2013年呼和浩特中考數(shù)學(xué)試卷及答案解析.doc
《2013年呼和浩特中考數(shù)學(xué)試卷及答案解析.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2013年呼和浩特中考數(shù)學(xué)試卷及答案解析.doc(21頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
內(nèi)蒙古呼和浩特市2013年中考數(shù)學(xué)試卷 一、選擇題(本大題共10小題,每小題3分,共30分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的) 1.(3分)(2013?呼和浩特)﹣3的相反數(shù)是( ?。? A. 3 B. ﹣3 C. D. ﹣ 考點(diǎn): 相反數(shù).3718684 分析: 根據(jù)相反數(shù)的概念解答即可. 解答: 解:﹣3的相反數(shù)是3, 故選A. 點(diǎn)評(píng): 本題考查了相反數(shù)的意義,一個(gè)數(shù)的相反數(shù)就是在這個(gè)數(shù)前面添上“﹣”號(hào);一個(gè)正數(shù)的相反數(shù)是負(fù)數(shù),一個(gè)負(fù)數(shù)的相反數(shù)是正數(shù),0的相反數(shù)是0. 2.(3分)(2013?呼和浩特)下列運(yùn)算正確的是( ) A. x2+x3=x5 B. x8x2=x4 C. 3x﹣2x=1 D. (x2)3=x6 考點(diǎn): 同底數(shù)冪的除法;合并同類項(xiàng);冪的乘方與積的乘方.3718684 專題: 計(jì)算題. 分析: 根據(jù)同底數(shù)冪的乘法與除法,冪的乘方的運(yùn)算法則計(jì)算即可. 解答: 解:A、x2與x3不是同類項(xiàng)不能合并,故選項(xiàng)錯(cuò)誤; B、應(yīng)為x8x2=x6,故選項(xiàng)錯(cuò)誤; C、應(yīng)為3x﹣2x=x,故選項(xiàng)錯(cuò)誤; D、(x2)3=x6,正確. 故選D. 點(diǎn)評(píng): 本題主要考查同底數(shù)冪的除法,冪的乘方的性質(zhì)以及合并同類項(xiàng)的法則;合并同類項(xiàng)時(shí),只把系數(shù)相加減,字母與字母的次數(shù)不變,不是同類項(xiàng)的一定不能合并. 3.(3分)(2013?呼和浩特)觀察下列圖形,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的有( ) A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè) 考點(diǎn): 中心對(duì)稱圖形;軸對(duì)稱圖形.3718684 分析: 根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解. 解答: 解:第一個(gè)圖形不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤; 第二個(gè)圖形既是軸對(duì)稱圖形又是中心對(duì)稱圖形; 第三個(gè)圖形既是軸對(duì)稱圖形又是中心對(duì)稱圖形; 第四個(gè)圖形既是軸對(duì)稱圖形又是中心對(duì)稱圖形; 所以,既是軸對(duì)稱圖形又是中心對(duì)稱圖形共有3個(gè). 故選C. 點(diǎn)評(píng): 本題考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合. 4.(3分)(2013?呼和浩特)下列說法正確的是( ?。? A. “打開電視劇,正在播足球賽”是必然事件 B. 甲組數(shù)據(jù)的方差=0.24,乙組數(shù)據(jù)的方差=0.03,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定 C. 一組數(shù)據(jù)2,4,5,5,3,6的眾數(shù)和中位數(shù)都是5 D. “擲一枚硬幣正面朝上的概率是”表示每拋硬幣2次就有1次正面朝上 考點(diǎn): 方差;中位數(shù);眾數(shù);隨機(jī)事件;概率的意義.3718684 分析: 根據(jù)方差、中位數(shù)、眾數(shù)、隨機(jī)事件和概率的意義分別對(duì)每一項(xiàng)進(jìn)行分析即可. 