壓縮包內含有CAD圖紙和說明書,均可直接下載獲得文件,所見所得,電腦查看更方便。咨詢Q 197216396 或 11970985
附件1:外文資料翻譯譯文
微型模具成型的熱量和擠壓控制
在這篇文章中,我們?yōu)榱擞行У貜椭瞥鲈撐⑿湍>弋a品的微小結構,將一個擠壓機器和一個小核心傳感器組合起來,構建一個注射模具的擠壓系統(tǒng)。在一些重要的部位,由一個壓力裝置,它作為原動力,驅動中心模具工作。舉例說吧,在注射以后,模腔中的壓力會從二十兆帕上升到三十四兆帕。那些小小的感應器形成感受到壓力,那些周圍的裝置和熱敏傳感器,排列在洞腔的同圍。我們可以根據這些信號推測里面狀況朝著有利的方向發(fā)展。為了評估該注射系統(tǒng),我們做了一個厚度為1lm角度為140℃ 三角凹朝槽 來進行工作。
說明
大部分的醫(yī)療信息設備都有一個基礎工作部分,另外還有一些輔助部件來完成某種特定的功能。模具成型技術 在現實中廣泛應用,而且在大批量生產中多有應用,這篇文章即是研究成型過程在傳統(tǒng)的成型壓力系統(tǒng)中,其為系統(tǒng)提供很大的壓力差,這種特點為模具成型過程提供了很好的動力源.然而,傳統(tǒng)的成型過程在注射成型的過程中,特別是在微型模具的成型過程中,有兩個很明顯的問題.首先,在用單模腔成型微小結構的模具時,不同的溫度和硬度會引起不一致的成型壓力.一般來說,模腔中心的溫度越高,中心周圍的溫度也會越高.其次,即使通過冷卻和控制壓力的方法來展平那些不平的區(qū)域,但是通過檢測發(fā)現,熱流量和壓力仍是高于成型微型模具工作時所規(guī)定的壓力,而且腔內的這種情況很不好控制,這樣以來就只好通來偵測熱流面不是溫度來控制型腔中各種成型條件.
這篇文章的作者,也就是該機器的設計者,他通過在模具重要部位安放一個叫做模具核心擠壓機的部件來及時了解并控制模腔內成型的具體情況。這個部件配備有特殊裝置來控制模腔內的壓力、溫度,并反饋回到顯示裝置上。這篇文章就向我們詳細地闡述了這種機器的模型。
模具成型的壓力系統(tǒng)設計
如圖1所示,該結構為我們常用的模具結構圖。首先,我們描述一下裝備有piezo設備的模具成型壓力機。我們用的pie20設備有一個最大厚度為13LM的裝置,而且可以產生一個最大值為6KN的壓力。因此,該注射壓力系統(tǒng)所能產生的壓力在0~6KN之間,注射機的壓力系統(tǒng)有一個壓力設備,該裝置有一個特置的中心軸,并與一個傳感反饋裝置連在一塊。這個壓力裝置是圓柱形的,直徑為25mm,高度為54mm,它的溫度約在20℃和120℃之間。壓力傳動裝置的設計是對稱的,它把動力和運動從壓力裝置上以一定的規(guī)律和方式傳出去,這個圓柱體的傳動裝置向一個方向上不停地進行著傳遞工作,并由一個平面的輔助裝置保證其只能在平面內作旋轉運動。
為了研究之便,我們特地用一個很小的傳感器,使位移,壓力、傳感器、熱量傳感器很好地相互協(xié)調起來協(xié)同工作,當注射機的注射孔開始有位移并要接觸到模腔時,位移傳感器裝置就會測出其位移,并作出下一步的控制動作。該位移傳感器是非接觸式傳感器,其最大是量程為500lm ,誤差可以控制在0.2lm以下。
我們把一個核心模型放在模腔的中央,其結構是一個三角形的凹槽,以深度1lm順次排列。核心表面有32768個三角形的凹槽組成,凹槽相鄰的角度為140o ,距離為1μm完成加工的產品組成一個直徑為12mm厚度為1mm的盤狀物。由是由在鋼里面加入鎳和磷元素制成的合金做的。有很好的硬度和耐磨性。三角槽的切制是由精度非常高的NC機切制而成的,有著異常高的精確度。
有二組深度為12lm的廢氣排放口,依次排列在圓洞的周圍。用一個真空泵抽出由于樹脂的分解而產生的廢氣物。為保證精細模具的硬度,統(tǒng)一冷卻那些盤狀產品。我對使冷卻水做曲線的循環(huán)運動。注射機依靠一個伺服馬達系統(tǒng),使其可以具備最高達150KN的夾緊力。
評估微型注射系統(tǒng)
以下是成型時的條件:材料:聚苯乙烯;注射溫度:190℃;成型設備溫度:80℃;注射速度:10mm/s;注射壓力:34mpa;夾緊力:150KN。在這些條件下,我們分別對如下情景作了比較分析。第一種情況是在約1000Vr 電壓下推動注射壓力機工作,第二種是沒有電壓作用。圖表3和4顯示的是模具里邊傳感器的測量結果。注射壓力的測量由位于注射壓力機后面的壓力計來測量,并以數字表格形式在輸出裝置上顯示。
第三組表格顯示了成型一個周期的數據。首先,在第5.16秒,注射動作開始注射,注射壓力也隨之上升,從第5.6s開始注射壓力在2秒之內迅速升至34MPA,模腔內的應力實行如圖所標的傳感器檢測表明,也隨著增加,只不過有大約0.35秒的延遲,最終可達到20MPA,約是注射壓力的59%。在注射壓力保持不變的那一階段,模腔內的應力迅速下降到零。這充分證明,盡管存在著由注射機提供注射壓力,但其中一部分由于模腔內的摩擦力的存在而被抵消,熔料在模腔內凝固的過程中,熔料因漸成為固體而其余部分也隨之降低為零。在此過程中,中心位移也經歷了與模腔內壓力變化規(guī)律相似的變化。這說明注射中心也受到了反作用力,在經歷大約14S的冷卻過程后模具被打開了。
比較低的表格表明了表面溫度和熱量擴散的過程。其中比較平直的那一段曲線顯示的是保壓階段或者說是壓力持續(xù)過程。圖表顯示的是表面溫度連續(xù)上升的過程,此時,熔料經澆口源源不斷地流經流道,最終達到成型模腔。在注射完成后,溫度迅速上升,而后隨即下降(在冷卻作用下)特別是澆口附近的熱量散的比較快,溫度下降也比較明顯。
在圖表4中,在第5.6s的時候,壓力裝置得到約1000V的電壓,由于電壓作用,模腔內的壓力升至34MPA,中心的溫度和壓力也隨之上升。切斷電壓后,中心也恢復到原始狀態(tài),但我們無法看到這一過程。
下面,我們對是否微型注射壓力機時產品的表面特征作一比較。圖表5、6顯示的是SEM照片而AFM的測量結果。從圖片來看,三角形凹槽的表面粗糙度和均勻程度在這兩種情況下并無明顯區(qū)別。原因就是因與注射時的速度與模具微小結構的質量有關,另外三角形凹槽的深度和排列密度也是其原因之一。
附件2:外文原文
Injection molding for microstructures controlling mold-core extrusion and cavity heat-flux
Abstract In this work we constructed an injection press molding system with a mold-core extrusion mechanism and a small sensor assembly for effectively duplicating microstructures to the mold products. The mold-core extrusion mechanism is driven by a piezo element to apply force on important area with microstructures. For example, after injection it increases the cavity pressure from 20 to 34 MPa. Small sensors consist of the pressure, displacement, and heat flux sensor assemblies,arranged around the small cavity. The signals showed us the physical phenomena inside the mold and may be further used as control signal. In order to evaluate this injection press molding system, we formed micro triangular grooves of pitch 1 lm and angle 140o. The mold-core extrusion gave better diffraction intensity by several percents.
1
Introduction
Many information and medical equipment contain functional parts with microstructures in the order of 1 lm and overall size of several millimeters. Molding is a mass production method widely used in duplicating three dimensional forms of these parts [1–4]. This paper reports our study on one of the molding processes, namely, the injection press molding process.
