2019-2020年高中數(shù)學(xué)競賽輔導(dǎo)資料《不等式的證明》.doc
《2019-2020年高中數(shù)學(xué)競賽輔導(dǎo)資料《不等式的證明》.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)競賽輔導(dǎo)資料《不等式的證明》.doc(9頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)競賽輔導(dǎo)資料《不等式的證明》 不等式在數(shù)學(xué)中占有重要地位,由于其證明的困難性和方法的多樣性,而成為競賽和高考的熱門題型. 證明不等式就是對(duì)不等式的左右兩邊或條件與結(jié)論進(jìn)行代數(shù)變形和化歸,而變形的依據(jù)是不等式的性質(zhì),不等式的性分類羅列如下: 不等式的性質(zhì):這是不等式的定義,也是比較法的依據(jù). 對(duì)一個(gè)不等式進(jìn)行變形的性質(zhì): (1)(對(duì)稱性) (2)(加法保序性) (3) (4) 對(duì)兩個(gè)以上不等式進(jìn)行運(yùn)算的性質(zhì). (1)(傳遞性).這是放縮法的依據(jù). (2) (3) (4) 含絕對(duì)值不等式的性質(zhì): (1) (2) (3)(三角不等式). (4) 證明不等式的常用方法有:比較法、放縮法、變量代換法、反證法、數(shù)學(xué)歸納法、構(gòu)造函數(shù)方法等.當(dāng)然在證題過程中,??伞坝梢?qū)Ч被颉皥?zhí)果索因”.前者我們稱之為綜合法;后者稱為分析法.綜合法和分析法是解決一切數(shù)學(xué)問題的常用策略,分析問題時(shí),我們往往用分析法,而整理結(jié)果時(shí)多用綜合法,這兩者并非證明不等式的特有方法,只是在不等式證明中使用得更為突出而已.此外,具體地證明一個(gè)不等式時(shí),可能交替使用多種方法. 例題講解 1.求證: 2.,求證: 3.: 4.設(shè),且各不相同, 求證:. 5.利用基本不等式證明 6.已知求證: 7.利用排序不等式證明 8.證明:對(duì)于任意正整數(shù)R,有 9.n為正整數(shù),證明: 課后練習(xí) 1.選擇題 (1)方程x2-y2=105的正整數(shù)解有( ). (A)一組 (B)二組 (C)三組 (D)四組 (2)在0,1,2,…,50這51個(gè)整數(shù)中,能同時(shí)被2,3,4整除的有( ). (A)3個(gè) (B)4個(gè) (C)5個(gè) (D)6個(gè) 2.填空題 (1)的個(gè)位數(shù)分別為_________及_________. (2)滿足不等式104≤A≤105的整數(shù)A的個(gè)數(shù)是x104+1,則x的值________. (3)已知整數(shù)y被7除余數(shù)為5,那么y3被7除時(shí)余數(shù)為________. (4)求出任何一組滿足方程x2-51y2=1的自然數(shù)解x和y_________. 3.求三個(gè)正整數(shù)x、y、z滿足 . 4.在數(shù)列4,8,17,77,97,106,125,238中相鄰若干個(gè)數(shù)之和是3的倍數(shù),而不是9的倍數(shù)的數(shù)組共有多少組? 5.求的整數(shù)解. 6.求證可被37整除. 7.求滿足條件的整數(shù)x,y的所有可能的值. 8.已知直角三角形的兩直角邊長分別為l厘米、m厘米,斜邊長為n厘米,且l,m,n均為正整數(shù),l為質(zhì)數(shù).證明:2(l+m+n)是完全平方數(shù). 9.如果p、q、、都是整數(shù),并且p>1,q>1,試求p+q的值. 課后練習(xí)答案 1.D.C. 2.(1)9及1. (2)9. (3)4. (4)原方程可變形為x2=(7y+1)2+2y(y-7),令y=7可得x=50. 3.不妨設(shè)x≤y≤z,則,故x≤3.又有故x≥2.若x=2,則,故y≤6.又有,故y≥4.若y=4,則z=20.若y=5,則z=10.若y=6,則z無整數(shù)解.若x=3,類似可以確定3≤y≤4,y=3或4,z都不能是整數(shù). 4.可仿例2解. 5. 分析:左邊三項(xiàng)直接用基本不等式顯然不行,考察到不等式的對(duì)稱性,可用輪換的方法. 略解:;三式相加再除以2即得證. 評(píng)述:(1)利用基本不等式時(shí),除了本題的輪換外,一般還須掌握添項(xiàng)、連用等技巧. 如,可在不等式兩邊同時(shí)加上 再如證時(shí),可連續(xù)使用基本不等式. (2)基本不等式有各種變式 如等.但其本質(zhì)特征不等式兩邊的次數(shù)及系數(shù)是相等的.如上式左右兩邊次數(shù)均為2,系數(shù)和為1. 6.8888≡8(mod37),∴88882222≡82(mod37). 