解答: 解:A、“打開電視劇,正在播足球賽”是隨機(jī)事件,故本選項(xiàng)錯(cuò)誤; B、甲組數(shù)據(jù)的方差=0.24,乙組數(shù)據(jù)的方差=0.03,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定,故本選項(xiàng)正確; C、一組數(shù)據(jù)2,4,5,5,3,6的眾數(shù)是5,中位數(shù)是4.5,故本選項(xiàng)錯(cuò)誤; D、“擲一枚硬幣正面朝上的概率是”表示每拋硬幣2次可能有1次正面朝上,故本選項(xiàng)錯(cuò)誤; 故選B. 點(diǎn)評(píng): 此題考查了方差、中位數(shù)、眾數(shù)、隨機(jī)事件和概率的意義,解題的關(guān)鍵是熟練掌握方差、中位數(shù)、眾數(shù)、隨機(jī)事件和概率的定義和計(jì)算方法. 5.(3分)(2013?呼和浩特)用激光測(cè)距儀測(cè)得兩地之間的距離為14 000 000米,將14 000 000用科學(xué)記數(shù)法表示為( ) A. 14107 B. 14106 C. 1.4107 D. 0.14108 考點(diǎn): 科學(xué)記數(shù)法—表示較大的數(shù).3718684 專題: 應(yīng)用題. 分析: 科學(xué)記數(shù)法的表示形式為a10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值大于1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值小于1時(shí),n是負(fù)數(shù). 解答: 解:14 000 000=1.4107. 故選C. 點(diǎn)評(píng): 此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值. 6.(3分)(2013?呼和浩特)只用下列圖形中的一種,能夠進(jìn)行平面鑲嵌的是( ) A. 正十邊形 B. 正八邊形 C. 正六邊形 D. 正五邊形 考點(diǎn): 平面鑲嵌(密鋪).3718684 分析: 根據(jù)密鋪的知識(shí),找到一個(gè)內(nèi)角能整除周角360的正多邊形即可. 解答: 解:A、正十邊形每個(gè)內(nèi)角是180﹣36010=144,不能整除360,不能單獨(dú)進(jìn)行鑲嵌,不符合題意; B、正八邊形每個(gè)內(nèi)角是180﹣3608=135,不能整除360,不能單獨(dú)進(jìn)行鑲嵌,不符合題意; C、正六邊形的每個(gè)內(nèi)角是120,能整除360,能整除360,可以單獨(dú)進(jìn)行鑲嵌,符合題意; D、正五邊形每個(gè)內(nèi)角是180﹣3605=108,不能整除360,不能單獨(dú)進(jìn)行鑲嵌,不符合題意; 故選:C. 點(diǎn)評(píng): 本題考查了平面密鋪的知識(shí),注意幾何圖形鑲嵌成平面的關(guān)鍵是:圍繞一點(diǎn)拼在一起的多邊形的內(nèi)角加在一起恰好組成一個(gè)周角. 7.(3分)(2013?呼和浩特)從1到9這九個(gè)自然數(shù)中任取一個(gè),是偶數(shù)的概率是( ?。? A. B. C. D. 考點(diǎn): 概率公式.3718684 分析: 先從1~9這九個(gè)自然數(shù)中找出是偶數(shù)的有2、4、6、8共4個(gè),然后根據(jù)概率公式求解即可. 解答: 解:1~9這九個(gè)自然數(shù)中,是偶數(shù)的數(shù)有:2、4、6、8,共4個(gè), ∴從1~9這九個(gè)自然數(shù)中任取一個(gè),是偶數(shù)的概率是:. 故選:B. 點(diǎn)評(píng): 本題考查了統(tǒng)計(jì)與概率中概率的求法.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比. 8.(3分)(2013?呼和浩特)在同一直角坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( ?。? A. B. C. D. 考點(diǎn): 二次函數(shù)的圖象;一次函數(shù)的圖象.3718684 分析: 本題主要考查一次函數(shù)和二次函數(shù)的圖象所經(jīng)過的象限的問題,關(guān)鍵是m的正負(fù)的確定,對(duì)于二次函數(shù)y=ax2+bx+c,當(dāng)a>0時(shí),開口向上;當(dāng)a<0時(shí),開口向下.對(duì)稱軸為x=,與y軸的交點(diǎn)坐標(biāo)為(0,c). 解答: 解:當(dāng)二次函數(shù)開口向上時(shí),﹣m>0,m<0, 對(duì)稱軸x=<0, 這時(shí)二次函數(shù)圖象的對(duì)稱軸在y軸左側(cè), 一次函數(shù)圖象過二、三、四象限.故選D. 點(diǎn)評(píng): 主要考查了一次函數(shù)和二次函數(shù)的圖象性質(zhì)以及分析能力和讀圖能力,要掌握它們的性質(zhì)才能靈活解題. 