In contrast to regular injection molding process that injects molten resin at high pressure into the cavity for simultaneous filling and forming, injection press molding process separates the time of the two processes. Injection press molding process injects molten resin into a mold cavity at low pressure to keep the flow resistance small,and once the cavity is filled, applies large clamping force on molds to form microstructures. Injection press molding has superb transforming capability used for example, in forming optical disks and LCD light guiding plates.
Conventional injection press molding applies large clamping force on molds for forming after the filling process. However, conventional injection press molding process has two problems for forming micro parts described above. First, in forming multiple micro parts with a single set of molds, the temperature and rigidity distributions are not uniform causing difference in forming pressure [5, 6]. Generally, the temperature is higher around the mold center and the pressing force is higher around the perimeter. Secondly, even if one tries to flatten the uneven distribution with cooling or pressure control, sensors to monitor the heat flux or pressure are larger than the micro parts and cannot find these conditions within the cavity.Note that measuring heat flux instead of temperature allows monitoring resin solidification in the cavity.
The authors of this paper devised mechanisms to (1) individually press each important micro structure area (we call this area the ‘‘core’’) with a mold-core extrusion mechanism equipped with a small piezo element and (2) control pressure temperature, and especially the cavity heat flux for each core by arranging a set of sensors around each core and feeding back the sensor signals to the above piezo element. This paper reports our prototype of these mechanisms.
2
Designing the injection press molding system
Figure 1 shows the mold we used. First we describe the mold-core extrusion mechanism design equipped with a piezo element. The piezo element used (KISTLER,Z17294X2) has a maximum free displacement of 13 lm and produces a maximum force of 6 kN with no displacement,thus the pressing force varies between 0 and 6 kN depending on the piezo element extension. The piezo element has a single axis force sensor (KISTLER, 9134A) integrated in it for pressing force feedback control. The piezo element unit size is 25 mm in diameter, 54 mm long and its temperature
Fig. 1. Test mold range is )20 to 120oC. The
symmetric design of the force transferring structure uniformly transfers the pressing force from the piezo element. This cylindrical force transfer mechanism moves in one direction and a planar surface keeps the shaft from rotating.
A small sensor assembly was developed for our study in this paper. Displacement, pressure, and heat flux sensors compose the assembly. The displacement sensor measures the displacement at the mold-core extrusion mechanism where it presses the mold-core, and the displacement in the parting direction at the parting line.
The displacement sensor is an eddy-current type noncontact displacement sensor (SINKAWA Electric, VC-202N) with range of 500 lm and resolution of 0.2 lm. The above 1 axis force sensor served as the pressure sensor to measure the cavity internal pressure.
The heat flux sensor measured the cavity surface temperature and the heat flux. A pair of thermocouples embedded at depths 0.3 and 0.6 mm enabled these measurements with the principle of inverse heat conduction.We mounted the diameter 3.5 mm heat flux sensors on the gate, cavity and sprue lock pin (Fig. 2).
We placed one mold-core at the mold center. The microstructure was triangular grooves arranged with pitch 1 lm. The core surface had 32,768 triangular grooves with 140_ angle that are 0.2 mm long on the
perimeter of a 10.5 mm circle.
Fig. 2. Cavity details and mold-core The finished product formed into
a 1 mm thick disk with diameter 12 mm. The core was made of steel (UDDEHOLM, STAVAX, 52 Rockwell hardness), with Ni-P plating. We cut the triangular grooves with an ultra precision NC machine (FANUC ROBOnano Ui).
