車銑復(fù)合下刀架單元設(shè)計【4張CAD圖帶】
【需要咨詢購買全套設(shè)計請加QQ1459919609】圖紙預(yù)覽詳情如下:
附錄 1:外文翻譯切割時材料阻力特性的測定瓦萊麗·庫什納,邁克爾·斯托切克俄羅斯國家技術(shù)大學(xué)機械工程與材料科學(xué)系德國斯圖加特大學(xué)機床研究所(IfW)。摘要本文提出了考慮應(yīng)變率、切削材料應(yīng)變率和切削溫度作為材料阻力在本構(gòu)律上的剪切特性的具體變形工作。研究并確定了在絕熱條件下,具體變形工作和屈服應(yīng)力對變形的影響。由于其與變形溫度的關(guān)系密切。此外,還研究了切削過程中實驗測定的可能性。在此基礎(chǔ)上建立了晶片形成區(qū)和耙面堆積區(qū)的屈服應(yīng)力最大值。考慮了應(yīng)變局部化條件下切割材料在等溫條件下的軟化現(xiàn)象。此外,本文還介紹了在切屑形成區(qū)域的軟化和切削刃的傾斜面上的材料電阻的變化。1 介紹在模擬的和實際的熱工機械過程中,模擬的和實際的熱機械過程之間存在較大差異的主要原因是[1]。這尤其涉及到材料模型[2], [3],對它們的假設(shè)極大地影響了計算合力和切削溫度的精度。許多研究人員,包括[4], [5]在內(nèi),都非常重視在切削過程中對大應(yīng)變、高應(yīng)變率和溫度的塑性變形的材料阻力進(jìn)行建模。變形材料的屈服點對應(yīng)變、應(yīng)變率和溫度的依賴性,被稱為本構(gòu)定律,在這里由上述參數(shù)的經(jīng)驗函數(shù)描述,對于不同的變形區(qū)域是相同的。這些方程的特點是將應(yīng)變、應(yīng)變率和溫度作為獨立變量考慮。這種本構(gòu)方程的一個例子是 johnson - cook 模型[5],經(jīng)常在加工過程中使用,[5],[6]等。這些本構(gòu)方程代表了這三個變量的屈服點的經(jīng)驗依賴關(guān)系:測試材料的應(yīng)變、應(yīng)變率和溫度。它們可以用來描述材料在標(biāo)準(zhǔn)化測試方法中的變形。但在切削過程中,這些方程并不反映加工材料變形的特性。這是因為三個變量中的兩個,即應(yīng)變速率的商和溫度的升高,并不是獨立于切割的。因此,它們必須建立起來。為了模擬屈服點對應(yīng)變切割的依賴性,有必要將溫度的升高轉(zhuǎn)化為依賴變量。在此基礎(chǔ)上,必須考慮屈服點在切削過程中的依賴程度,不能直接由實驗間接決定。對變形的依賴可以通過對變形工作的依賴程度進(jìn)行分析來得到。利用特定的變形工作作為材料抗變形的抗變形性,在切削過程中典型的淬火,保證了不可能忽略屈服點。首先,還可以從特殊變形工作中得到溫度的升高[7]具體的變形工作是通過在晶片成形區(qū)域內(nèi)的特定切向力來建立的[8]。溫度以某一特定的方式在晶片形成區(qū)域和聚集區(qū)域的變形分布上,取決于剪切帶的散熱條件以及溫度與機加工材料的屈服點之間的關(guān)系[7]。此外,本構(gòu)方程用于描述材料在拉伸/壓縮試驗中對塑性變形的阻力的規(guī)律,在切割時不能應(yīng)用于不同的變形區(qū)域,因為這些依賴關(guān)系。對于不同的變形區(qū)有不同的定義[7]。在確定材料去除過程模型的屈服點時,必須考慮到這一點。本文介紹了材料對切削過程阻力的分析結(jié)果。認(rèn)為特殊的變形工作是一種阻力特性,保證了加工過程中不同剪切帶的材料變形特性。2. 切削加工材料的變形特性。