當(dāng)前位置:
首頁 > 圖紙專區(qū) > 高中資料 > (京津?qū)S茫?019高考數(shù)學(xué)總復(fù)習(xí) 優(yōu)編增分練:8+6分項練2 不等式與推理證明 理.doc
(京津?qū)S茫?019高考數(shù)學(xué)總復(fù)習(xí) 優(yōu)編增分練:8+6分項練2 不等式與推理證明 理.doc
上傳人:xt****7
文檔編號:3938716
上傳時間:2019-12-29
格式:DOC
頁數(shù):8
大?。?19KB
《(京津?qū)S茫?019高考數(shù)學(xué)總復(fù)習(xí) 優(yōu)編增分練:8+6分項練2 不等式與推理證明 理.doc》由會員分享,可在線閱讀,更多相關(guān)《(京津?qū)S茫?019高考數(shù)學(xué)總復(fù)習(xí) 優(yōu)編增分練:8+6分項練2 不等式與推理證明 理.doc(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
8+6分項練2 不等式與推理證明
1.(2018合肥模擬)已知非零實數(shù)a,b滿足a|a|>b|b|,則下列不等式一定成立的是( )
A.a(chǎn)3>b3 B.a(chǎn)2>b2
C.< D.log|a|
b2與log|a|0,b>0,并且,,成等差數(shù)列,則a+9b的最小值為( )
A.16 B.9 C.5 D.4
答案 A
解析 ∵,,成等差數(shù)列,∴+=1.
∴a+9b=(a+9b)=10++≥10+2=16,當(dāng)且僅當(dāng)=且+=1,即a=4,b=時等號成立.
4.有三支股票A,B,C,28位股民的持有情況如下:每位股民至少持有其中一支股票,在不持有A股票的人中,持有B股票的人數(shù)是持有C股票的人數(shù)的2倍.在持有A股票的人中,只持有A股票的人數(shù)比除了持有A股票外,同時還持有其它股票的人數(shù)多1.在只持有一支股票的人中,有一半持有A股票.則只持有B股票的股民人數(shù)是( )
A.7 B.6
C.5 D.4
答案 A
解析 設(shè)只持有A股票的人數(shù)為X(如圖所示),
則持有A股票還持有其它股票的人數(shù)為X-1(圖中d+e+f的和),因為只持有一支股票的人中,有一半持有A股票,則只持有了B或C股票的人數(shù)和為X(圖中b+c部分).假設(shè)只同時持有了B和C股票的人數(shù)為a(如圖所示),那么X+X-1+X+a=28,即3X+a=29,則X的取值可能是9,8,7,6,5,4,3,2,1.與之對應(yīng)的a值為2,5,8,11,14,17,20,23,26.
因為沒持有A股票的股民中,持有B股票的人數(shù)為持有C股票人數(shù)的2倍,得b+a=2(c+a),即X-a=3c,故當(dāng)X=8,a=5時滿足題意,故c=1,b=7,故只持有B股票的股民人數(shù)是7,故選A.
5.(2018哈爾濱師范大學(xué)附屬中學(xué)模擬)設(shè)點(x,y)滿足約束條件且x∈Z,y∈Z,則這樣的點共有( )
A.12個 B.11個 C.10個 D.9個
答案 A
解析 畫出表示的可行域(含邊界),由圖可知,
滿足x∈Z,y∈Z的(x,y)
有(-4,-1),(-3,0),(-2,1),(-2,0),(-1,0),
(-1,1),(-1,2),(0,0),(0,1),(0,2),(0,3),(1,0),共12個.
6.《幾何原本》卷2的幾何代數(shù)法(以幾何方法研究代數(shù)問題)成了后世西方數(shù)學(xué)家處理問題的重要依據(jù),通過這一原理,很多的代數(shù)的公理或定理都能夠通過圖形實現(xiàn)證明,也稱之為無字證明.現(xiàn)有如圖所示圖形,點F在半圓O上,點C在直徑AB上,且OF⊥AB,設(shè)AC=a,BC=b,則該圖形可以完成的無字證明為( )
A.≥(a>0,b>0)
B.a(chǎn)2+b2≥2ab(a>0,b>0)
C.≤(a>0,b>0)
D.≤ (a>0,b>0)
答案 D
解析 由AC=a,BC=b,可得圓O的半徑r=,
又OC=OB-BC=-b=,
則FC2=OC2+OF2=+=,
再根據(jù)題圖知FO≤FC,即≤ ,當(dāng)且僅當(dāng)a=b時取等號.故選D.
7.已知實數(shù)x,y滿足約束條件如果目標函數(shù)z=x+ay的最大值為,則實數(shù)a的值為( )
A.3 B.
C.3或 D.3或-
答案 D
解析 先畫出線性約束條件所表示的可行域(含邊界),當(dāng)a=0時不滿足題意,故a≠0.
目標函數(shù)化為y=-x+z,當(dāng)a>0時,-<0,
(1)當(dāng)-≤-<0,即a≥2時,最優(yōu)解為A,
z=+a=,a=3,滿足a≥2;
(2)當(dāng)-<-,即00,
(3)當(dāng)0<-<,即a<-2時,最優(yōu)解為C(-2,-2),z=-2-2a=,a=-,滿足a<-2;
(4)當(dāng)-≥,即-2≤a<0時,最優(yōu)解為B,z=3+a=,a=,不滿足-2≤a<0,舍去.
綜上,實數(shù)a的值為3或-,故選D.