9.(3分)(2013?呼和浩特)(非課改)已知α,β是關(guān)于x的一元二次方程x2+(2m+3)x+m2=0的兩個(gè)不相等的實(shí)數(shù)根,且滿足+=﹣1,則m的值是( ?。? A. 3或﹣1 B. 3 C. 1 D. ﹣3或1 考點(diǎn): 根與系數(shù)的關(guān)系;根的判別式.3718684 分析: 由于方程有兩個(gè)不相等的實(shí)數(shù)根可得△>0,由此可以求出m的取值范圍,再利用根與系數(shù)的關(guān)系和+=1,可以求出m的值,最后求出符合題意的m值. 解答: 解:根據(jù)條件知: α+β=﹣(2m+3),αβ=m2, ∴=﹣1, 即m2﹣2m﹣3=0, 所以,得, 解得m=3. 故選B. 點(diǎn)評(píng): 1、考查一元二次方程根與系數(shù)關(guān)系與根的判別式及不等式組的綜合應(yīng)用能力.一元二次方程根的情況與判別式△的關(guān)系: (1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根; (2)△=0?方程有兩個(gè)相等的實(shí)數(shù)根; (3)△<0?方程沒有實(shí)數(shù)根. 2、一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系為:x1+x2=﹣,x1?x2=. 10.(3分)(2013?呼和浩特)如圖,下列圖案均是長(zhǎng)度相同的火柴按一定的規(guī)律拼搭而成:第1個(gè)圖案需7根火柴,第2個(gè)圖案需13根火柴,…,依此規(guī)律,第11個(gè)圖案需( )根火柴. A. 156 B. 157 C. 158 D. 159 考點(diǎn): 規(guī)律型:圖形的變化類.3718684 分析: 根據(jù)第1個(gè)圖案需7根火柴,7=1(1+3)+3,第2個(gè)圖案需13根火柴,13=2(2+3)+3,第3個(gè)圖案需21根火柴,21=3(3+3)+3,得出規(guī)律第n個(gè)圖案需n(n+3)+3根火柴,再把11代入即可求出答案. 解答: 解:根據(jù)題意可知: 第1個(gè)圖案需7根火柴,7=1(1+3)+3, 第2個(gè)圖案需13根火柴,13=2(2+3)+3, 第3個(gè)圖案需21根火柴,21=3(3+3)+3, …, 第n個(gè)圖案需n(n+3)+3根火柴, 則第11個(gè)圖案需:11(11+3)+3=157(根); 故選B. 點(diǎn)評(píng): 此題主要考查了圖形的變化類,關(guān)鍵是根據(jù)題目中給出的圖形,通過觀察思考,歸納總結(jié)出規(guī)律,再利用規(guī)律解決問題,難度一般偏大,屬于難題. 二、填空題(本大題共6個(gè)小題,每小題3分,共18分,本題要求把正確結(jié)果填在答題紙規(guī)定的橫線上,不需要解答過程) 11.(3分)(2013?呼和浩特)如圖,AB∥CD,∠1=60,F(xiàn)G平分∠EFD,則∠2= 30 度. 考點(diǎn): 平行線的性質(zhì);角平分線的定義.3718684 分析: 根據(jù)平行線的性質(zhì)得到∠EFD=∠1,再由FG平分∠EFD即可得到. 解答: 解:∵AB∥CD ∴∠EFD=∠1=60 又∵FG平分∠EFD. ∴∠2=∠EFD=30. 點(diǎn)評(píng): 本題主要考查了兩直線平行,同位角相等. 12.(3分)(2013?呼和浩特)大于且小于的整數(shù)是 2 . 考點(diǎn): 估算無理數(shù)的大?。?718684 分析: 根據(jù)=2和<<即可得出答案. 解答: 解:∵=2,<<, ∴大于且小于的整數(shù)有2, 故答案為:2. 點(diǎn)評(píng): 本題考查了估算無理數(shù)的大小的應(yīng)用,主要考查學(xué)生的北京兩個(gè)無理數(shù)大小的能力. 13.(3分)(2013?呼和浩特)一個(gè)圓錐的側(cè)面積是底面積的2倍,則圓錐側(cè)面展開圖扇形的圓心角是 180?。? 考點(diǎn): 圓錐的計(jì)算.3718684 分析: 根據(jù)圓錐的側(cè)面積是底面積的2倍可得到圓錐底面半徑和母線長(zhǎng)的關(guān)系,利用圓錐側(cè)面展開圖的弧長(zhǎng)=底面周長(zhǎng)即可得到該圓錐的側(cè)面展開圖扇形的圓心角度數(shù). 解答: 解:設(shè)母線長(zhǎng)為R,底面半徑為r, ∴底面周長(zhǎng)=2πr,底面面積=πr2,側(cè)面面積=πrR, ∵側(cè)面積是底面積的2倍, ∴2πr2=πrR, ∴R=2r, 設(shè)圓心角為n,有=πR, ∴n=180. 故答案為:180. 點(diǎn)評(píng): 本題綜合考查有關(guān)扇形和圓錐的相關(guān)計(jì)算.