在相同的最終溫度下,晶片成形區(qū)和楔片表面與晶片之間的塑性接觸區(qū),應(yīng)變和相應(yīng)的溫度分布都有很大的差異[9]。由于這種情況,在不同溫度下的應(yīng)變速率大致相同。溫度對屈服點的最大影響是在楔子和晶片之間的塑性接觸面積上發(fā)生應(yīng)變率的函數(shù)。這是因為切割溫度在這個區(qū)域達(dá)到最大值。因此,對于不同溫度的變形區(qū)域,不同的變形區(qū)域必須開發(fā)不同的材料抗塑性變形模型。在非均勻剪切過程中,材料變形的具體特性是形成了不同的變形區(qū)域。一方面,有些地區(qū)存在相對較小的應(yīng)變和低溫,而這些地區(qū)的材料是硬化的。另一方面,有大的帶狀和高溫的區(qū)域形成,材料被軟化。大量的熱耗散可能導(dǎo)致芯片形成區(qū)絕熱塑性流動的穩(wěn)定損失[10]。這是一個靠近芯片形成區(qū)邊界的狹窄區(qū)域的必要條件和區(qū)域構(gòu)造變形[11]。因此,如果機械材料的淬火在其軟化過程中占主導(dǎo)地位,變形就不能在一個狹窄的區(qū)域內(nèi)進(jìn)行。因此,可以將晶片形成區(qū)(原剪切帶)作為一種相對較寬的平行邊界或兩個區(qū)域來表示,即絕熱變形條件普遍存在且材料硬化的廣闊區(qū)域,以及等溫變形條件下的窄區(qū)域[10]。圖 1 描述了切割[12]時芯片的紋理,并分析了不同剪切帶中普遍存在的過程。圖顯示切屑的面積(A),形成的區(qū)域切屑接觸傾斜面(B,C 和 E)以及毀滅性打擊的工具與工件的接觸(D、G)的毀滅性 B 和 C。這標(biāo)志著塑料接觸傾斜面,摘要是彈性接觸面積 G 標(biāo)志著塑料接觸在間隙的臉,和區(qū)域 D 標(biāo)志著彈塑性接觸。晶片形成區(qū) A 有條件地劃分為兩個區(qū)域:一個具有平行邊界的窄區(qū),在其中,主要的剪切材料的應(yīng)變發(fā)生主區(qū)之后,而一個帶相對較小應(yīng)變的寬闊區(qū)域,發(fā)生在主區(qū)之前。在廣闊的地區(qū)是材料絕熱,在狹窄的區(qū)域是材料等溫軟化。當(dāng)模擬材料在成片區(qū)域軟化的規(guī)律時,必須考慮到絕熱剪切的穩(wěn)定性損失。這種穩(wěn)定性損失導(dǎo)致了在靠近切屑形成區(qū)域邊界的一個狹窄區(qū)域內(nèi)的變形的局部化(s.圖 1)。楔塊與晶片之間的接觸的累積區(qū) B 的特征是相對較小的變形。在塑性接觸區(qū) C 中,有較大的塑性變形和高于 B 區(qū)的溫度。B 區(qū)的變形條件是接近于絕熱的,如果積累區(qū)域B 的溫度高于晶片顆粒的變形溫度。在塑料觸點 C 的區(qū)域,材料的熱軟化主要是由于材料在高溫下由于應(yīng)變率的影響而使材料硬化而得到部分補償。在楔形和工件的側(cè)面之間的接觸區(qū)域 G 中發(fā)現(xiàn)了機械加工材料力學(xué)性能變化的機理。這里可以注意到。B 地區(qū)的溫度分布比 A 區(qū)更均勻,B 區(qū)的屈服點必須大于 A 區(qū)。與晶片形成區(qū)材料電阻的模擬類似,對塑性變形的材料阻力也要在二次區(qū)中進(jìn)行描述,而在楔板與芯片的接觸區(qū)域之間通過使用兩種不同的模型來描述。在材料硬化的情況下,通過具體變形工作的依賴性和屈服點對屈服點的最大屈服點進(jìn)行描述。在C 區(qū),隨著材料的軟化,它被描述為。溫度對溫度的軟化影響和應(yīng)變率的相對變化對溫度的影響程度有較大的影響。通常情況下,楔形閘板與切割片之間的接觸區(qū)域分為兩個相同長度的子區(qū)域:塑料接觸區(qū) C 1 和彈性接觸區(qū) C E -圖 2。