Two 12 lm deep air vent grooves were placed on the perimeter of the cavities. A vacuum pump pumped out residual air and gas from molten resin. To provide rigidity similar to a regular mold, we kept the entire 80 kgf mold size the same. For uniformly cooling the disk shaped product, we ran cooling water in a circular path. The injection molding machine (FANUC, ROBOSHOT a-15) has a servo motor type drive with maximum clamping force of 150 kN.
3
Evaluating the injection press molding system
Here are the molding conditions: Resin: Polystyrene, Resin temperature at injection: 190 oC, Mold set temperature:80 oC, Injection speed: 10 mm/s, Holding pressure:34 MPa, and Clamping force: 150 kN. Under these conditions,we compared the case with a constant voltage of 1000 V applied to push the mold-core extrusion mechanism,and the case without pushing. Figures 3 and 4 show the measurements from the sensors inside the mold. The injection force measured with a load cell placed behind the injection molding machine screw derived the injection pressure in the figure.
Fig. 3. Measurements Fig. 4. Measurements
of sensors (without) of sensors (with)
Upper figures of Fig. 3 show the molding cycle. First at 5.15 s, the injection starts and the injection pressure suddenly rises. At 5.6 s, the injection pressure is held at 34 MPa for 2 s. The cavity pressure, measured by the 1 axis force sensor, increase with a 0.35 s delay, to reach only 20 MPa, which is 59% of the injection pressure. The cavity pressure quickly went down to about zero during the injection pressure holding period. This shows that despite the pushing force at the source of the injection molding machine, friction reduces pressure which is dropped at cavity. Also, when the resin solidified in the cavity, it parted from the mold to drop the pressure to zero. The core displacement shows a transition similar to the cavity pressure indicating that it was pressed back by the resin. After further cooling to 14 s, the mold was opened.
Lower figures of Fig. 3 show the surface temperature and heat flux transitions. The horizontal axes are magni-fied in the lower figures around the pressure holding period.The figure shows the sequential surface temperature rise at the lock pin, gate, and cavity as resin passed over them. The heat flux maximized immediately after injection and gradually decreased. Especially at the gate, the heat flux went down to about zero during pressure holding.
In Fig. 4, a voltage of 1000 V was applied to the piezo element for 2 s starting at 5.6 s. The voltage raised the cavity pressure to 34 MPa. The core gradually advanced with drop in cavity pressure from the position pressed in by the resin to eventually reach 9 lm ahead of its original position. Cutting the voltage retracted the core to its original position. But, we were not able to observe change in surface temperature and heat flux due to change in heat transfer from applying voltage.
Next we compare form features on the product with and without the mold-core extrusion. Figures 5 and 6 show the SEM photographs and the AFM measurement results. The photographs reveal that the triangular grooves had a uniform pitch with smooth surface regardless of mold-core extrusion, and good form transfer to the products. The reasons are smooth flow of polystyrene and the small aspect ratio of the groove depth and pitch.
壓蓋注塑模具設計
摘 要
塑料工業(yè)是當今世界上增長最快的工業(yè)門類之一,而注塑模具是其中發(fā)展較快的種類,因此,研究注塑模具對了解塑料產品的生產過程和提高產品質量有很大意義。本設計介紹了注射成型的基本原理,特別是單分型面注射模具的結構與工作原理,對注塑產品提出了基本的設計原則;詳細介紹了冷流道注射模具澆注系統(tǒng)、溫度調節(jié)系統(tǒng)和頂出系統(tǒng)的設計過程,并對模具強度要求做了說明,通過本設計,可以對注塑模具有一個初步的認識,注意到設計中的某些細節(jié)問題,了解模具結構及工作原理
關鍵詞:塑料模具;分型面?;設計
第1章? 對塑料成型模具的認識
1.1模具在加工工業(yè)中的地位
模具是利用其特定形狀去成型具有一定的形狀和尺寸制品的工具。在各種材料加工工業(yè)中廣泛的使用著各種模具。例如金屬鑄造成型使用的砂型或壓鑄模具、金屬壓力加工使用的鍛壓模具、冷壓模具等各種模具。
對模具的全面要求是:能生產出在尺寸精度、外觀、物理性能等各方面都滿足使用要求的公有制制品。以模具使用的角度,要求高效率、自動化操作簡便;從模具制造的角度,要求結構合理、制造容易、成本低廉。
模具影響著制品的質量。首先,模具型腔的形狀、尺寸、表面光潔度、分型面、進澆口和排氣槽位置以及脫模方式等對制件的尺寸精度和形狀精度以及制件的物理性能、機械性能、電性能、內應力大小、各向同性性、外觀質量、表面光潔度、氣泡、凹痕、燒焦、銀紋等都有十分重要的影響。其次,在加工過程中,模具結構對操作難以程度影響很大。在大批量生產塑料制品時,應盡量減少開模、合模的過程和取制件過程中的手工勞動,為此,常采用自動開合模自動頂出機構,在全自動生產時還要保證制品能自動從模具中脫落。另外模具對制品的成本也有影響。當批量不大時,模具的費用在制件上的成本所占的比例將會很大,這時應盡可能的采用結構合理而簡單的模具,以降低成本。
現代生產中,合理的加工工藝、高效的設備、先進的模具是必不可少是三項重要因素,尤其是模具對實現材料加工工藝要求、塑料制件的使用要求和造型設計起著重要的作用。高效的全自動設備也只有裝上能自動化生產的模具才有可能發(fā)揮其作用,產品的生產和更新都是以模具的制造和更新為前提的。由于制件品種和產量需求很大,對模具也提出了越來越高的要求。因此促進模具的不斷向前發(fā)展
1.2模具的發(fā)展趨勢
近年來,模具增長十分迅速,高效率、自動化、大型、微型、精密、高壽命的模具在整個模具產量中所占的比重越來越大。從模具設計和制造角度來看,模具的發(fā)展趨勢可分為以下幾個方面:
低了成本。
(1) 提高大型、精密、復雜、長壽命模具的設計水平及比例。這是由于塑料模成型的制品日漸大型化、復雜化和高精度要求以及因高生產率要求而發(fā)展的一模多腔所致?