解題思路:解決此類問題時(shí)要緊緊抓住兩者之間的兩個(gè)對(duì)應(yīng)關(guān)系:(1)圓錐的母線長(zhǎng)等于側(cè)面展開圖的扇形半徑;(2)圓錐的底面周長(zhǎng)等于側(cè)面展開圖的扇形弧長(zhǎng),以及利用扇形面積公式求出是解題的關(guān)鍵. 14.(3分)(2013?呼和浩特)某工廠現(xiàn)在平均每天比原計(jì)劃多生產(chǎn)50臺(tái)機(jī)器,現(xiàn)在生產(chǎn)600臺(tái)機(jī)器所需時(shí)間比原計(jì)劃生產(chǎn)450臺(tái)機(jī)器所需時(shí)間相同,現(xiàn)在平均每天生產(chǎn) 200 臺(tái)機(jī)器. 考點(diǎn): 分式方程的應(yīng)用.3718684 分析: 根據(jù)現(xiàn)在生產(chǎn)600臺(tái)機(jī)器的時(shí)間與原計(jì)劃生產(chǎn)450臺(tái)機(jī)器的時(shí)間相同.所以可得等量關(guān)系為:現(xiàn)在生產(chǎn)600臺(tái)機(jī)器時(shí)間=原計(jì)劃生產(chǎn)450臺(tái)時(shí)間. 解答: 解:設(shè):現(xiàn)在平均每天生產(chǎn)x臺(tái)機(jī)器,則原計(jì)劃可生產(chǎn)(x﹣50)臺(tái). 依題意得:=. 解得:x=200. 檢驗(yàn):當(dāng)x=200時(shí),x(x﹣50)≠0. ∴x=200是原分式方程的解. 答:現(xiàn)在平均每天生產(chǎn)200臺(tái)機(jī)器. 故答案為:200. 點(diǎn)評(píng): 此題主要考查了分式方程的應(yīng)用,重點(diǎn)在于準(zhǔn)確地找出相等關(guān)系,這是列方程的依據(jù).而難點(diǎn)則在于對(duì)題目已知條件的分析,也就是審題,一般來說應(yīng)用題中的條件有兩種,一種是顯性的,直接在題目中明確給出,而另一種是隱性的,是以題目的隱含條件給出.本題中“現(xiàn)在平均每天比原計(jì)劃多生產(chǎn)50臺(tái)機(jī)器”就是一個(gè)隱含條件,注意挖掘. 15.(3分)(2013?呼和浩特)如圖,在四邊形ABCD中,對(duì)角線AC⊥BD,垂足為O,點(diǎn)E、F、G、H分別為邊AD、AB、BC、CD的中點(diǎn).若AC=8,BD=6,則四邊形EFGH的面積為 12?。? 考點(diǎn): 中點(diǎn)四邊形.3718684 分析: 有一個(gè)角是直角的平行四邊形是矩形.利用中位線定理可得出四邊形EFGH矩形,根據(jù)矩形的面積公式解答即可. 解答: 解:∵點(diǎn)E、F分別為四邊形ABCD的邊AD、AB的中點(diǎn), ∴EF∥BD,且EF=BD=3. 同理求得EH∥AC∥GF,且EH=GF=BD, 又∵AC⊥BD, ∴EF∥GH,F(xiàn)G∥HE且EF⊥FG. 四邊形EFGH是矩形. ∴四邊形EFGH的面積=EF?EH=34=12,即四邊形EFGH的面積是12. 故答案是:12. 點(diǎn)評(píng): 本題考查的是中點(diǎn)四邊形.解題時(shí),利用了矩形的判定以及矩形的定理,矩形的判定定理有: (1)有一個(gè)角是直角的平行四邊形是矩形; (2)有三個(gè)角是直角的四邊形是矩形; (3)對(duì)角線互相平分且相等的四邊形是矩形. 16.(3分)(2013?呼和浩特)在平面直角坐標(biāo)系中,已知點(diǎn)A(4,0)、B(﹣6,0),點(diǎn)C是y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)∠BCA=45時(shí),點(diǎn)C的坐標(biāo)為?。?,12)或(0,﹣12)?。? 考點(diǎn): 圓周角定理;坐標(biāo)與圖形性質(zhì);勾股定理.3718684 分析: 如解答圖所示,構(gòu)造含有90圓心角的⊙P,則⊙P與y軸的交點(diǎn)即為所求的點(diǎn)C. 注意點(diǎn)C有兩個(gè). 解答: 解:設(shè)線段BA的中點(diǎn)為E, ∵點(diǎn)A(4,0)、B(﹣6,0),∴AB=10,E(﹣1,0). (1)如答圖1所示,過點(diǎn)E在第二象限作EP⊥BA,且EP=AB=5,則易知△PBA為等腰直角三角形,∠BPA=90,PA=PB=; 以點(diǎn)P為圓心,PA(或PB)長(zhǎng)為半徑作⊙P,與y軸的正半軸交于點(diǎn)C, ∵∠BCA為⊙P的圓周角, ∴∠BCA=∠BPA=45,即則點(diǎn)C即為所求. 