8.(2018天津市河?xùn)|區(qū)模擬)已知正實數(shù)a,b,c滿足a2-ab+4b2-c=0,當(dāng)取最小值時,a+b-c的最大值為( )
A.2 B. C. D.
答案 C
解析 正實數(shù)a,b,c滿足a2-ab+4b2-c=0,可得c=a2-ab+4b2,
==+-1≥2-1=3.
當(dāng)且僅當(dāng)a=2b時取得等號,
則當(dāng)a=2b時,取得最小值,且c=6b2,
∴a+b-c=2b+b-6b2=-6b2+3b
=-62+,
∴當(dāng)b=時,a+b-c有最大值.
9.(2018華大新高考聯(lián)盟模擬)若實數(shù)x,y滿足不等式組則x2+y2的取值范圍是________.
答案 [0,2]
解析 畫出可行域如圖陰影部分所示(含邊界),
x2+y2的幾何意義是陰影內(nèi)的點到原點的距離的平方,顯然O點為最小值點,而A(1,1)為最大值點,故x2+y2的取值范圍是[0,2].
10.已知實數(shù)x,y滿足如果目標函數(shù)z=x-y的最小值為-1,則實數(shù)m=________.
答案 5
解析 繪制不等式組表示的平面區(qū)域如圖陰影部分所示(含邊界),
聯(lián)立直線方程可得交點坐標為A,
由目標函數(shù)的幾何意義可知目標函數(shù)在點A處取得最小值,
所以-=-1,解得m=5.
11.(2018南平模擬)若實數(shù)x,y滿足且z=mx+ny(m>0,n>0)的最大值為4,則+的最小值為________.
答案 2
解析 作出不等式組表示的可行域如圖陰影部分所示(含邊界).
由可行域知可行域內(nèi)的點(x,y)均滿足x≥0,y≥0.
所以要使z=mx+ny(m>0,n>0)最大,只需x最大,y最大即可,即在點A處取得最大值.
聯(lián)立解得A(2,2).
所以有2m+2n=4,即m+n=2.
+=(m+n)=≥(2+2)=2.
當(dāng)且僅當(dāng)m=n=1時,+取得最小值2.
12.(2018湘潭模擬)設(shè)x,y滿足約束條件若的最大值為2,則z=x-y的最小值為________.
答案?。?
解析 令X=x+y,Y=x-y,則x=,y=,
所以等價于
作出不等式組表示的可行域如圖陰影部分所示(含邊界),
則=表示可行域內(nèi)一點(X,Y)與原點的連線的斜率,
由圖象可知,當(dāng)X=2a-,Y=時,取得最大值,則=2,
解得a=,
聯(lián)立解得Y=-,
所以z的最小值為-.
13.中國古代數(shù)學(xué)名著《周髀算經(jīng)》曾記載有“勾股各自乘,并而開方除之”,用符號表示為a2+b2=c2 (a,b,c∈N*),我們把a,b,c叫做勾股數(shù).下列給出幾組勾股數(shù):3,4,5;5,12,13;7,24,25;9,40,41,以此類推,可猜測第五組勾股數(shù)的三個數(shù)依次是________.
答案 11,60,61
解析 由前四組勾股數(shù)可得第五組的第一個數(shù)為11,第二,三個數(shù)為相鄰的兩個整數(shù),可設(shè)為x,x+1,
所以(x+1)2=112+x2,所以x=60,
所以第五組勾股數(shù)的三個數(shù)依次是11,60,61.
14.(2018漳州質(zhì)檢)分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段AB的長度為a,在線段AB上取兩個點C,D,使得AC=DB=AB,以CD為一邊在線段AB的上方做一個正六邊形,然后去掉線段CD,得到圖2中的圖形;對圖2中的最上方的線段EF做相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:
記第n個圖形(圖1為第1個圖形)中的所有線段長的和為Sn,現(xiàn)給出有關(guān)數(shù)列{Sn}的四個命題:
①數(shù)列{Sn}是等比數(shù)列;
②數(shù)列{Sn}是遞增數(shù)列;
③存在最小的正數(shù)a,使得對任意的正整數(shù)n,都有Sn>2 018;
④存在最大的正數(shù)a,使得對任意的正整數(shù)n,都有Sn<2 018.
其中真命題是________.(請寫出所有真命題的序號)
答案?、冖?
解析 由題意,得圖1中的線段為a,S1=a,
圖2中的正六邊形的邊長為,
S2=S1+4=S1+2a,
圖3中的最小正六邊形的邊長為,
S3=S2+4=S2+a,
圖4中的最小正六邊形的邊長為,
S4=S3+4=S3+,
由此類推,Sn-Sn-1=(n≥2),
即{Sn}為遞增數(shù)列,但不是等比數(shù)列,
即①錯誤,②正確;
因為Sn=S1+(S2-S1)+(S3-S2)+…+(Sn-Sn-1)
=a+2a+a++…+=a+
=a+4a<5a,n≥2,
又S1=a<5a,
所以存在最大的正數(shù)a=,
使得對任意的正整數(shù)n,都有Sn<2 018,
即④正確,③錯誤.
下載提示(請認真閱讀)
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
文檔包含非法信息?點此舉報后獲取現(xiàn)金獎勵!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
-
京津?qū)S?019高考數(shù)學(xué)總復(fù)習(xí)
優(yōu)編增分練:86分項練2
不等式與推理證明
專用
2019
高考
數(shù)學(xué)
復(fù)習(xí)
優(yōu)編增分練
分項練
不等式
推理
證明
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://ioszen.com/p-3938716.html