(2).在塑料模設計制造中全面推廣應用CAD/CAM/CAE技術。CAD/CAM技術已發(fā)展成為一項比較成熟的共性技術,近年來模具CAD/CAM技術的硬件與軟件價格已降低到中小企業(yè)普遍可以接受的程度,為其進一步普及創(chuàng)造良好的條件;基于網絡的CAD/CAM/CAE一體化系統(tǒng)結構初見端倪,其將解決傳統(tǒng)混合型CAD/CAM系統(tǒng)無法滿足實際生產過程分工協(xié)作要求的問題;CAD/CAM軟件的智能化程度將逐步提高;塑料制件及模具的3D設計與成型過程的3D分析將在我國塑料模具工業(yè)中發(fā)揮越來越重要的作用。
???(3)推廣應用熱流道技術、氣輔注射成型技術和高壓注射成型技術。采用熱流道技術的模具可提高制件的生產率和質量,并能大幅度節(jié)省塑料制件的原材料和節(jié)約能源,所以廣泛應用這項技術是塑料模具的一大變革。制訂熱流道元器件的國家標準,積極生產價廉高質量的元器件,是發(fā)展熱流道模具的關鍵。氣體輔助注射成型可在保證產品質量的前提下,大幅度降低成本。目前在汽車和家電行業(yè)中正逐步推廣使用。氣體輔助注射成型比傳統(tǒng)的普通注射工藝有更多的工藝參數需要確定和控制,而且常用于較復雜的大型制品,模具設計和控制的難度較大,因此,開發(fā)氣體輔助成型流動分析軟件,顯得十分重要。另一方面為了確保塑料件精度,繼續(xù)研究開發(fā)高壓注射成型工藝與模具也非常重要。
???(4)開發(fā)新的成型工藝和快速經濟模具。以適應多品種、少批量的生產方式。
???(5)提高塑料模標準化水平和標準件的使用率。我國模具標準件水平和模具標準化程度仍較低,與國外差距甚大,在一定程度上制約著我國模具工業(yè)的發(fā)展,為提高模具質量和降低模具制造成本,模具標準件的應用要大力推廣。為此,首先要制訂統(tǒng)一的國家標準,并嚴格按標準生產;其次要逐步形成規(guī)模生產,提高商品化程度、提高標準件質量、降低成本;再次是要進一步增加標準件的規(guī)格品種。
???(6)應用優(yōu)質材料和先進的表面處理技術對于提高模具壽命和質量顯得十分必要。
???(7)研究和應用模具的高速測量技術與逆向工程。采用三坐標測量儀或三坐標掃描儀實現逆向工程是塑料模CAD/CAM的關鍵技術之一。研究和應用多樣、調整、廉價的檢測設備是實現逆向工程的必要前提.
1.3 設計在學習模具制造中的作用
通過對模具專業(yè)的學習,掌握了常用材料在各種成型過程中對模具的工藝要求,各種模具的結構特點及設計計算的方法,以達到能夠獨立設計一般模具的要求。在模具制造方面,掌握一般機械加工的知識,金屬材料的選擇和熱處理,了解模具結構的特點,根據不同情況選用模具加工新工藝。
畢業(yè)設計能夠對以上各方面的要求加以靈活運用,綜合檢驗大學期間所學的知識。
二 塑件的工藝分析
2.1 分析塑件使用材料的種類及工藝特征
PVC塑料
化學名稱:聚氯乙烯
比重:1.38克/立方厘米 成型收縮率:0.6-1.5%
產品需要預熱到70~90度,預熱時間為4~6小時
成型溫度:230~330℃ 成型時間為40~130秒
成型特性:
1.無定形料,吸濕性小,但為了提高流動性,防止發(fā)生氣泡則宜先干燥。
2、流動性差,極易分解,特別在高溫下與鋼、銅金屬接觸更易分解,分解溫度為200°C.分解時有腐蝕及刺激性氣體
3、成型溫度范圍小,必須嚴格控制料溫
4、用螺桿式注射機及直通噴嘴,孔徑易大,以防死角滯料,滯料必須及時處理清除
5、模具澆注系統(tǒng)應粗短,澆口截面宜大,不得有死角滯料,模具應冷卻,其表面應鍍鉻
PVC主要技術指標:
表1-1 熱物理性能
密度(g/ cm3)
1.02—1.05
比熱容(J·kg-1K-1)
1255—1674
導熱系數
(W·m-1·K-1×10-2)
13.8—31.2
線膨脹系數
(10-5K-1)
5.8—8.6
滯流溫度(°C)
130
表1-2 力學性能
屈服強度(MPa)
50
抗拉強度(MPa)
38
斷裂伸長率(﹪)
35
拉伸彈性模量(GPa)
1.8
抗彎強度(MPa)
80
彎曲彈性模量(GPa)
1.4
抗壓強度(MPa)
53
抗剪強度(MPa)
24
沖擊韌度
(簡支梁式)
無缺口
261
布氏硬度
9.7R121
缺 口
11
表1-3 電氣性能
表面電阻率(Ω)
1.2×1013
體積電阻率(Ω·m)
6.9×1014
擊穿電壓(KV/mm)
\
介電常數(106Hz)
3.04
介電損耗角正切(106Hz)
0.007
耐電弧性(s)
50—85
2.2 分析塑件的結構工藝性
該塑件尺寸中等,整體結構較簡單.多數都為曲面特征。除了配合尺寸要求精度較高外,其他尺寸精度要求相對較低,但表面粗糙度要求較高,再結合其材料性能,故選一般精度等級: MT7級。