過點(diǎn)P作PF⊥y軸于點(diǎn)F,則OF=PE=5,PF=1, 在Rt△PFC中,PF=1,PC=,由勾股定理得:CF==7, ∴OC=OF+CF=5+7=12, ∴點(diǎn)C坐標(biāo)為(0,12); (2)如答圖2所示,在第3象限可以參照(1)作同樣操作,同理求得y軸負(fù)半軸上的點(diǎn)C坐標(biāo)為(0,﹣12). 綜上所述,點(diǎn)C坐標(biāo)為(0,12)或(0,﹣12). 故答案為:(0,12)或(0,﹣12). 點(diǎn)評(píng): 本題難度較大.由45的圓周角聯(lián)想到90的圓心角是解題的突破口,也是本題的難點(diǎn)所在. 三、解答題(本大題共9小題,共72分,解答應(yīng)寫出必要的演算步驟、證明過程或文字說明) 17.(10分)(2013?呼和浩特)(1)計(jì)算: (2)化簡(jiǎn):. 考點(diǎn): 分式的混合運(yùn)算;實(shí)數(shù)的運(yùn)算;零指數(shù)冪;負(fù)整數(shù)指數(shù)冪;特殊角的三角函數(shù)值.3718684 分析: (1)本題涉及到負(fù)整數(shù)指數(shù)冪,絕對(duì)值,特殊角的三角函數(shù)值,零指數(shù)冪四個(gè)考點(diǎn)的計(jì)算,根據(jù)實(shí)數(shù)的運(yùn)算順序和法則計(jì)算即可求解; (2)首先把括號(hào)里的式子進(jìn)行通分,然后把除法運(yùn)算轉(zhuǎn)化成乘法運(yùn)算,進(jìn)行約分化簡(jiǎn). 解答: 解:(1) =3﹣|﹣2+|+1 =3﹣2++1 =2+; (2) =? =. 點(diǎn)評(píng): 本題主要考查實(shí)數(shù)的運(yùn)算和分式的混合運(yùn)算,通分、因式分解和約分是解答的關(guān)鍵. 18.(6分)(2013?呼和浩特)如圖,CD=CA,∠1=∠2,EC=BC,求證:DE=AB. 考點(diǎn): 全等三角形的判定與性質(zhì).3718684 專題: 證明題. 分析: 根據(jù)三角形全等的判定,由已知先證∠ACB=∠DCE,再根據(jù)SAS可證△ABC≌△DEC,繼而可得出結(jié)論. 解答: 證明:∵∠1=∠2, ∴∠1+ECA=∠2+∠ACE, 即∠ACB=∠DCE, 在△ABC和△DEC中, ∵ ∴△ABC≌△DEC(SAS). ∴DE=AB. 點(diǎn)評(píng): 本題考查了三角形全等的判定方法和性質(zhì),由∠1=∠2得∠ACB=∠DCE是解決本題的關(guān)鍵,要求我們熟練掌握全等三角形的幾種判定定理. 19.(6分)(2013?呼和浩特)某次知識(shí)競(jìng)賽共有20道題,每一題答對(duì)得10分,答錯(cuò)或不答都扣5分,小明得分要超過90分,他至少要答對(duì)多少道題? 考點(diǎn): 一元一次不等式的應(yīng)用.3718684 分析: 根據(jù)小明得分要超過90分,就可以得到不等關(guān)系:小明的得分≤90分,設(shè)應(yīng)答對(duì)x道,則根據(jù)不等關(guān)系就可以列出不等式求解. 解答: 解:設(shè)應(yīng)答對(duì)x道,則:10x﹣5(20﹣x)>90 解得x>12, ∵x取整數(shù), ∴x最小為:13, 答:他至少要答對(duì)13道題. 點(diǎn)評(píng): 此題主要考查了一元一次不等式的應(yīng)用,解決本題的關(guān)鍵是讀懂題意,找到符合題意的不等關(guān)系式,正確表示出小明的得分是解決本題的關(guān)鍵. 20.(6分)(2013?呼和浩特)如圖,A、B兩地之間有一座山,汽車原來從A地到B地經(jīng)過C地沿折線A→C→B行駛,現(xiàn)開通隧道后,汽車直接沿直線AB行駛.已知AC=10千米,∠A=30,∠B=45.則隧道開通后,汽車從A地到B地比原來少走多少千米?(結(jié)果保留根號(hào)) 考點(diǎn): 解直角三角形的應(yīng)用.3718684 分析: 過C作CD⊥AB于D,在Rt△ACD中,根據(jù)AC=10,∠A=30,解直角三角形求出AD、CD的長(zhǎng)度,然后在Rt△BCD中,求出BD、BC的長(zhǎng)度,用AC+BC﹣(AD+BD)即可求解. 解答: 解:過C作CD⊥AB于D, 在Rt△ACD中, ∵AC=10,∠A=30, ∴DC=ACsin30=5, AD=ACcos30=5, 在Rt△BCD中, ∵∠B=45, ∴BD=CD=5,BC=5, 則用AC+BC﹣(AD+BD)=10+5﹣(5+5)=5+5﹣5(千米). 答:汽車從A地到B地比原來少走(5+5﹣5)千米. 點(diǎn)評(píng): 本題考查了解直角三角形的應(yīng)用,難度適中,解答本題的關(guān)鍵是作三角形的高建立直角三角形幷解直角三角形. 21.(6分)(2013?呼和浩特)如圖,平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)A,與雙曲線在第一象限內(nèi)交于點(diǎn)B,BC丄x軸于點(diǎn)C,OC=2AO.