區(qū)域 C 1 被劃分為兩個部分:材料硬化的面積和材料軟化的面積。在晶片形成區(qū) A 和積累區(qū) B 的絕熱變形條件在應(yīng)變分布上存在差異。如果對這些區(qū)域的紋理線的變化進(jìn)行分析,可以認(rèn)為,在晶片形成區(qū) A 的應(yīng)變分布比 B 區(qū)更均勻[10]。那為什么切屑形成地區(qū)平均溫度應(yīng)該低于區(qū)域 B,因為切屑中的應(yīng)變分布更加不均勻形成區(qū)域 A 比堆積區(qū)(圖 2)和平均溫度相應(yīng)降低,屈服點 q 0 在堆積區(qū) B 應(yīng)該大于最高產(chǎn)量點在切屑內(nèi)形成面積 A。這適用于 G(圖 2 s)。這一假設(shè)與眾所周知的事實相對應(yīng),即在楔形板的傾斜面上形成了相對較低的切削溫度[12],因為在保持其變形抗力的基礎(chǔ)上,其硬度必須大于通過晶片成形區(qū)的材料的硬度[12]。3 特定變形功的測定。應(yīng)變速率對屈服點的影響隨溫度的變化而變化。溫度和速率因子如何影響產(chǎn)量點的增加,被稱為動態(tài)因子 K 。應(yīng)變速率和相應(yīng)的溫度對動力學(xué)因子的影響顯著[7]。在剪切過程中,在變形區(qū)域內(nèi)的實際速度場的確定是一個復(fù)雜的問題,而且是一個尚未解決的問題,在切割時的應(yīng)變速率只能粗略估計一個或兩個數(shù)量級的精度[12]。據(jù)估計,與拉伸/壓縮試驗相比,切割時應(yīng)變率的相對變化值為 。這樣,就有8710?可能假設(shè)在切割和強度/壓縮試驗中,應(yīng)變率的系數(shù)是恒定的。因此,利用一個乘數(shù),就可以通過單一的同源溫度的指數(shù)函數(shù),來表示同源溫度對屈服點的影響:(1)mdTKdTdTeKK0**238*810)10( ???????在切割和拉伸/壓縮試驗中,應(yīng)變率的近似常數(shù)是多少?卡爾的經(jīng)驗常數(shù)考慮了在低溫下應(yīng)變速率增加的直接影響?k 是經(jīng)驗常數(shù),它代表了溫度升高對屈服點的影響,通過應(yīng)變速率的變化。具體的變形工作是用來確定淬火措施的特性,因為它直接與加工特性有關(guān)。因此,特殊切向力的商是多少?t 和真正的極限強度 R t 強度/壓縮試驗可以表示為一個 w 和最終變形的具體變形量的商,或從 0 到的不同變形的屈服點的積分[7] ptwttttt dRAVvbaFbaRF ???????? ???? 022 1)sin(*)sin(*(2))cos(*,)cos(i)si( 22 rVrKVtatw ?????特定的切向力這里 t 是收益率點的均值。在此基礎(chǔ)上,通過對特定的變形工作1?進(jìn)行區(qū)分,得出了屈服點對應(yīng)變的依賴性:(3)??pwtpdAR???通過對屈服點的積分,確定了具體變形對應(yīng)變的依賴程度。關(guān)于變形溫度對屈服點的影響,以及溫度與特殊變形工作之間的聯(lián)系。在不同的溫度條件下,溫度的升高與變形的具體變形之間存在著較簡單的相關(guān)性。在高速切削時,通常在相對較小的變形區(qū)域內(nèi)的絕熱變形條件。在這些地區(qū),材料的硬化主要是由于其熱軟化。這種情況發(fā)生在晶片形成區(qū)的廣闊區(qū)域,在楔形的耙面上的堆積區(qū),接近于[8][0]:(4)mvwTCRAdT*,1??是無量綱復(fù)合體,為機加工材料的特性容積熱容。