;拖拉機傳動系各檔總傳動比i、驅動輪動力半徑、拖拉機使用重量;拖拉機的滾動阻力系數f和滑轉曲線。
具體步驟:
1、按所取比例尺繪制曲線的坐標
以O為原點的橫坐標代表掛鉤牽引力,從O點往左加一段代表滾動阻力=f,其中=7000kg,代表驅動力。
由該檔的曲線和曲線畫出V曲線。
1、 發(fā)動機調速特性曲線和滑轉率曲線為已知(東方紅1302R)
3、實際速度V曲線
4、畫拖拉機功率曲線
可由V曲線畫出曲線。
5、畫拖拉機的比油耗曲線
可由曲線畫出曲線。
第五章 校核
§5.1 齒輪強度計算
變速箱齒輪主要破壞形式是疲勞接觸和疲癆彎曲破壞。
一、彎曲疲勞強度計算
齒輪材料為 對于斜齒輪
直齒輪
校核公式:
其中:-應力集中系數=1.5; -重合度系數=1.4;
- 齒寬系數=7.2
對齒輪1:
y=0.194
MPa <
對齒輪2:
y=0.212
MPa<
對齒輪3:
y=0.192
MPa<
對齒輪4:
y=0.199
MPa<
對齒輪5:
y=0.204
MPa<
對齒輪6:
y=0.195
MPa<
對齒輪7:
y=0.207
MPa<
對齒輪8:
y=0.198
MPa<
對齒輪9:
y=0.212
MPa<
對齒輪10:
y=0.193
MPa<
對齒輪11:
y=0.206
MPa<
對齒輪12:
y=0.206
MPa<
對齒輪13:
y=0.193
MPa<
對齒輪14:
y=0.212
MPa<
對齒輪15:
y=0.192
MPa<
對齒輪16:
=2372.3Nm y=0.2
MPa<
對齒輪17:
=2372.3=2562.1Nm y=0.198
MPa<
對齒輪18:
=2372.3=2562.1Nm y=0.206
MPa<
對齒輪19:
=2926.9Nm y=0.204
MPa<
由上述計算結果可得所有齒輪均滿足彎曲疲勞強度要求。
二、接觸疲勞強度計算
其中:k—系數(對直齒輪338.3,對斜齒輪292.5);A――中心距
i-傳動比; b-有效齒寬; M-小齒輪扭矩; -工作狀況系數=1.65
-角變位修正對接觸強度的影響系數
許用接觸應力=1000~1400MPa
對齒輪1,2
對齒輪2,3
對齒輪4,5
對齒輪5,6
對齒輪7,8
對齒輪9,10
對齒輪10,11
對齒輪12,13
對齒輪14,15
對齒輪16,17
對齒輪18,19
§5.2 軸的校核
一、軸的剛度驗算
軸在水平面內的撓度,垂直面內的撓度,轉角,圓周力,徑向力,軸向力
彈性模量:E= 慣性力矩: d:軸的直徑
對于1(輸入)軸:
齒輪幅1和9離支撐點近,撓度較小不必計算,只考慮齒輪幅4即可。
T=440.13Nm d=64mm
對于3軸:
齒輪幅2和10離支撐點近,撓度小不必計算,只考慮齒輪幅12即可。
T=1232.36Nm d=60mm
對于2(輸出)軸:
齒輪幅16載荷大離支撐點遠,只考慮它即可。
T=2372.3N d=75mm
=65897.2N =26685.3N =23984.6N
對于5軸:
只考慮齒輪幅18即可。
T=2562.1 d=55mm
=93167.3N =37415.7N =33910.1N
對于4(倒檔)軸:
T=1326.8N d=64mm
=60309.1N =24319.8N
根據上述計算結果可得軸符合剛度要求。
二、軸的強度計算
其中 許用
對于1(輸入)軸:
主變速器1,4檔時,齒輪幅離支撐點近,于是只校核主變速器3檔時的強度即可。
H: 水平面 V:垂直面
對于3軸:
對于2(輸出)軸:
對于4(倒檔)軸:
對于5軸:
經計算,變速器的所有軸的強度在各檔位時都滿足強度要求,設計是合理的。
§5.3 軸承的壽命計算
一、1軸(輸入軸)上的軸承7312C
1、軸承的徑向載荷,
2、 軸承的軸向力,
軸承的派生軸向力 先取e=0.4
經查表計算得=0.52 =0.41
3、軸承的當量載荷
查表得:=0.44 =1.09 =1 =0
軸承運轉中有中等沖擊載荷 =1.5
4、驗算軸承壽命
故該軸承滿足要求。
二、3軸上的軸承7312C
1、軸承的徑向載荷,
2、 軸承的軸向力,
軸承的派生軸向力 先取e=0.4
==25054.5N
經查表計算得=0.55 =0.68
3、軸承的當量載荷
查表得=0.44 =1.02 =1 =0
軸承運轉中有中等沖擊載荷 =1.5
4、驗算軸承壽命
故該軸承滿足要求。
三、2(輸出)軸上得軸承7314C
1、徑向載荷
2、 軸承的軸向力,
軸承的派生軸向力 先取e=0.4
=
經查表計算得=0.55 =0.68
3、軸承的當量載荷
查表得
軸承運轉中有中等沖擊載荷 =1.5
4、驗算軸承壽命
故該軸承滿足壽命要求。
設計總結
本次設計在吸取前人經驗的前提下,通過自己的努力完成。在滿足設計要求的前提下,盡可能使方案最優(yōu)化。
三個月的畢業(yè)設計,是對大學四年來所學知識的系統(tǒng)總結和就業(yè)前的一次練兵,對我們顯得尤為有意義。這次設計,使我得到了許多:
首先,這次設計使我對大學四年所學的基礎知識和專業(yè)知識有了一個系統(tǒng)的總結,同時也讓我學到了新知識。本次計內容以前沒有怎么接觸過,得查閱大量得資料,這就鍛煉了自己要發(fā)現問題并解決問題的能力,還掌握了許多獲得知道的途徑。這些寶貴的經驗將對我在將來的學習和工作中起到了很大的幫助。因本次設計大部分用CAD繪的,大大提高了自己的機繪能力。
其次,這次設計也鍛煉了自己的意志,為步入社會做好了準備。
再次就是加強了團隊合作意識。
也正是通過這次設計,才讓我認識到了自己知識的局限性。由于實際經驗不多,能力有限,設計難免有些不足之處,望給予指正??傊?,這次設計使我受益非淺。
參考文獻
[1]、 拖拉機地盤結構設計圖冊 機械工業(yè)出版社
[2]、吳宗澤 機械設計實用手冊 化學工業(yè)出版社
[3]、 機械設計手冊 機械工業(yè)出版社
[4]、 拖拉機設計和計算 上海科學技術文獻出版社
[5]、 拖拉機理論 中國農業(yè)出版社
[6]、洛陽拖拉機研究所主編 拖拉機設計手冊 機械工業(yè)出版社
[7]、郁錄平. 工程機械地盤設計 人民交通出版社
[8]、陳家瑞. 汽車構造(下冊) 機械工業(yè)出版社
[9]、 機械設計基礎 高等教育出版社
[10]、朱冬梅,胥北瀾. 畫法幾何及機械制圖 高等教育出版社
[11]、濮良貴,紀名剛. 機械設計 高等教育出版社
[12]、王望予. 汽車設計(第4版) 機械工業(yè)出版社
[13]、張興裕. 工程機械地盤構造與設計 同濟大學
[14]、戰(zhàn)慧敏. 變速箱改進方案探討 《拖拉機與農用運輸車》2001.No.56
[15]、郝京順. 汽車變速器的發(fā)展 《北京汽車》 2000.No.6
[16]、吳修義. 手動機械變速器的發(fā)展 《運輸車輛》 1998.No.5
[17]、淺析拖拉機工作速檔的選擇及傳動比的確定 《農機化研究》 1997.No.3
致謝
緊張而忙碌的畢業(yè)設計就要結束了,它讓我學到了很多,當然,這些離不開指導老師和同學們的幫助。
首先感謝張老師和曹老師的辛勤指導、耐心的解答和嚴格要求。在整個我們畢業(yè)設計過程中,他們嚴謹的治學態(tài)度、無私的奉獻精神、淵博的學識無一不深深的影響著我。
再次感謝同組同學的熱心幫助。
附錄
變速器主要參數表
參數符號
參數名稱
參數值
驅動輪半徑
346.5mm
最大傳動比
6.65
最小傳動比
0.665
主傳動比
2.733
輪邊傳動
5.5
最高車速
30.18km/h
最低車速
3.1km/h
齒輪壓力角
20°
m
齒輪模數
5mm
英文原文:
Transmission/driveline systems update
Torque converter with lock-up clutch Borg-Warner Automotive has developed a new torque converter, the Power Flow 250 mm. It is built to accommodate new-generation high speed automotive engines. Powertrain efficiency is enhanced by a locking clutch feature; this maximizes durability while reducing axle length. Maximum input torques of 110-340 Nm are catered for, with torque ratios of 1.6-2.7 and operating speeds up to 7500 rev/min. Operating input oil temperature of 120oC applies, at pressures of 3.9-9.5 bar, while lock-up clutch pressures are 5.6 bar(min) and 8.4 bar(max) at WOT.
Circle 192
Electric drive system
Steyr-Daimler-Puch are working on the development of an electric drive for passenger cars and LCVs. The complete electric drive unit consists of an electric motor, transmission and electric control including battery charging circuitry. The cost of this complete package will be about the same as the cost of the drive unit with a combustion engine which is to be replaced.
