2020版高中數(shù)學(xué) 第二章 圓錐曲線與方程 專題突破二 焦點(diǎn)弦的性質(zhì)學(xué)案(含解析)北師大版選修1 -1.docx
《2020版高中數(shù)學(xué) 第二章 圓錐曲線與方程 專題突破二 焦點(diǎn)弦的性質(zhì)學(xué)案(含解析)北師大版選修1 -1.docx》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高中數(shù)學(xué) 第二章 圓錐曲線與方程 專題突破二 焦點(diǎn)弦的性質(zhì)學(xué)案(含解析)北師大版選修1 -1.docx(11頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
專題突破二 焦點(diǎn)弦的性質(zhì) 拋物線的焦點(diǎn)弦是考試的熱點(diǎn),有關(guān)拋物線的焦點(diǎn)弦性質(zhì)較為豐富,對(duì)拋物線焦點(diǎn)弦性質(zhì)進(jìn)行研究獲得一些重要結(jié)論,往往能給解題帶來新思路,有利于解題過程的優(yōu)化. 一、焦點(diǎn)弦性質(zhì)的推導(dǎo) 例1 拋物線y2=2px(p>0),設(shè)AB是拋物線的過焦點(diǎn)的一條弦(焦點(diǎn)弦),F(xiàn)是拋物線的焦點(diǎn),A(x1,y1),B(x2,y2)(y1>0,y2<0),A,B在準(zhǔn)線上的射影為A1,B1. 證明:(1)x1x2=,y1y2=-p2; (2)若直線AB的傾斜角為θ,則|AF|=,|BF|=; (3)|AB|=x1+x2+p=(其中θ為直線AB的傾斜角),拋物線的通徑長(zhǎng)為2p,通徑是最短的焦點(diǎn)弦; (4)+=為定值; (5)S△OAB=(θ為直線AB的傾斜角); (6)以AB為直徑的圓與拋物線的準(zhǔn)線相切. 考點(diǎn) 拋物線中過焦點(diǎn)的弦長(zhǎng)問題 題點(diǎn) 與弦長(zhǎng)有關(guān)的其它問題 證明 (1)①當(dāng)AB⊥x軸時(shí), 不妨設(shè)A,B, ∴y1y2=-p2,x1x2=. ②當(dāng)AB的斜率存在時(shí),設(shè)為k(k≠0), 則直線AB的方程為y=k, 代入拋物線方程y2=2px, 消元得y2=2p, 即y2--p2=0, ∴y1y2=-p2,x1x2=. (2)當(dāng)θ≠90時(shí),過A作AG⊥x軸,交x軸于G, 由拋物線定義知|AF|=|AA1|, 在Rt△AFG中,|FG|=|AF|cosθ, 由圖知|GG1|=|AA1|, 則p+|AF|cosθ=|AF|,得|AF|=, 同理得|BF|=; 當(dāng)θ=90時(shí),可知|AF|=|BF|=p, 對(duì)于|AF|=,|BF|=亦成立, ∴|AF|=,|BF|=. (3)|AB|=|AF|+|BF|=x1+x2+p =+=≥2p, 當(dāng)且僅當(dāng)θ=90時(shí)取等號(hào). 故通徑長(zhǎng)2p為最短的焦點(diǎn)弦長(zhǎng). (4)由(2)可得, +=+=. (5)當(dāng)θ=90時(shí),S△OAB=2p=, 故滿足S△OAB=; 當(dāng)θ≠90時(shí),設(shè)直線AB:y=tanθ, 原點(diǎn)O到直線AB的距離 d==sinθ, S△OAB=|AB|=sinθ=. (6)如圖:⊙M的直徑為AB,過圓心M作MM1垂直于準(zhǔn)線于M1, 則|MM1|===, 故以AB為直徑的圓與拋物線的準(zhǔn)線相切. 二、焦點(diǎn)弦性質(zhì)的應(yīng)用 例2 (1)設(shè)F為拋物線C:y2=3x的焦點(diǎn),過F且傾斜角為30的直線交C于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則△OAB的面積為( ) A.B.C.D. 