求雙曲線的解析式. 考點(diǎn): 反比例函數(shù)綜合題.3718684 專題: 綜合題. 分析: 先利用一次函數(shù)與圖象的交點(diǎn),再利用OC=2AO求得C點(diǎn)的坐標(biāo),然后代入一次函數(shù)求得點(diǎn)B的坐標(biāo),進(jìn)一步求得反比例函數(shù)的解析式即可. 解答: 解:由直線與x軸交于點(diǎn)A的坐標(biāo)為(﹣1,0), ∴OA=1. 又∵OC=2OA, ∴OC=2, ∴點(diǎn)B的橫坐標(biāo)為2, 代入直線,得y=, ∴B(2,). ∵點(diǎn)B在雙曲線上, ∴k=xy=2=3, ∴雙曲線的解析式為y=. 點(diǎn)評(píng): 本題考查了反比例函數(shù)的綜合知識(shí),解題的關(guān)鍵是根據(jù)一次函數(shù)求出反比例函數(shù)與直線的交點(diǎn)坐標(biāo). 22.(8分)(2013?呼和浩特)某區(qū)八年級(jí)有3000名學(xué)生參加“愛我中華知識(shí)競(jìng)賽”活動(dòng).為了了解本次知識(shí)競(jìng)賽的成績(jī)分布情況,從中抽取了200名學(xué)生的得分進(jìn)行統(tǒng)計(jì). 請(qǐng)你根據(jù)不完整的表格,回答下列問題: 成績(jī)x(分) 頻數(shù) 頻率 50≤x<60 10 0.05 60≤x<70 16 0.08 70≤x<80 10 0.02 80≤x<90 62 0.47 90≤x<100 72 0.36 (1)補(bǔ)全頻率分布直方圖; (2)若將得分轉(zhuǎn)化為等級(jí),規(guī)定50≤x<60評(píng)為“D”,60≤x<70評(píng)為“C”,70≤x<90評(píng)為“B”,90≤x<100評(píng)為“A”.這次全區(qū)八年級(jí)參加競(jìng)賽的學(xué)生約有多少學(xué)生參賽成績(jī)被評(píng)為“D”?如果隨機(jī)抽查一名參賽學(xué)生的成績(jī)等級(jí),則這名學(xué)生的成績(jī)等級(jí)哪一個(gè)等級(jí)的可能性大?請(qǐng)說明理由. 考點(diǎn): 頻數(shù)(率)分布直方圖;頻數(shù)(率)分布表;可能性的大?。?718684 專題: 計(jì)算題. 分析: (1)由60≤x<70分?jǐn)?shù)段的人數(shù)除以所占的百分比,求出總?cè)藬?shù),進(jìn)而求出70≤x<80分?jǐn)?shù)段的頻數(shù),以及80≤x<90分?jǐn)?shù)段的頻率,補(bǔ)全表格即可; (2)找出樣本中評(píng)為“D”的百分比,估計(jì)出總體中“D”的人數(shù)即可;求出等級(jí)為A、B、C、D的概率,表示大小,即可作出判斷. 解答: 解:(1)根據(jù)題意得:160.08=200(人), 則70≤x<80分?jǐn)?shù)段的頻數(shù)為200﹣(10+16+62+72)=10(人),50≤x<60分?jǐn)?shù)段頻率為0.05,80≤x<90分?jǐn)?shù)段的頻率為0.47,補(bǔ)全條形統(tǒng)計(jì)圖,如圖所示: ; 故答案為:0.05;10;0.47; (2)由表格可知:評(píng)為“D”的頻率是=,由此估計(jì)全區(qū)八年級(jí)參加競(jìng)賽的學(xué)生約有3000=150(人)被評(píng)為“D”; ∵P(A)=0.36;P(B)=0.51;P(C)=0.08;P(D)=0.05, ∴P(B)>P(A)>P(C)>P(D), ∴隨機(jī)調(diào)查一名參數(shù)學(xué)生的成績(jī)等級(jí)“B”的可能性較大. 點(diǎn)評(píng): 此題考查了頻數(shù)(率)分布直方圖,頻數(shù)(率)分布表,以及可能性大小,弄清題意是解本題的關(guān)鍵. 23.(9分)(2013?呼和浩特)如圖,在邊長(zhǎng)為3的正方形ABCD中,點(diǎn)E是BC邊上的點(diǎn),BE=1,∠AEP=90,且EP交正方形外角的平分線CP于點(diǎn)P,交邊CD于點(diǎn)F, (1)的值為 ?。? (2)求證:AE=EP; (3)在AB邊上是否存在點(diǎn)M,使得四邊形DMEP是平行四邊形?若存在,請(qǐng)給予證明;若不存在,請(qǐng)說明理由. 