7777≡7(mod37),77773333≡73(mod37),88882222+77773333≡(82+73)(mod37),而82+73=407,37|407,∴37|N. 7.簡解:原方程變形為3x2-(3y+7)x+3y2-7y=0由關(guān)于x的二次方程有解的條件△≥0及y為整數(shù)可得0≤y≤5,即y=0,1,2,3,4,5.逐一代入原方程可知,原方程僅有兩組解(4,5)、(5,4). 8.∵l2+m2=n2,∴l(xiāng)2=(n+m)(n-m).∵l為質(zhì)數(shù),且n+m>n-m>0,∴n+m=l2,n-m=1.于是l2=n+m=(m+1)+m=2m+1,2m=l2-1,2(l+m+1)=2l+2+2m=l2+2l+1=(l+1)2.即2(l+m+1)是完全平方數(shù). 9.易知p≠q,不妨設(shè)p>q.令=n,則m>n由此可得不定方程(4-mn)p=m+2,解此方程可得p、q之值. 例題答案: 1. 證明: 評(píng)述:(1)本題所證不等式為對(duì)稱式(任意互換兩個(gè)字母,不等式不變),在因式分解或配方時(shí),往往采用輪換技巧.再如證明時(shí),可將 配方為,亦可利用 ,3式相加證明.(2)本題亦可連用兩次基本不等式獲證. 2.分析:顯然不等式兩邊為正,且是指數(shù)式,故嘗試用商較法. 不等式關(guān)于對(duì)稱,不妨,且, 都大于等于1. 評(píng)述:(1)證明對(duì)稱不等式時(shí),不妨假定個(gè)字母的大小順序,可方便解題. (2)本題可作如下推廣:若 (3)本題還可用其他方法得證。因,同理, 另,4式相乘即得證. (4)設(shè)例3等價(jià)于類似例4可證事實(shí)上,一般地有排序不等式(排序原理): 設(shè)有兩個(gè)有序數(shù)組,則(順序和) (亂序和) (逆序和) 其中的任一排列.當(dāng)且僅當(dāng)或時(shí)等號(hào)成立. 排序不等式應(yīng)用較為廣泛(其證明略),它的應(yīng)用技巧是將不等式兩邊轉(zhuǎn)化為兩個(gè)有序數(shù)組的積的形式.如 . 3.思路分析:中間式子中每項(xiàng)均為兩個(gè)式子的和,將它們拆開,再用排序不等式證明. 不妨設(shè),則(亂序和)(逆序和),同理(亂序和)(逆序和)兩式相加再除以2,即得原式中第一個(gè)不等式.再考慮數(shù)組,仿上可證第二個(gè)不等式. 4.分析:不等式右邊各項(xiàng);可理解為兩數(shù)之積,嘗試用排序不等式. 設(shè)的重新排列,滿足, 又 所以.由于是互不相同的正整數(shù),故從而,原式得證. 評(píng)述:排序不等式應(yīng)用廣泛,例如可證我們熟悉的基本不等式, 5.思路分析:左邊三項(xiàng)直接用基本不等式顯然不行,考察到不等式的對(duì)稱性,可用輪換的方法. ;三式相加再除以2即得證. 評(píng)述:(1)利用基本不等式時(shí),除了本題的輪換外,一般還須掌握添項(xiàng)、連用等技巧. 如,可在不等式兩邊同時(shí)加上 再如證時(shí),可連續(xù)使用基本不等式. (2)基本不等式有各種變式 如等.但其本質(zhì)特征不等式兩邊的次數(shù)及系數(shù)是相等的.如上式左右兩邊次數(shù)均為2,系數(shù)和為1. 6. 思路分析:不等式左邊是、的4次式,右邊為常數(shù),如何也轉(zhuǎn)化為、的4次式呢. 要證即證 評(píng)述:(1)本題方法具有一定的普遍性.如已知求證: 右側(cè)的可理解為再如已知,求證: +,此處可以把0理解為,當(dāng)然本題另有簡使證法. (2)基本不等式實(shí)際上是均值不等式的特例.(一般地,對(duì)于個(gè)正數(shù) 調(diào)和平均 幾何平均 算術(shù)平均 平方平均 這四個(gè)平均值有以下關(guān)系:,其中等號(hào)當(dāng)且僅當(dāng)時(shí)成立. 7. 證明: 令則,故可取,使得 由排序不等式有: =(亂序和) (逆序和) =n, 評(píng)述:對(duì)各數(shù)利用算術(shù)平均大于等于幾何平均即可得,. 8. 分析:原不等式等價(jià)于,故可設(shè)法使其左邊轉(zhuǎn)化為n個(gè)數(shù)的幾何平均,而右邊為其算術(shù)平均. 評(píng)述:(1)利用均值不等式證明不等式的關(guān)鍵是通過分拆和轉(zhuǎn)化,使其兩邊與均值不等式形式相近.類似可證 (2)本題亦可通過逐項(xiàng)展開并比較對(duì)應(yīng)項(xiàng)的大小而獲證,但較繁. 9.證明:先證左邊不等式 (*)式成立,故原左邊不等式成立. 其次證右邊不等式 (**) (**)式恰符合均值不等式,故原不等式右邊不等號(hào)成立.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 不等式的證明 2019 2020 年高 數(shù)學(xué) 競賽 輔導(dǎo)資料 不等式 證明
鏈接地址:http://ioszen.com/p-2506022.html