Objectives for further optimization of the system, developed for the Fiat Panda Elettra, are: cost reduction through integration of motor, electronic charger, DC-DC converter/readout—with associated weight reduction; adapation of the vehicle to enable problem-free installation of the electric unit directly on the assembly lines as a replacement for the standard series combustion engine. A separate charging function. The system comprises DC motor(three-phase AC motor planned in future) of nomina, voltage 100V, 25 KW(80Nm torque) with a speed range: 0-8000 rev/min(limited to 7200 electronically).
Advances in truck gearshifting
Gearchanging in a heavy truck can be physically demanding on the driver. Change lever effort, at least in a synchromesh gearbox, is directly related to is torque capacity, though it must be said that the rise and rise of truck diesel outputs in the last year or two, bringing torque levels up to 2100 Nm or more, has been countered by design refinements aimed at reducing shift lever effort and/or movement, reports Asian Bunting in this review of automated-shift gearboxes.
Torque-converter based fully- or semi-automatic boxes were and are widely available for the heaviest trucks from ZF and Allison. But they are unacceptably heavy, costly and fuel demanding for run-of-the-mill goods vehicle peration. Development therefore tumed in new direction in the 1980s. Frequency of shifting, as a measure of expended driver effort, is of course far greater on lighter commercial vehicles, those usually engaged on stop-start urban delivery work, than on heavies. But simple cost constraints have directed easier shifting developments ironically towards the heavy sector, where most trucks spend a high proportion of their working mileage on motorways, and gearchanges are few and far between.
Heavy-duty gearbox makers, both vertically integrated truck producers like Scania, Mercedes-Benz and Volvo, and the rival proprietary transmission suppliers, Eaton and ZF, have nevertheless assigned substantial R&D resources to making gearchanges easier and simpler for drivers of long-haul trucks grossing 88 or 40 tonnes. Those same manufactures have been able to defray the cost somewhat by applying the same shift by the systems to rear and mid-engined coaches, where the technical motivation reinforced by the ability also to eliminate ? and complex mechanical shift linkages Mercedes, Scania, Volvo, MAN, Kassbohrer and Auwarter coaches are now commercially available with remote, electronically-controlled, air pressure assisted gearchange systems fitted.
Mercedes, in a bold, even controversial, marketing move, back in 1988, made its EPS finger-tip gearshift system standard on all its roadgoing trucks with engines above 195kW. Scania, which pioneered the assisted gearshift pinciple, continues to list its CAG system as an extra-cost option, on which the truck customer take-up has been minimal. Meanwhile Eaton’s SAMT system (already in production in small numbers as optional equipment on German MAN, Italian Iveco and British ERF chasis) is technically proven and established. But Scannia and Eaton are both denied the opportunity of rducing unit-cost by high volumes.
Europe’s largest commercial vehicle transmission producer, the German ZF company, has been equally active in developing assisted shifting systems from mechanical gearboxes for trucks, but has yet to make a ‘production’ break-through. MAN and Iveco (levco) have ZF systems—all of which are applied, for truck application, to the German gearboxe-under active evaluation. Despite the apparent reluctance on the part of truck OEMs, primarily for cost reasons to announce availability of its assisted-shift systems, ZF has gone ahead with its R&D programme, developing versions progressively more sophisticated than the original Easl-shift equipment first shown in the mid-80s. ACS, like the functionally similar CAG system from Scania tetains full driver control over the timing of gearchanges, all shifts both up and down, being triggered by the clutch pedal. A microprocessor, fed with engine and road speed, and accelerator pedal position data, continuously calculates the best ratio for the conditions.
A small liquid crystal display panel shows the driver that information, in the form of a recommendation, to change up or down by one, two or more ratio steps. With which to ‘adiust’
The number of steps to less or more than the computer-determined between CAG and ZF’s more recently-developed AVS system, is that the AVS driver is made aware, after he has pressed the clutch pedal, when the shift has been completed, by a pressure pulse felt through the pedal. Scania employs an audible signal which ZF engineers feel is a less positive means of preventing drivers being ‘stranded’ between the two gears—thus losing drive.
Another refinement with AVS is that use of the engine exhaust brake is sensed by the system, automatically triggering a downshift to raise engine speed and hence the retardation effect. On mote flexible high-torque engines, where it is agreed with the OEM that the Ecosplit box can function for most of the time as an eight-speed unit, AVS implements full (two ratio) changes only. On such an installation the driver can, however, make split (one ratio) changes, effectively overriding the black box by briefly flooring the accelerator peda. The kick-down preselects a one-step change in the direction (up or down) of the LCD display recommendation Clutch pedal application then completes the change.
Automated gearshifting and electronic clutch systems
Further technical sophistication, making the driver’s job even less onerous, is embodied by ZF in its new clutch pedal-less driveline which introduces competion of sorts for Fichtel & Sachs ECS system (AE, April/May 1991) and for Eaton’s AMT.
Interestingly, electronic clutch controls are being builder le
收藏