2.3 工藝性分析
為了滿足制品表面光滑的要求與提高成型效率采用點澆口。該澆口的分流道位于模具的分型面處,澆口縱向開設在模具的型腔處,從塑料件頂面進料,因而塑件外表面不受損傷,不致因澆口痕跡而影響塑件的表面質量與美觀效果。
塑件的工藝參數:
干燥條件:80-90℃ 2小時
成型收縮率:0.4-0.7%
模具溫度:25-70℃(模具溫度將影響塑件光潔度,溫度較低則導致光潔度較低)
融化溫度:210-280℃(建議溫度:245℃)
成型溫度:200-240℃
注射速度:中高速度
注射壓力:500-1000bar
三 初步確定型腔數目
3.1初步確定型腔數目
根據產品結構特點,此塑料產品在模具中的扣置方式有兩種:一種是將塑料制品的回轉軸線與模具中主流道襯套的軸線垂直;另一種是將此塑料制品的中心線與模具中主流道襯套的軸線平行。這里擬采用第一種方式,1模2件的結構。
四 注射機的選擇
4.1 塑件體積的計算
塑件:
零件塑件的體積 V=7.5cm
澆注系統(tǒng)的體積:V2=2.8cm
塑件與澆注系統(tǒng)的總體積為V=7.5+2.8=10.3cm
4.2計算塑件的質量:查手冊取密度ρ=1.05g/cm
塑件體積:V=7.5cm
塑件質量:根據有關手冊查得:ρ=1.05g/cm
所以,塑件的重量為:
M=V×ρ=7.5cm×1.05=7.9g
4.3按注射機的最大注射量確定型腔數目
根據 (4-1)
得 (4-2)
注射機最大注射量的利用系數,一般取0.8;
注射機最大注射量,cmз或g;
澆注系統(tǒng)凝料量,cmз或g;
單個塑件體積或質量,cmз或g;
根據塑件的結構及尺寸精度要求,該塑件在注射時采用1模2腔
4.3計算澆注系統(tǒng)的體積,其初步設定方案如下
根據三維模型,利用三維軟件直接可查詢到澆注系統(tǒng)的體積V2=2.8cm
4.4注塑機選擇
1956年制造出世界上第一臺往復螺桿式注塑機,這是注塑成型工藝技術的一大突破,目前注塑機加工的塑料量是塑料產量的30%;注塑機的產量占整個塑料機械產量的50%.成為塑料成型設備制造業(yè)中增長最快,產量最多的機種之一.
注塑機的分類方式很多,目前尚未形成完全統(tǒng)一標準的分類方法.常用的說法有:
(1)按設備外形特征分類:臥式,立式,直角式,多工位注塑機;
(2)按加工能力分類:超小型,小型,中型,大型和超大型注塑機。
此外還有按用途分類和按合模裝置的特征分類,但日常生活中用的較少。
常用的注射速率如表3-4所示。
表3-4 注射量與注射時間的關系
注射量/CM 125 250 500 1000 2000 4000 6000 10000
注射速率/CM/S 125 200 333 570 890 1330 1600 2000
注射時間/S 1 1.25 1.5 1.75 2.25 3 3.75 5
查國產注射機主要技術參數表取CJ80NC3,主要技術參數如下。
3.1分型面的選擇
塑料在模具型腔凝固形成塑件,為了將塑件取出來,必須將模具型腔打開,也就是必須將模具分成兩部分,即定模和動模兩大部分。定模和動模相接觸的面稱分型面。通常有以下原則:
(1)分型面的選擇有利于脫模:分型面應取在塑件尺寸的最大處。而且應使塑件流在動模部分,由于推出機構通常設置在動模的一側,將型芯設置在動模部分,塑件冷卻收縮后包緊型芯,使塑件留在動模,這樣有利脫模。如果塑件的壁厚較大,內孔較小或者有嵌件時,為了使塑件留在動模,一般應將凹模也設在動模一側。拔模斜度小或塑件較高時,為了便于脫模,可將分型面選在塑件中間的部位,但此塑件外形有分型的痕跡。
(2)分型面的選擇應有利于保證塑件的外觀質量和精度要求。
(3)分型面的選擇應有利于成型零件的加工制造。
(4)分型面應有利于側向抽芯,但是此模具無須側向抽芯,此點可以不必考慮。
不論塑件的結構如何以及采用何種設計方法,都必須首先確定分型面,因為模具結構很大程度上取決于分型面的選擇。該塑件為外殼,外形表面質量要求較高。在選擇分型面時,根據分型面的選擇原則,考慮不影響塑件的外觀質量、便于清除毛刺及飛邊、有利于排除模具型腔內的氣體、分模后塑件留在動模一側及便于取出塑件等因素,分型面應選擇在塑件外形輪廓的最大處,如圖所示。
3.2 澆注系統(tǒng)的設計
澆注系統(tǒng)由主流道、分流道、澆口和冷料井組成。在設計澆注系統(tǒng)之前必須確定塑件成型位置,可以才用一模八腔,澆注系統(tǒng)的設計是注塑模具設計的一個重要的環(huán)節(jié),它對注塑成型周期和塑件質量(如外觀,物理性能,尺寸精度)都
有直接的影響,設計時必須按如下原則:
(1)型腔布置和澆口開設部位力求對稱,防止模具承受偏載而造成溢料現象。
