2019-2020年九年級數(shù)學(xué)競賽輔導(dǎo)講座 第二十一講 從三角形的內(nèi)切圓談起.doc
《2019-2020年九年級數(shù)學(xué)競賽輔導(dǎo)講座 第二十一講 從三角形的內(nèi)切圓談起.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年九年級數(shù)學(xué)競賽輔導(dǎo)講座 第二十一講 從三角形的內(nèi)切圓談起.doc(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年九年級數(shù)學(xué)競賽輔導(dǎo)講座 第二十一講 從三角形的內(nèi)切圓談起 和多邊形的各邊都相切的圓叫做多邊形的內(nèi)切圓,這個多邊形叫做圓的外切多邊形.三角形的內(nèi)切圓的圓心叫做這個三角形的內(nèi)心,圓外切三角形、圓外切四邊形有下列重要性質(zhì): 1.三角形的內(nèi)心是三角形的三內(nèi)角平分線交點(diǎn),它到三角形的三邊距離相等; 2.圓外切四邊形的兩組對邊之和相等,其逆亦真,是判定四邊形是否有外切圓的主要方法. 當(dāng)圓外切三角形、四邊形是特殊三角形時,就得到隱含豐富結(jié)論的下列圖形: 注:設(shè)Rt△ABC的各邊長分別為a、b、c (斜邊),運(yùn)用切線長定理、面積等知識可得到其內(nèi)切圓半徑的不同表示式: (1); (2). 請讀者給出證 【例題求解】 【例1】 如圖,在Rt△ABC中,∠C=90,BC=5,⊙O與Rt△ABC的三邊AB、BC、AC分相切于點(diǎn)D、E、F,若⊙O的半徑r=2,則Rt△ABC的周長為 . 思路點(diǎn)撥 AF=AD,BE=BD,連OE、OF,則OECF為正方形,只需求出AF(或AD)即可. 【例2】 如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(diǎn)(異于A、B),過點(diǎn)P作半圓O的切線分別交過A、B兩點(diǎn)的切線于D、C,AC、BD相交于N點(diǎn),連結(jié)ON,NP,下列結(jié)論:①四邊形ANPD是梯形;②ON=NP:③DPP C為定值;④FA為∠NPD的平分線,其中一定成立的是( ) A.①②③ B.②③④ C.①③④ D.①④ 思路點(diǎn)撥 本例綜合了切線的性質(zhì)、切線長定理、相似三角形,判定性質(zhì)等重要幾何知識,注意基本輔助線的添出、基本圖形識別、等線段代換,推導(dǎo)出NP∥AD∥BC是解本例的關(guān)鍵. 【例3】 如圖,已知∠ACP=∠CDE=90,點(diǎn)B在CE上,CA=CB=CD,過A、C、D三點(diǎn)的圓交AB于F,求證:F為△CDE的內(nèi)心. 思路點(diǎn)撥 連CF、DF,即需證F為△CDE角平分線的交點(diǎn),充分利用與圓有關(guān)的角,將問題轉(zhuǎn)化為角相等問題的證明. 【例4】 如圖,在直角梯形ABCD中,AD∥BC,AB⊥BC,AB=BC=1,以AB為直徑作半圓O切CD于E,連結(jié)OE,并延長交AD的延長線于F. (1)問∠BOZ能否為120,并簡要說明理由; (2)證明△AOF∽△EDF,且; (3)求DF的長. 思路點(diǎn)撥 分解出基本圖形,作出基本輔助線.(1)若∠BOZ=120,看能否推出矛盾;(2)把計算與推理融合;(3)把相應(yīng)線段用DF的代數(shù)式表示,利用勾股定理建立關(guān)于DF的一元二次方程. 注: 如圖,在直角梯形ABCD中,若AD+BC=CD,則可得到應(yīng)用廣泛的兩個性質(zhì): (1)以邊AB為直徑的圓與邊CD相切; (2)以邊CD為直徑的圓與邊AB相切. 類似地,三角形三條中線的交點(diǎn)叫三角形的重心,三角形三邊高所在的直線的交點(diǎn)叫三角形的垂心.外心、內(nèi)心、垂心、重心統(tǒng)稱三角形的四心,它們處在三角而中的特殊位置上,有著豐富的性質(zhì),在解題中有廣泛的應(yīng)用. 【例5】 如圖,已知Rt△ABC中,CD是斜邊AB上的高,O、O1、O2分別是△ABC;△ACD、△BCD的角平分線的交點(diǎn),求證:(1) O1O⊥C O2;(2)OC= O1O2. 思路點(diǎn)撥 在直角三角形中,斜邊上的高將它分成的兩個直角三角形和原三角形相似,得對應(yīng)角相等,所以通過證交角為90的方法得兩線垂直,又利用全等三角形證明兩線段相 等. 學(xué)力訓(xùn)練 1.如圖,已知圓外切等腰梯形ABCD的中位線EF=15cm,那么等腰梯形ABCD的周長等于= cm. 2.如圖,在直角,坐標(biāo)系中A、B的坐標(biāo)分別為(3,0)、(0,4),則Rt△ABO內(nèi)心的坐標(biāo)是 . 3.如圖,梯形ABCD中,AD∥BC, DC⊥BC,AB=8,BC=5,若以AB為直徑的⊙O與DC相切于E,則DC= . 4.如圖,⊙O為△ABC的內(nèi)切圓,∠C=90,AO的延長線交BC于點(diǎn)D,AC=4,CD=1,則⊙O的半徑等于( ) A. B. C. D. 5.