2019-2020年高中數(shù)學(xué)《類比推理》教案蘇教版選修1-2.doc
《2019-2020年高中數(shù)學(xué)《類比推理》教案蘇教版選修1-2.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)《類比推理》教案蘇教版選修1-2.doc(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)《類比推理》教案蘇教版選修1-2 ●教學(xué)目標(biāo): (一)知識與能力: 通過對已學(xué)知識的回顧,認(rèn)識類比推理這一種合情推理的基本方法,并把它用于對問 題的發(fā)現(xiàn)中去。 (二)過程與方法: 類比推理是從特殊到特殊的推理,是尋找事物之間的共同或相似性質(zhì),類比的性質(zhì)相似性越多,相似的性質(zhì)與推測的性質(zhì)之間的關(guān)系就越相關(guān),從而類比得出的結(jié)論就越可靠。 (三)情感態(tài)度與價值觀: 1.正確認(rèn)識合情推理在數(shù)學(xué)中的重要作用,養(yǎng)成從小開始認(rèn)真觀察事物、分析問題、發(fā)現(xiàn)事物之間的質(zhì)的聯(lián)系的良好個性品質(zhì),善于發(fā)現(xiàn)問題,探求新知識。 2.認(rèn)識數(shù)學(xué)在日常生產(chǎn)生活中的重要作用,培養(yǎng)學(xué)生學(xué)數(shù)學(xué),用數(shù)學(xué),完善數(shù)學(xué)的正確數(shù)學(xué)意識。 ●教學(xué)重點(diǎn):了解合情推理的含義,能利用類比進(jìn)行簡單的推理。 ●教學(xué)難點(diǎn):用類比進(jìn)行推理,做出猜想。 ●教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。 ●課時安排:1課時 ●教學(xué)過程: 一.問題情境 從一個傳說說起:春秋時代魯國的公輸班(后人稱魯班,被認(rèn)為是木匠業(yè)的祖師)一次去林中砍樹時被一株齒形的茅草割破了手,這樁倒霉事卻使他發(fā)明了鋸子. 他的思路是這樣的: 茅草是齒形的; 茅草能割破手. 我需要一種能割斷木頭的工具; 它也可以是齒形的. 這個推理過程是歸納推理嗎? 二.?dāng)?shù)學(xué)活動 我們再看幾個類似的推理實(shí)例。 例1、試根據(jù)等式的性質(zhì)猜想不等式的性質(zhì)。 等式的性質(zhì): 猜想不等式的性質(zhì): (1) a=ba+c=b+c; (1) a>ba+c>b+c; (2) a=b ac=bc; (2) a>b ac>bc; (3) a=ba2=b2;等等。 (3) a>ba2>b2;等等。 問:這樣猜想出的結(jié)論是否一定正確? 例2、試將平面上的圓與空間的球進(jìn)行類比. 圓的定義:平面內(nèi)到一個定點(diǎn)的距離等于定長的點(diǎn)的集合. 球的定義:到一個定點(diǎn)的距離等于定長的點(diǎn)的集合. 圓 球 弦←→截面圓 直徑←→大圓 周長←→表面積 面積←→體積 圓的性質(zhì) 球的性質(zhì) 圓心與弦(不是直徑)的中點(diǎn)的連線垂直于弦 球心與截面圓(不是大圓)的圓點(diǎn)的連線垂直于截面圓 與圓心距離相等的兩弦相等;與圓心距離不等的兩弦不等,距圓心較近的弦較長 與球心距離相等的兩截面圓相等;與球心距離不等的兩截面圓不等,距球心較近的截面圓較大 圓的切線垂直于過切點(diǎn)的半徑;經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn) 球的切面垂直于過切點(diǎn)的半徑;經(jīng)過球心且垂直于切面的直線必經(jīng)過切點(diǎn) 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心 經(jīng)過切點(diǎn)且垂直于切面的直線必經(jīng)過球心 ☆上述兩個例子均是這種由兩個(兩類)對象之間在某些方面的相似或相同,推演出他們在其他方面也相似或相同;或其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理稱為類比推理(簡稱類比). 簡言之,類比推理是由特殊到特殊的推理. 類比推理的一般步驟: ⑴ 找出兩類對象之間可以確切表述的相似特征; ⑵ 用一類對象的已知特征去推測另一類對象的特征,從而得出一個猜想; ⑶ 檢驗(yàn)猜想。即 觀察、比較 聯(lián)想、類推 猜想新結(jié)論 例3.在平面上,設(shè)ha,hb,hc是三角形ABC三條邊上的高.P為三角形內(nèi)任一點(diǎn),P到相應(yīng)三邊的距離分別為pa,pb,pc,我們可以得到結(jié)論: 試通過類比,寫出在空間中的類似結(jié)論. 鞏固提高 1.(xx年上海)已知兩個圓①x2+y2=1:與②x2+(y-3)2=1,則由①式減去②式可得上述兩圓的對稱軸方程.將上述命題在曲線仍然為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應(yīng)成為所推廣命題的一個特例,推廣的命題為----------------------------- ------------------------------------------------------------------------------------------------------------------- 2.類比平面內(nèi)直角三角形的勾股定理,試給出空間中四面體性質(zhì)的猜想. 直角三角形 3個面兩兩垂直的四面體 ∠C=90 3個邊的長度a,b,c 2條直角邊a,b和1條斜邊c ∠PDF=∠PDE=∠EDF=90 4個面的面積S1,S2,S3和S 3個“直角面” S1,S2,S3和1個“斜面” S 3.(xx,北京)定義“等和數(shù)列”:在一個數(shù)列中,如果每一項(xiàng)與它的后一項(xiàng)的和都為同一個常數(shù),那么這個數(shù)列叫做等和數(shù)列,這個常數(shù)叫做該數(shù)列的公和。 已知數(shù)列是等和數(shù)列,且,公和為5,那么的值為______________,這個數(shù)列的前n項(xiàng)和的計算公式為________________ 課堂小結(jié) 1.類比推理是從特殊到特殊的推理,是尋找事物之間的共同或相似性質(zhì)。類比的性質(zhì)相似性越多,相似的性質(zhì)與推測的性質(zhì)之間的關(guān)系就越相關(guān),從而類比得出的結(jié)論就越可靠。 2. 類比推理的一般步驟: ①找出兩類事物之間的相似性或者一致性。 ②用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想) gkxx- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 類比推理 2019 2020 年高 數(shù)學(xué) 類比 推理 教案 蘇教版 選修
鏈接地址:http://ioszen.com/p-2410046.html