(2)型腔和澆口的排列要盡可能地減少模具外形尺寸。
(3)系統(tǒng)流道應盡可能短,斷面尺寸適當(太小則壓力及熱量損失大,太大則塑料耗費大):盡量減少彎折,表面粗糙度要低,以使熱量及壓力損失盡可能小。
(4)對多型腔應盡可能使塑料熔體在同一時間內進入各個型腔的深處及角落,及分流道盡可能平衡布置。
(5)滿足型腔充滿的前提下,澆注系統(tǒng)容積盡量小,以減少塑料的耗量。
(6)澆口位置要適當,盡量避免沖擊嵌件和細小型芯,防止型芯變形澆口的殘痕不應影響塑件的外觀。
考慮到塑件的外觀要求較高,以及一模八腔的布置、PC對剪切速率較為敏感等因素,澆口采用分便加工修整、凝料去除容易且不會在塑件外壁留下痕跡的側澆口,模具采用單分型面結構兩板模,模具制造成本比較容易控制在合理的范圍內。澆注系統(tǒng)的設計如圖所示。
澆注系統(tǒng)的設計原則:澆口位置應盡量選擇在分型面上,以便于模具加工及使用時澆口的清理;澆口位置距型腔各個部位的距離應盡量一致,并使其流程為最短;澆口的位置應保證塑料流入型腔時,對著型腔中寬敞、壁厚位置,以便于塑料的流入;避免塑料在流入型腔時直沖型腔壁,型芯或嵌件,使塑料能盡快的流入到型腔各部位,并避免型芯或嵌件變形;盡量避免使制件產生熔接痕,或使其熔接痕產生在之間不重要的位置;澆口位置及其塑料流入方向,應使塑料在流入型腔時,能沿著型腔平行方向均勻的流入,并有利于型腔內氣體的排出。
5.1主流道的設計
主流道是指澆注系統(tǒng)中從注射機噴嘴與模具處到分流道為止 塑料熔體 流動通道
根據選用的CJ80NC3型號注射機的相關尺寸得
噴嘴前端孔徑:d0=4.0mm;
噴嘴前端球面半徑:R0=10mm;
根據模具主流道與噴嘴的關系
取主流道球面半徑:R=11mm;
取主流道小端直徑:d=4.5mm
為了便于將凝料從主流道中取出,將主流道設計成圓錐形,起斜度為,此處選用2°,經換算得主流道大端直徑為7.8MM。
圖5.1 主流道示意圖
5.2 分流道的設計
分流道是主流道與澆口之間的通道,一般開設在分型面上,起分流和轉向作用,分流道的長度取決于模具型腔的總體布置和澆口位置,分流道的設計應盡可能短,以減少壓力損失,熱量損失和流道凝料。常用分流道斷面尺寸推薦如表4-1所示。
表4-1流道斷面尺寸推薦值
塑料名稱
分流道斷面直徑mm
塑料名稱
分流道斷面直徑 mm
ABS,AS
聚乙烯
尼龍類
聚甲醛
丙烯酸
抗沖擊丙烯酸
醋酸纖維素
聚丙烯
異質同晶體
4.8~9.5
1.6~9.5
1.6~9.5
3.5~10
8~10
8~12.5
5~10
5~10
8~10
聚苯乙烯
軟聚氯乙烯
硬聚氯乙烯
聚氨酯
熱塑性聚酯
聚苯醚
聚砜
離子聚合物
聚苯硫醚
3.5~10
3.5~10
6.5~16
6.5~8.0
3.5~8.0
6.5~10
6.5~10
2.4~10
6.5~13
分流道的斷面形狀有圓形,矩形,梯形,U形和六角形。要減少流道內的壓力損失,希望流道的截面積大,表面積小,以減小傳熱損失,因此,可以用流道的截面積與周長的比值來表示流道的效率,其中圓形和正方形的效率最高,但正方形的流道凝料脫模困難,所以一般是制成梯形流道。在該模具上取半圓形斷面形狀,直徑為4mm。
分流道選用半圓形截面:直徑D=4mm
流道表面粗糙度
5.3 分型面的選擇設計原則
分型面是決定模具結構形式的重要因素,它與模具的整體結構和模具的制造藝有密切關系,并且直接影響著塑料熔體的流動特性及塑料的脫模。
一、 分型面的形式
該塑件的模具只有一個分型面,垂直分型。
二、 分型面的設計原則
由于分型面受到塑件在模具中的成型位置、澆注系統(tǒng)的設計、塑件的結構工藝性及精度、形狀以及摧出方法、模具的制造、排氣、操作工藝等多種因素的影響,因此在選擇分型面時應綜合分析。
選擇分型面時一般應遵循以下幾項基本原則:
① 分型面應選在塑件外形最大輪廓處
② 確定有利的留模方式,便于塑件順利脫模
③ 保證塑件的精度
④ 滿足塑件的外觀質量要求
⑤ 便于模具制造加工
⑥ 注意對在型面積的影響
⑦ 對排氣效果
⑧ 對側抽芯的影響
在實際設計中,不可能全部滿足上述原則,一般應抓住主要矛盾,在此前提下確定合理的分型面。
5.4 澆口的設計
根據澆口的位置選擇要求,盡量縮短流動距離,避免熔體破裂現象引起塑件的缺陷,澆口應開設在塑件壁厚處等要求。采用扇形澆口可以保持產品外觀精度。本設計采用點澆口。
該模具采用點澆口,其有以下特性:
①形狀簡單,去除澆口方便,便于加工,而且尺寸精度容易保證;
②試模時如發(fā)現不當,容易及時修改;
③能相對獨立地控制填充速度及封閉時間;
④對于殼體形塑件,流動充填效果較佳。
5.5 冷料穴的設計