如果絕熱條件斷裂,則相關(guān)1A的變形溫度和變形條件變得復(fù)雜得多,因為必須考慮到變形區(qū)域內(nèi)的熱耗散。因此,不同的模型將被用于描述材料變形的硬化過程,在絕熱變形條件下,以及在等溫變形條件下發(fā)生的軟化過程。4 晶片成形區(qū)的材料變形模型。4.1 在絕熱變形條件下加工材料硬化模型。摘要為了描述在絕熱變形條件下的材料抗切割特性,在晶片形成區(qū)和次生帶的累積區(qū)中,典型的材料淬火是材料硬化的典型特征,在應(yīng)變、應(yīng)變的情況下,比率和溫度采用以下方程近似于屈服點的依賴關(guān)系:(5))*exp(*)exp()*e(* dTBKAdTbKAR mpmptp ???? ???A 是無量綱復(fù)合體,是沿 z 軸的相對延伸,m 是變形硬化的經(jīng)驗確定參數(shù),B 是經(jīng)驗常數(shù)考慮應(yīng)變率和溫度對屈服點的聯(lián)合效應(yīng),K 是應(yīng)變率對 a 的影響的經(jīng)驗常數(shù)部分恒定的平均溫度。在材料硬化條件下,如果屈服點被特殊變形工作(5)所取代,則可以考慮應(yīng)變、應(yīng)變速率和溫度的影響,以及它們與特定變形工作的相互作用,以微分方程形式:(6)0),*exp(*1???pwmpw dforABKAd ???具體變形如何工作 A W 取決于材料硬化狀態(tài)下的應(yīng)變,通過積分式(6)[7]:(7),1*211????????pwmpwKInB由于(4)的關(guān)系,在加工過程中,特殊變形工作的依賴(7)是否允許對流動曲線的分析方程進(jìn)行微分,在絕熱材料中,對溫度和應(yīng)變速率的影響: (8)0,)*1(*1?????pmpmptp dforKBAKAR ????4.2 在等溫變形條件下加工材料軟化模型。圖 3 說明了屈服點在拉伸試驗中切向屈服點時的依賴性。在絕熱變形條件下,根據(jù)式(8)提出。理論曲線 1 對材料硬化的響應(yīng)面積,減小函數(shù)面積對應(yīng)于材料軟化下絕熱變形條件。隨著應(yīng)變溫度的升高,屈服點逐漸減小。這就導(dǎo)致了靠近芯片形成區(qū)域邊界的狹窄區(qū)域的形變。圖 1、區(qū)域 A)和從絕熱到熱變形條件的過渡[8]。該材料在晶片成形領(lǐng)域的變形是一種理想塑性材料,其屈服點的穩(wěn)定性水平取決于真正的最終剪切力:(9)???????pp????????wppwppp byby?????????????5. 在楔塊與晶片之間的接觸區(qū)域內(nèi)的材料阻力模型。堆積層 B 的變形條件。圖 1 和圖 2)幾乎是絕熱的。本文描述的屈服點有如下方程,類似于公式(8),它是關(guān)于耙面與切屑之間的接觸變化的:11bp **sq ??????????mpqmpqKBAKA??qqmBA?? ???????10 )(,?(10)晶片形成區(qū)域 A 的平均溫度要比 B 區(qū)低[6], [12]。相應(yīng)地,動態(tài)系數(shù) K q,表明溫度應(yīng)變率因子如何影響屈服點,該區(qū)域比動力因子 K 更大?嗎?(s.第 3 章)芯片形成區(qū)域 A。外推的動力系數(shù)與相應(yīng)的溫度(1)對應(yīng)的高溫度對應(yīng)的材料在耙面接觸時的變形情況,表明動態(tài)系數(shù)可能會增加。因此,當(dāng)切割 AISI 1045 時,其動力系數(shù)可以從 5 到7 變化,在 950 ~ 1150 之間的楔形溫度上切割 AISI 1045。