考點(diǎn): 正方形的性質(zhì);全等三角形的判定與性質(zhì);平行四邊形的判定.3718684 分析: (1)由正方形的性質(zhì)可得:∠B=∠C=90,由同角的余角相等,可證得:∠BAE=∠CEF,根據(jù)同角的正弦值相等即可解答; (2)在BA邊上截取BK=NE,連接KE,根據(jù)角角之間的關(guān)系得到∠AKE=∠ECP,由AB=CB,BK=BE,得AK=EC,結(jié)合∠KAE=∠CEP,證明△AKE≌△ECP,于是結(jié)論得出; (3)作DM⊥AE于AB交于點(diǎn)M,連接ME、DP,易得出DM∥EP,由已知條件證明△ADM≌△BAE,進(jìn)而證明MD=EP,四邊形DMEP是平行四邊形即可證出. 解答: (1)解:∵四邊形ABCD是正方形, ∴∠B=∠D, ∵∠AEP=90, ∴∠BAE=∠FEC, 在Rt△ABE中,AE==, ∵sin∠BAE==sin∠FEC=, ∴=, (2)證明:在BA邊上截取BK=NE,連接KE, ∵∠B=90,BK=BE, ∴∠BKE=45, ∴∠AKE=135, ∵CP平分外角, ∴∠DCP=45, ∴∠ECP=135, ∴∠AKE=∠ECP, ∵AB=CB,BK=BE, ∴AB﹣BK=BC﹣BE, 即:AK=EC, 易得∠KAE=∠CEP, ∵在△AKE和△ECP中, , ∴△AKE≌△ECP(ASA), ∴AE=EP; (3)答:存在. 證明:作DM⊥AE于AB交于點(diǎn)M, 則有:DM∥EP,連接ME、DP, ∵在△ADM與△BAE中, , ∴△ADM≌△BAE(AAS), ∴MD=AE, ∵AE=EP, ∴MD=EP, ∴MDEP, ∴四邊形DMEP為平行四邊形. 點(diǎn)評(píng): 此題考查了相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì)以及正方形的性質(zhì)等知識(shí).此題綜合性很強(qiáng),圖形比較復(fù)雜,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用與輔助線的準(zhǔn)確選擇. 24.(9分)(2013?呼和浩特)如圖,AD是△ABC的角平分線,以點(diǎn)C為圓心,CD為半徑作圓交BC的延長(zhǎng)線于點(diǎn)E,交AD于點(diǎn)F,交AE于點(diǎn)M,且∠B=∠CAE,EF:FD=4:3. (1)求證:點(diǎn)F是AD的中點(diǎn); (2)求cos∠AED的值; (3)如果BD=10,求半徑CD的長(zhǎng). 考點(diǎn): 相似三角形的判定與性質(zhì);勾股定理;圓周角定理;解直角三角形.3718684 分析: (1)由AD是△ABC的角平分線,∠B=∠CAE,易證得∠ADE=∠DAE,即可得ED=EA,又由ED是直徑,根據(jù)直徑所對(duì)的圓周角是直角,可得EF⊥AD,由三線合一的知識(shí),即可判定點(diǎn)F是AD的中點(diǎn); (2)首先連接DM,設(shè)EF=4k,df=3k,然后由勾股定理求得ED的長(zhǎng),繼而求得DM與ME的長(zhǎng),由余弦的定義,即可求得答案; (3)易證得△AEC∽△BEA,然后由相似三角形的對(duì)應(yīng)邊成比例,可得方程:(5k)2=k?(10+5k),解此方程即可求得答案. 解答: (1)證明:∵AD是△ABC的角平分線, ∴∠1=∠2, ∵∠ADE=∠1+∠B,∠DAE=∠2+∠3,且∠B=∠3, ∴∠ADE=∠DAE, ∴ED=EA, ∵ED為⊙O直徑, ∴∠DFE=90, ∴EF⊥AD, ∴點(diǎn)F是AD的中點(diǎn); (2)解:連接DM, 設(shè)EF=4k,df=3k, 則ED==5k, ∵AD?EF=AE?DM, ∴DM===k, ∴ME==k, ∴cos∠AED==; (3)解:∵∠B=∠3,∠AEC為公共角, ∴△AEC∽△BEA, ∴AE:BE=CE:AE, ∴AE2=CE?BE, ∴(5k)2=k?(10+5k), ∵k>0, ∴k=2, ∴CD=k=5. 點(diǎn)評(píng): 此題考查了相似三角形的判定與性質(zhì)、圓周角定理、等腰三角形的判定與性質(zhì)、勾股定理以及三角函數(shù)等知識(shí).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用. 25.(12分)(2013?呼和浩特)如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(6,0)、B(﹣2,0)和點(diǎn)C(0,﹣8). (1)求該二次函數(shù)的解析式; (2)設(shè)該二次函數(shù)圖象的頂點(diǎn)為M,若點(diǎn)K為x軸上的動(dòng)點(diǎn),當(dāng)△KCM的周長(zhǎng)最小時(shí),點(diǎn)K的坐標(biāo)為 (,0)?。? (3)連接AC,有兩動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)P以每秒3個(gè)單位長(zhǎng)度的速度沿折線OAC按O→A→C的路線運(yùn)動(dòng),點(diǎn)Q以每秒8個(gè)單位長(zhǎng)度的速度沿折線OCA按O→C→A的路線運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng),設(shè)P、Q同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OPQ的面積為S. ①請(qǐng)問P、Q兩點(diǎn)在運(yùn)動(dòng)過程中,是否存在PQ∥OC?