冷料穴是澆注系統(tǒng)的結構組成之一。冷料穴的作用是容納澆注系統(tǒng)流道中料流的前鋒冷料,以免這些冷料注入型腔。這些冷料既影響熔體充填的速度,有影響成型塑件的質量,另外還便于在該處設置主流道拉料桿的功能。注射結束模具分型時,在拉料桿的作用下,主流道凝料從定模澆口套中被拉出,最后推出機構開始工作,將塑件和澆注系統(tǒng)凝料一起推出模外。
冷料穴位于主流道的正對面的動模板上,其作用是收集熔體前鋒的冷料,防止冷料進入模具型腔而影響制品質量。冷料穴分兩種,一種專門用于收集、儲存冷料,另一種除儲存冷料外還兼有拉出流道凝料作用,此處應用后者。
在分流道的末端,冷料穴的長度通常為流道直徑的1.5~2倍,相機面殼模具屬于中小型模具,故冷料穴長度取流道直徑的1.6倍,即8.0mm。
在主流道對面采用冷料井底部帶推料桿的冷料井,推管為帶Z型頭拉料鉤,其側凹可以將主流道凝料鉤住,分模時即可將凝料從主流道中拉出。拉料桿的根部固定在推出板上,在推出制件時,冷料也一同被推出,取產品時向拉料鉤的側向稍許移動,即可脫鉤將制件連同澆注系統(tǒng)凝料一道取下。
由文獻資料[11],其結構尺寸如下:
Z頭高3/4d,其中
d=D+(0.5~1) (3-3)
則d=4+(0.5~1)=5mm,
六 確定主要零件結構尺寸選模架、成型零部件的設計
6.1型腔、型芯工作尺寸計算
ABS塑料的收縮率是0.3%--0.8%
平均收縮率: =(0.3%--0.8%)/2=0.5%
型腔內徑: =60.3mm
型腔深度: =7.54mm
型芯外徑: =57.29mm
型芯深度: =6.039mm
型腔徑向尺寸(mm );
- 塑件外形基本尺寸(mm);
-塑件平均收縮率;
-塑件公差
-成形零件制造公差,一般取1/4—1/6;
-塑件內形基本尺寸( mm);
-型芯徑向尺寸(mm);
-型腔深度(mm);
-塑件高度(mm)
-型芯高度(mm);
-塑件孔深基本尺寸(mm);
型腔:鋼材選用P20,使用數控精雕及電火花加工成型
型芯:鋼材選用P20,使用數控精雕及電火花加工成型
七 模架的選擇
注塑模模架國家標準有兩個,即GB/T12556——1990《塑料注射模中小型模架及其技術條件》和GB/T12555——1990《塑料注射模大型模架》。由于塑料模具的蓬勃發(fā)展,現在在全國的部分地區(qū)形成了自己的標準,該設計采用龍記標準模架,型號為:FCI-1818-A40-B50-C60。
八 導向機構的設計
導向機構的作用:1)定位作用;2)導向作用;3)承受一定的側向壓力
8.1導柱的設計
8.1.1長度 導柱導向部分的長度應比凸模端面的高度高出8—12 cm,以免出現導柱末導正方向而型芯先進入型腔的情況。
8.1.2形狀 導柱前端應做成錐臺形,以使導柱能順利地進入導向孔。
8.1.3材料 導柱應具有硬而耐磨的表面和堅韌而不易折斷的內芯,因此多采用20鋼(經表面滲碳淬火處理),硬度為50—55HRC。
8.2導套的結構設計
8.2.1材料 用與導柱相同的材料制造導套,其硬度應略低與導柱硬度,這樣可以減輕磨損,一防止導柱或導套拉毛。
8.2.2形狀 為使導柱順利進入導套,導套的前端應倒圓角。導向孔作成通孔,以利于排出孔內的空氣。
8.3推出機構的設計
注塑模中的脫模機構可以在注塑的每一個循環(huán)中將塑件從型腔內或型芯上自動的脫出模外。推管脫模機構在生產實際中應用廣泛,是脫模機構的典型型式,它一般包括推管、拉料桿、復位桿、推管固定板等組成,當開模到一定距離時,注塑機推出裝置推動推板并帶動所有推管、拉料桿和復位桿一道前進,將塑件和澆注系統(tǒng)一起推出模外。合模時復位桿首先與定模邊的分型面相接觸,而將推板和所有的復位桿一道推回原位。
根據塑件的形狀特點, 模具型腔在定模部分,型心在動模部分。其推出機構可采用推管推出機構、推件板推出機構。由于分型面有臺階,為了便于加工,降低模具成本,我們采用推管推出機構,推管推出機構結構簡單,推出平穩(wěn)可靠,雖然推出時會在塑件上留下頂出痕跡,但塑件底部裝配后使用時 不影響外觀,設立五個推管平衡布置,既達到了推出塑件的目的,又降低了加工成本。注:推管推出塑件,推管的前端應比型腔或型心平面高出0.1-0.2mm
采用推管推出,推管截面為圓形,推管推出動作靈活可靠,推管損壞后也便于更換。結合制品的結構特點,模具型腔的結構采用了整體式型腔板,這種結構工作過程中精度高,并且在此模具中容易加工得到, 在推出機構中采用廠組合式推管,如圖中,這種結構主要是防止推管在于作過程中受到彎曲力或側向壓力而折斷,因為產品較小,另外折斷后也易于更換。這里采用設計推管,全部固定在頂桿固定板。
推管的位置選擇在脫模阻力最大的地方,塑件各處的脫模阻力相同時需均勻布
置,以保證塑件推出時受力均勻,塑件推出平穩(wěn)和不變形。根據推管本身的剛度和
強度要求,推管裝入模具后,起端面還應與型腔底面平齊或高出型腔0.05—0.1cm.