溫度對溫度系數(shù) K 的直接軟化效應(yīng),可近似于下列函數(shù):(11)BTK????????01?材料的屈服點溫度隨溫度的升高而降低。隨著溫度的升高,屈服點的相應(yīng)溫度會降低。在切削過程中,在耙面與晶片之間的塑性接觸面積上,溫度對屈服點的直接軟化效應(yīng),主要是通過增加動態(tài)系數(shù)[7]的間接硬化效應(yīng)來補償?shù)?。由于?yīng)變率的這種顯著的間接影響,解釋了為什么在切削過程中,溫度對斜面上的特定切向力的影響比強度/壓縮試驗要小得多[8]。因此,導(dǎo)致剪切屈服點變化的唯一因素是其在耙面與芯片之間的塑性接觸面積上的高值。因此,可以用下面的方程來描述斜面上屈服點的依賴程度,表明溫度的直接軟化效應(yīng)和應(yīng)變率的間接硬化效應(yīng):??????????????mdTKq0*01?(12)6 對已開發(fā)模型進(jìn)行了實驗驗證。通過對 AISI 1045[11]車削過程中所得到的數(shù)據(jù)進(jìn)行了分析,比較了在切割過程中所得到的具體變形量的計算結(jié)果,結(jié)果表明,該模型與實驗結(jié)果吻合較好,如圖 4 所示。在拉伸試驗中,特殊變形工作的數(shù)值與機械加工中不一致。這里的屈服點對實際剪切力的依賴關(guān)系到特定切向力的依賴程度?t 在實際的真切變上[8]。然而,這一協(xié)議并不適用于所有的機械加工條件。在窄范圍內(nèi)將應(yīng)變局部化,增加了變形溫度對具體變形工作和屈服點的影響。計算的特定的切線力與實驗值一致(圖 3,曲線 1 和 5),證實了在相同條件下,應(yīng)變的局部化和屈服點的恒定依賴的假設(shè)。依賴(12)與實驗和理論數(shù)據(jù)一致-圖 5。因此,可以認(rèn)為,熱流密度的分布或剪切屈服點的分布與耙面與晶片之間的塑性接觸帶的溫度有關(guān)。在此基礎(chǔ)上,通過數(shù)值方法求解一個統(tǒng)一的問題,建立了該算法[6]。 7 結(jié)論變形溫度的增加可以通過在晶片形成區(qū)域的廣泛區(qū)域內(nèi)的絕熱變形條件和耙面的堆積層的具體變形工作來表達(dá)。假設(shè)這些變形條件對應(yīng)。相對較小的壓力。標(biāo)準(zhǔn)化拉伸/壓縮試驗的本構(gòu)方程可以轉(zhuǎn)化為切割中絕熱條件的微分方程,描述了具體的變形工作是如何依賴于應(yīng)變的。通過對微分方程的積分和對具體變形工作的進(jìn)一步微分,可以得到具體的變形功和屈服點與實際應(yīng)變的關(guān)系。在晶片成形區(qū)和堆積區(qū)上的屈服點的理論依賴性表現(xiàn)為凸起、幾乎穩(wěn)定的曲線。如果不超過對屈服點理論最大值的變形反應(yīng),則在這里占優(yōu)勢的熱變形條件。在另一種情況下,一些變形的部分靠近切屑形成區(qū)域的邊界。這導(dǎo)致了材料的軟化。結(jié)果表明:耙面堆積層的變形量大于晶片形成區(qū)。這與區(qū)域內(nèi)不同的溫度分布有關(guān)。在晶片與楔形面的塑性接觸面積上,由于應(yīng)變速率對屈服點的影響,在溫度的影響下,加工材料的軟化現(xiàn)象得到了補償。應(yīng)變速率的影響表現(xiàn)在材料的硬化上。致謝:在德國研究基金會(DFG)資助下,該項目在“確定加工材料的力學(xué)性能的概念發(fā)展”項目中獲得了成果。作者感謝 DFG 的支持,這是非常感謝的。附錄 2:外文原文- 34 -- 35 -- 36 -- 37 -38