若存在,請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說明理由; ②請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍; ③設(shè)S0是②中函數(shù)S的最大值,直接寫出S0的值. 考點(diǎn): 二次函數(shù)綜合題.3718684 分析: (1)根據(jù)已知的與x軸的兩個(gè)交點(diǎn)坐標(biāo)和經(jīng)過的一點(diǎn)利用交點(diǎn)式求二次函數(shù)的解析式即可; (2)首先根據(jù)上題求得的函數(shù)的解析式確定頂點(diǎn)坐標(biāo),然后求得點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo)C′,從而求得直線C′M的解析式,求得與x軸的交點(diǎn)坐標(biāo)即可; (3)(3)①如果DE∥OC,此時(shí)點(diǎn)D,E應(yīng)分別在線段OA,CA上,先求出這個(gè)區(qū)間t的取值范圍,然后根據(jù)平行線分線段成比例定理,求出此時(shí)t的值,然后看t的值是否符合此種情況下t的取值范圍.如果符合則這個(gè)t的值就是所求的值,如果不符合,那么就說明不存在這樣的t. ②本題要分三種情況進(jìn)行討論: 當(dāng)E在OC上,D在OA上,即當(dāng)0≤t≤1時(shí),此時(shí)S=OE?OD,由此可得出關(guān)于S,t的函數(shù)關(guān)系式; 當(dāng)E在CA上,D在OA上,即當(dāng)1<t≤2時(shí),此時(shí)S=ODE點(diǎn)的縱坐標(biāo).由此可得出關(guān)于S,t的函數(shù)關(guān)系式; 當(dāng)E,D都在CA上時(shí),即當(dāng)2<t<相遇時(shí)用的時(shí)間,此時(shí)S=S△AOE﹣S△AOD,由此可得出S,t的函數(shù)關(guān)系式; 綜上所述,可得出不同的t的取值范圍內(nèi),函數(shù)的不同表達(dá)式. ③根據(jù)②的函數(shù)即可得出S的最大值. 解答: 解:(1)設(shè)二次函數(shù)的解析式為y=a(x+2)(x﹣6) ∵圖象過點(diǎn)(0,﹣8) ∴a= ∴二次函數(shù)的解析式為y=x2﹣x﹣8; (2)∵y=x2﹣x﹣8=(x2﹣4x+4﹣4)﹣8=(x﹣2)2﹣ ∴點(diǎn)M的坐標(biāo)為(2,﹣) ∵點(diǎn)C的坐標(biāo)為(0,﹣8), ∴點(diǎn)C關(guān)于x軸對(duì)稱的點(diǎn)C′的坐標(biāo)為(0,8) ∴直線C′M的解析式為:y=﹣x+8 令y=0 得﹣x+8=0 解得:x= ∴點(diǎn)K的坐標(biāo)為(,0); (3)①不存在PQ∥OC, 若PQ∥OC,則點(diǎn)P,Q分別在線段OA,CA上, 此時(shí),1<t<2 ∵PQ∥OC, ∴△APQ∽△AOC ∴ ∵AP=6﹣3t AQ=18﹣8t, ∴ ∴t= ∵t=>2不滿足1<t<2; ∴不存在PQ∥OC; ②分情況討論如下, 情況1:0≤t≤1 S=OP?OQ=3t8t=12t2; 情況2:1<t≤2 作QE⊥OA,垂足為E, S=OP?EQ=3t=﹣+ 情況3:2<t< 作OF⊥AC,垂足為F,則OF= S=QP?OF=(24﹣11t)=﹣+; ③當(dāng)0≤t≤1時(shí),S=12t2,函數(shù)的最大值是12; 當(dāng)1<t≤2時(shí),S=﹣+,函數(shù)的最大值是; 當(dāng)2<t<,S=QP?OF=﹣+,函數(shù)的最大值為; ∴S0的值為. 點(diǎn)評(píng): 本題著重考查了待定系數(shù)法求二次函數(shù)解析式以及二次函數(shù)的應(yīng)用等知識(shí)點(diǎn),綜合性較強(qiáng),考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
4 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2013 呼和浩特 中考 數(shù)學(xué)試卷 答案 解析
鏈接地址:http://ioszen.com/p-2878072.html