8.3.1推件力的計算
對于一般塑件和通孔殼形塑件,按下式計算,并確定其脫模力(Q):
(8-1)
式中 --型芯或凸模被包緊部分的斷面周長(cm);
--被包緊部分的深度(cm);
--由塑件收縮率產生的單位面積上的正壓力,一般取
7.8——11.8MPa;
--磨擦系數,一般取0.1~1.2;
--脫模斜度;
L=436.97MM
H=6.03MM
Q=436.97MM*6.03MM*10MPA(0.1*COS0.5-SIN0.5)
=263.5 (N)
8.3.2 推管的設計
①推管的強度計算 查《塑料模設計手冊之二》由式5-97得
d=() (8-2)
d——圓形推管直徑cm
——推管長度系數≈0.7
l——推管長度cm
n——推管數量
E——推管材料的彈性模量N/(鋼的彈性模量E=2.1107N/)
Q——總脫模力
取 D=5MM。
②推管壓力校核 查《塑料模設計手冊》式5-98
= (8-3)
取320N/mm2
< 推管應力合格,硬度HRC50~65
九 冷卻系統(tǒng)的設計
注塑模具型腔壁的溫度高低及其均勻性對成型效率和制品的質量影響很大,一般注入模具的塑料熔體的溫度為200~300℃,而塑件固化后從模具中取出的溫度為60~80℃以下,視塑料品種不同有很大差異。為了調節(jié)型腔的溫度,需在模具內開設冷卻水通道,通過模溫調節(jié)機構調節(jié)冷卻介質的溫度。
高溫塑料熔體在模具型腔內凝固并釋放熱量,模具內存在著一個合適的溫度分布,使制品的質量達到最佳。模具溫度調節(jié)對制品質量的影響主要表現在以下幾個方面:
1)變形,模具溫度穩(wěn)定、冷卻速度均衡可以減小制品的變形;
2)尺寸精度,利用模具溫度調節(jié)系統(tǒng)保持模具溫度的恒定,能減小制品成形收縮率的波動,提高制品尺寸精度的穩(wěn)定性;
3)力學性能,從減小制品應力開裂的角度出發(fā),降低模溫是有利的;
4)表面質量,提高模具溫度能夠改善制品表面質量,過低的模溫會使制品輪廓不清晰并產生明顯的融接痕,導致制品表面粗糙度過大。
冷卻水回路布置的基本原則: a) 冷卻水道應盡量多,b) 截面尺寸應盡量大; c) 冷卻水道離模具型腔表面的距離應適當; d) 適當布置水道的出入口; e) 冷卻水道應暢通無阻; f) 冷卻水道的布置應避開塑件易產生熔接痕的部位; 由以上原則我們可以確定冷卻水道的布置情況,以及冷卻水道的截面積
澆注系統(tǒng)中的分流道布置如圖所示,采用非平衡式布置,從主流道末端到每個澆口的距離不相等,但是分流道的截面形狀和尺寸大小完全相同,這樣的設計可以使進人每—型腔的流程最短,減少了熱量散失,縮小了模具的體積,對于該小型什的注射成型來說,并不影響制品的使用性能。分流道的橫截面形狀為梯形,澆口的類型采用側澆口。冷卻系統(tǒng)的設計對于成型小型件的1模多腔模具來說是十分重要的。如果冷卻不好或冷卻不均勻,必然導致收縮不均勻,特別是非平衡式分流道的結構。放為了使冷卻效果好,在模具的定模型腔板和動模利腔板內開沒了如圖所示的水道,橫向穿過這兩塊模板,這樣使塑件各處的冷卻均勻,模具的模溫均勻設定模具平均工作溫度為,用常溫的水作為模具冷卻介質,其出口溫度為。
9.1 確定冷卻水道直徑
查表3-26得ABS的單位流量為
依據塑件體積可知所需的冷卻水管直徑較小。
設計冷卻水道直徑為6mm符合要求。
冷卻水示意圖:
十、模具排氣槽的設計
當塑料熔體充填型腔時,必須順序地排出型腔及澆注系統(tǒng)內的空氣及塑料受熱而產生的氣體。如果氣體不能被順利排出,塑料會由于填充不足而出現氣泡、接縫或表面輪廓不清等缺陷,甚至氣體受壓而產生高溫,使塑料焦化。特別是對大型塑件、容器類和精密塑件,排氣槽將對它們的品質帶來很大的影響,對于在高速成行中排氣槽的作用更為重要。我們的塑件并不是很大,而且不屬于深型腔類零件,因此本方案設計在分型面之間、推管預模板之間及活動型芯與模板之間的配合間隙進行排氣,間隙值取0.04㎜。
十一、校核
注射機有關工藝參數的校核
1)鎖模力與注射壓力的校核
(10-4)
--注射時型腔壓力 查參考文獻得 113MPa
--塑件在分型面上的投影面積()
--澆注系統(tǒng)在分型面上的投影面積()
--注射機額定鎖模力,按CJ80NC型注射機額定鎖模力為800
模具厚度H與注射機閉和高度
注射機開模行程應大于模具開模時,取出塑件(包括澆注系統(tǒng))所需的開模距離
即滿足下式
(10-5)
式中 --注射機最大開模行程,mm;
--推出距離(脫模聚居),mm;
--包括澆注系統(tǒng)在內的塑件高度,mm;
Sk=32+90+5+7.54=134.54mm
Sk≤S=570mm 條件成立
結束語
通過這五個星期以來的畢業(yè)設計工作,不僅是對我四年來學習的總結和回顧,同
時也讓我深深體會到自身存在的許多不足之處,這也是今后在社會上學習的一種動力,我將會不斷地學習,不斷的充實自己。
至此,感謝學校,感謝老師們在這四年里對我的諄諄教導,讓我充實的度過了這四年的大學生活,你們的教誨將是我最寶貴的財富。最后,感謝我的指導老師對我的畢業(yè)設計的悉心指導和耐心幫教。
參考文獻
[1] 申開智.塑料成型模具[M].北京:中國輕工業(yè)出版社,2006.
[2] 陳志剛.塑料模具設計[M].北京:機械工業(yè)出版社,2002.
[3] 吉衛(wèi)喜主編.機械制造技術[M].北京:機械工業(yè)出版社,2001.
[4] 王伯平主編.互換性與測量技術基礎[M].北京:機械工業(yè)出版社,2004.
[5] 丁聞.實用塑料成型模具設計手冊—注射模、壓縮模和壓注模[M].西安:西安交
通大學出版壯出版,1993.
[6] 何滿才.Pro/ENGINEER模具設計與Mastercam數控加工[M].北京:人民郵電
出版社,2005.
[7] 郭曉俊.Pro/ENGINEER Wildfire3.0中文版模具設計基本技術與案例實
踐[M].北京:清華大學出版社,2007.
[8] 王孝培.塑料成型工藝及模具簡明手冊[M].北京:機械工業(yè)出版社,2000.
[9] 邱會朋.Pro/ENGINEER Wildfire3.0中文版注塑零件和注塑模具:設計?分
析?工程圖[M].北京:電子工業(yè)出版社,2007.
[10] 黃鶴?。畽C械制造裝備[M].北京:機械工業(yè)出版社,2001.
23