如圖,在梯形ABCD中,AD∥BC,∠BCD=90,以CD為直徑的半圓O切AB于點(diǎn)E,這個梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( ) A.3cm B.7cm C .3cm或7cm D. 2cm 6.如圖,△ABC中,內(nèi)切圓O和邊B、CA、AB分別相切于點(diǎn)D、EF,則以下四個結(jié)論中,錯誤的結(jié)論是( ) A.點(diǎn)O是△DEF的外心 B.∠AFE=(∠B+∠C) C.∠BOC=90+∠A D.∠DFE=90一∠B 7.如圖,BC是⊙O的直徑,AB、AD是⊙O的切線,切點(diǎn)分別為B、P,過C點(diǎn)的切線與AD交于點(diǎn)D,連結(jié)AO、DO. (1)求證:△ABO∽△OCD; (2)若AB、CD是關(guān)于x的方程的兩個實數(shù)根,且S△ABO+ S△OCD=20,求m的值. 8.如圖,已知AB是⊙O的直徑,BC是⊙O的切線,OC與⊙O相交于點(diǎn)D,連結(jié)AD并延長,BC相交于點(diǎn)E. (1)若BC=,CD=1,求⊙O的半徑; (2)取BE的中點(diǎn)F,連結(jié)DF,求證:DF是⊙O的切線; (3)過D點(diǎn)作DG⊥BC于G,OG與DG相交于點(diǎn)M,求證:DM=GM. 9.如圖,在直角梯形ABCD中,AD∥BC,∠B=90,AD=13cm,BC=16cm,CD=5cm,AB為⊙O的直徑,動點(diǎn)P沿AD方向從點(diǎn)A開始向點(diǎn)D以1cm/秒的速度運(yùn)動,動點(diǎn)Q沿CB方向從點(diǎn)C開始向點(diǎn)B以2cm/秒的速度運(yùn)動,點(diǎn)P、Q分別從A、C兩點(diǎn)同時出發(fā),當(dāng)其中一點(diǎn)停止時,另一點(diǎn)也隨之停止運(yùn)動. (1)求⊙O的直徑; (2)求四邊形PQCD的面積y關(guān)于P、Q運(yùn)動時間t的函數(shù)關(guān)系式,并求當(dāng)四邊形PQCD為等腰梯形時,四邊形PQCP的面積; (3)是否存在某時刻t,使直線PQ與⊙O相切,若存在,求出t 的值;若不存在,請說明理由. 10.已知在△ABC中,∠C=90,AC=4,BC=3,CD為AB上的高,Ol、O2分別為△ACD、△BCD的內(nèi)心,則OlO2= . 11.如圖,在△ABC中,∠C=90,∠A和∠B的平分線相交于P點(diǎn),又PE⊥AB于點(diǎn)E,若BC=2,AC=3,則AEEB= . 12.如果一個三角形的面積和周長都被一直線所平分,那么該直線必通過這個三角形的( ) A.內(nèi)心 B.外心 C.圓心 D.重心 13.如圖,AD是△ABC的角平分線,⊙O過點(diǎn)AB和BC相切于點(diǎn)P,和AB、AC分別交于點(diǎn)E,F(xiàn),若BD=AE,且BE=a,CF=b,則AF的長為( ) A. B. C. D. 14.如圖,在矩形ABCD中,連結(jié)AC,如果O為△ABC的內(nèi)心,過O作OE⊥AD于E,作OF⊥CD于F,則矩形OFDE的面積與矩形ABCD的面積的比值為( ) A. B. C. D.不能確定 ⌒ 15.如圖,AB是半圓的直徑,AC為半圓的切線,AC=AB.在半圓上任取一點(diǎn)D,作DE⊥CD,交直線AB于點(diǎn)F,BF⊥AB,交線段AD的延長線于點(diǎn)F. (1)設(shè)AD是x的弧,并要使點(diǎn)E在線段BA的延長線上,則x的取值范圍是 ; (2)不論D點(diǎn)取在半圓什么位置,圖中除AB=AC外,還有兩條線段一定相等,指出這兩條相等的線段,并予證明. 16.如圖,△ABC的三邊滿足關(guān)系BC=(AB+AC),O、I分別為△ABC的外心、內(nèi)心,∠ BAC的外角平分線交⊙O于E,AI的延長線交⊙O于D,DE交BC于H. 求證:(1)AI=BD;(2)OI=AE. 17.如圖,已知AB是⊙O的直徑,BC是⊙O的切線,OC平行于弦AD,過點(diǎn)D作DE⊥AB于點(diǎn)E,連結(jié)AC,與DE交于點(diǎn)F,問EP與PD是否相等?證明你的結(jié)論. ⌒ 18.如圖,已知點(diǎn)P在半徑為6,圓心角為90的扇形OAB的AB(不含端點(diǎn))上運(yùn)動,PH⊥OA于H,△OPH的重心為G. (1)當(dāng)點(diǎn)P在AB上運(yùn)動時,線段GO、GP、GH中有無長度保持不變的線段?如果有,請指出并求出其相應(yīng)的長度; (2)設(shè)PH= x,GP=y,求y關(guān)于x的函數(shù)解析式,并指出自變量x的取值范圍; (3)如果△PGH為等腰三角形,試求出線段PH的長. 參考答案- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年九年級數(shù)學(xué)競賽輔導(dǎo)講座 第二十一講 從三角形的內(nèi)切圓談起 2019 2020 九年級 數(shù)學(xué) 競賽 輔導(dǎo) 講座 第二十一 三角形 內(nèi)切圓 談起
鏈接地址:http://ioszen.com/p-3280953.html