2019-2020年高中數(shù)學 2.3《對數(shù)函數(shù)》教案十四 蘇教版必修1 .doc
《2019-2020年高中數(shù)學 2.3《對數(shù)函數(shù)》教案十四 蘇教版必修1 .doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學 2.3《對數(shù)函數(shù)》教案十四 蘇教版必修1 .doc(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學 2.3《對數(shù)函數(shù)》教案十四 蘇教版必修1 教學目標: 使學生掌握對數(shù)形式復合函數(shù)的單調(diào)性的判斷及證明方法,掌握對數(shù)形式復合函數(shù)的奇偶性的判斷及證明方法,培養(yǎng)學生的數(shù)學應用意識;認識事物之間的內(nèi)在聯(lián)系及相互轉(zhuǎn)化,用聯(lián)系的觀點分析問題、解決問題. 教學重點: 復合函數(shù)單調(diào)性、奇偶性的討論方法. 教學難點: 復合函數(shù)單調(diào)性、奇偶性的討論方法. 教學過程: [例1]設loga<1,則實數(shù)a的取值范圍是 A.0<a< B. <a<1 C.0<a<或a>1 D.a> 解:由loga<1=logaa得 (1)當0<a<1時,由y=logax是減函數(shù),得:0<a< (2)當a>1時,由y=logax是增函數(shù),得:a>,∴a>1 綜合(1)(2)得:0<a<或a>1 答案:C [例2]三個數(shù)60.7,0.76,log0.76的大小順序是 A.0.76<log0.76<60.7 B.0.76<60.7<log0.76 C.log0.76<60.7<0.76 D.log0.76<0.76<60.7 解:由于60.7>1,0<0.76<1,log0.76<0 答案:D [例3]設0<x<1,a>0且a≠1,試比較|loga(1-x)|與|loga(1+x)|的大小 解法一:作差法 |loga(1-x)|-|loga(1+x)|=| |-| | =(|lg(1-x)|-|lg(1+x)|) ∵0<x<1,∴0<1-x<1<1+x ∴上式=- [(lg(1-x)+lg(1+x)]=-lg(1-x2) 由0<x<1,得lg(1-x2)<0,∴-lg(1-x2)>0, ∴|loga(1-x)|>|loga(1+x)| 解法二:作商法 =|log(1-x)(1+x)| ∵0<x<1 ∴0<1-x<1+x ∴|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x) 由0<x<1 ∴1+x>1,0<1-x2<1 ∴0<(1-x)(1+x)<1 ∴>1-x>0 ∴0<log(1-x) <log(1-x)(1-x)=1 ∴|loga(1-x)|>|loga(1+x)| 解法三:平方后比較大小 ∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga(1-x)-loga(1+x)] =loga(1-x2)loga=lg(1-x2)lg ∵0<x<1,∴0<1-x2<1,0<<1 ∴l(xiāng)g(1-x2)<0,lg<0 ∴l(xiāng)oga2(1-x)>loga2(1+x) 即|loga(1-x)|>|loga(1+x)| 解法四:分類討論去掉絕對值 當a>1時,|loga(1-x)|-|loga(1+x)| =-loga(1-x)-loga(1+x)=-loga(1-x2) ∵0<1-x<1<1+x,∴0<1-x2<1 ∴l(xiāng)oga(1-x2)<0, ∴-loga(1-x2)>0 當0<a<1時,由0<x<1,則有l(wèi)oga(1-x)>0,loga(1+x)<0 ∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0 ∴當a>0且a≠1時,總有|loga(1-x)|>|loga(1+x)| [例4]已知函數(shù)f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定義域為R,求實數(shù)a的取值范圍. 解:依題意(a2-1)x2+(a+1)x+1>0對一切x∈R恒成立. 當a2-1≠0時,其充要條件是: 解得a<-1或a> 又a=-1,f(x)=0滿足題意,a=1不合題意. 所以a的取值范圍是:(-∞,-1]∪(,+∞) [例5]已知f(x)=1+logx3,g(x)=2logx2,比較f(x)與g(x)的大小 解:易知f(x)、g(x)的定義域均是:(0,1)∪(1,+∞) f(x)-g(x)=1+logx3-2logx2=logx(x). ①當x>1時,若x>1,則x>,這時f(x)>g(x). 若x<1,則1<x<,這時f(x)<g(x) ②當0<x<1時,0<x<1,logxx>0,這時f(x)>g(x) 故由(1)、(2)可知:當x∈(0,1)∪(,+∞)時,f(x)>g(x) 當x∈(1,)時,f(x)<g(x) [例6]解方程:2(9x-1-5)=[4(3x-1-2)] 解:原方程可化為 (9x-1-5)=[4(3x-1-2)] ∴9x-1-5=4(3x-1-2) 即9x-1-43x-1+3=0 ∴(3x-1-1)(3x-1-3)=0 ∴3x-1=1或3x-1=3 ∴x=1或x=2 經(jīng)檢驗x=1是增根 ∴x=2是原方程的根. [例7]解方程log2(2-x-1)(2-x+1-2)=-2 解:原方程可化為: log2(2-x-1)(-1)log2[2(2-x-1)]=-2 即:log2(2-x-1)[log2(2-x-1)+1]=2 令t=log2(2-x-1),則t2+t-2=0 解之得t=-2或t=1 ∴l(xiāng)og2(2-x-1)=-2或log2(2-x-1)=1 解之得:x=-log2或x=-log23- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 對數(shù)函數(shù) 2019-2020年高中數(shù)學 2.3對數(shù)函數(shù)教案十四 蘇教版必修1 2019 2020 年高 數(shù)學 2.3 對數(shù) 函數(shù) 教案 十四 蘇教版 必修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://ioszen.com/p-2565700.html