考點(diǎn) 拋物線中過焦點(diǎn)的弦長(zhǎng)問題 題點(diǎn) 與弦長(zhǎng)有關(guān)的其它問題 答案 D 解析 方法一 由題意可知,直線AB的方程為 y=, 代入拋物線的方程可得4y2-12y-9=0, 設(shè)A(x1,y1),B(x2,y2), 則y1+y2=3,y1y2=-, 故所求三角形的面積為 =. 方法二 運(yùn)用焦點(diǎn)弦傾斜角相關(guān)的面積公式, 則S△OAB===. (2)已知F為拋物線C:y2=4x的焦點(diǎn),過F作兩條互相垂直的直線l1,l2,直線l1與C交于A,B兩點(diǎn),直線l2與C交于D,E兩點(diǎn),則|AB|+|DE|的最小值為( ) A.16B.14C.12D.10 考點(diǎn) 拋物線中過焦點(diǎn)的弦長(zhǎng)問題 題點(diǎn) 與弦長(zhǎng)有關(guān)的其它問題 答案 A 解析 方法一 拋物線C:y2=4x的焦點(diǎn)為F(1,0), 由題意可知l1,l2的斜率存在且不為0. 不妨設(shè)直線l1的斜率為k, l1:y=k(x-1),l2:y=-(x-1), 由消去y得k2x2-(2k2+4)x+k2=0, 設(shè)A(x1,y1),B(x2,y2), 則x1+x2==2+, 由拋物線的定義可知, |AB|=x1+x2+2=2++2=4+. 同理得|DE|=4+4k2, ∴|AB|+|DE|=4++4+4k2=8+4≥8+8=16, 當(dāng)且僅當(dāng)=k2,即k=1時(shí)取等號(hào), 故|AB|+|DE|的最小值為16. 方法二 運(yùn)用焦點(diǎn)弦的傾斜角公式,注意到兩條弦互相垂直, 因此|AB|+|DE|=+ =+==≥16. 點(diǎn)評(píng) 上述兩道題目均是研究拋物線的焦點(diǎn)弦問題,涉及拋物線焦點(diǎn)弦長(zhǎng)度與三角形面積,從高考客觀題快速解答的要求來看,常規(guī)解法顯然小題大做了,而利用焦點(diǎn)弦性質(zhì),可以快速解決此類小題. 跟蹤訓(xùn)練1 (1)過拋物線y2=4x的焦點(diǎn)F的直線交該拋物線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).若|AF|=3,則△AOB的面積為( ) A.B.C.D.2 考點(diǎn) 題點(diǎn) 答案 C 解析 方法一 設(shè)點(diǎn)A(x1,y1),B(x2,y2), 由|AF|=3及拋物線定義可得, x1+1=3,∴x1=2, ∴取A點(diǎn)坐標(biāo)為(2,2), 則直線AB的斜率k==2, ∴直線AB的方程為y=2(x-1), 即2x-y-2=0, 則點(diǎn)O到該直線的距離d=. 由消去y得, 2x2-5x+2=0,解得x1=2,x2=, ∴|BF|=x2+1=, ∴|AB|=3+=, ∴S△AOB=|AB|d==. 方法二 設(shè)直線的傾斜角為θ,不妨設(shè)0<θ<, |AF|===3, ∴cosθ=, S△AOB===. (2)過拋物線y2=2x的焦點(diǎn)F作直線交拋物線于A,B兩點(diǎn),若|AB|=,|AF|<|BF|,則|AF|=________. 考點(diǎn) 拋物線中過焦點(diǎn)的弦長(zhǎng)問題 題點(diǎn) 與弦長(zhǎng)有關(guān)的其它問題 答案 解析 方法一 設(shè)直線的傾斜角為θ,不妨設(shè)0<θ<, ∵|AB|===, ∴sin2θ=, 則cos θ==, 又|AF|<|BF|,∴|AF|===. 方法二 由于y2=2x的焦點(diǎn)坐標(biāo)為,由題干知A,B所在直線的斜率存在,設(shè)A,B所在直線的方程為y=k,A(x1,y1),B(x2,y2),x1- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2020版高中數(shù)學(xué) 第二章 圓錐曲線與方程 專題突破二 焦點(diǎn)弦的性質(zhì)學(xué)案含解析北師大版選修1 -1 2020 高中數(shù)學(xué) 第二 圓錐曲線 方程 專題 突破 焦點(diǎn) 性質(zhì) 解析 北師大 選修
鏈接地址:http://ioszen.com/p-3926359.html