扣蓋的注塑模具設計-塑料注射模抽芯含NX三維及11張CAD圖.zip,注塑,模具設計,塑料,注射,模抽芯含,NX,三維,11,CAD
摘 要
根據(jù)塑料扣蓋的要求,了解塑件的用途,分析塑件的工藝性、尺寸精度等技術要求,考慮塑件制件尺寸。本模具采用一模二腔,側澆口進料,注射機采用HTF160XB型號,選用斜頂抽芯機構,設置冷卻系統(tǒng),CAD和繪制二維總裝圖和零件圖,選擇模具合理的加工方法。附上說明書,系統(tǒng)地運用簡要的文字,簡明的示意圖和和計算等分析塑件,從而作出合理的注塑模具設計。
關鍵詞:塑料扣蓋;一模二腔;側澆口進料;注射機;HTF160XB;冷卻系統(tǒng);注塑模具
Abstract
According to the requirements of plastic buckle cover, understand the use of plastic parts, analyze the technical requirements of plastic parts such as manufacturability and dimensional accuracy, and consider the size of plastic parts. This mold adopts the first mock exam two cavity, side gate, injection machine adopts the HTF160XB model, the inclined core pulling mechanism, set up the cooling system, and the CAD drawing two-dimensional assembly drawing and parts drawing, choose the reasonable processing method of mould. A brief description, concise illustration and calculation are used to analyze the plastic parts, so as to make reasonable injection mold design.
Key words: plastic buckle cover; the first mock exam two cavity; side gate feeding; injection machine; HTF160XB; cooling system; injection mold
目 錄
摘 要 I
Abstract II
1 塑件分析 1
1.1 塑件圖 1
1.2 分析塑料材料的基本特性 2
1.3 塑件尺寸精度選用 2
1.4 計算塑件的體積、質量 2
2 塑件成型方案設計 3
2.1 分型面選擇 3
2.2 型腔數(shù)的確定 3
2.3 型腔布局 4
2.4 澆注系統(tǒng)的類型和位置的選擇 4
2.4.1澆注系統(tǒng)組成 4
2.4.2 確定澆注系統(tǒng)的原則 5
2.5 成型零件結構設計 5
2.5.1型腔設計 6
2.5.2型芯設計 6
2.6 脫模機構的設計 7
2.6.1 脫模機構的選擇 7
2.6.2斜頂推出機構設計 8
2.6.3 脫模力的計算 8
2.7 導向與定位機構設計 9
2.8 排氣及引氣系統(tǒng)的設計 10
2.9模溫調節(jié)系統(tǒng)的設計 11
2.10模架選用 13
2.10.1確定模具的基本類型 13
2.10.2模架的選擇 13
2.11 斜斜頂?shù)脑O計 15
2.11.1斜斜頂種類 15
2.11.2 斜斜頂?shù)脑O計要點 15
3.11.3斜斜頂傾斜角的確定 16
3 模具零件設計 18
3.1 模具成型零件尺寸計算 18
3.2模具強度與剛度校核 19
3.3脫模力的計算 19
3.4澆注系統(tǒng)的設計 20
3.4.1 主流道的設計 20
3.4.2分主流道的設計 21
3.4.3澆口的設計 21
3.5模具冷卻系統(tǒng)的設計 22
4 注射機的選用及相關參數(shù)的校核 23
4.1 相關參數(shù) 23
4.2最大注塑量校核 24
4.3 鎖模力校核 25
4.4 模具與注塑機安裝部分相關尺寸校核 25
4.5 開模行程校核 26
總結 27
致謝 28
參考文獻 29
1 塑件分析
1.1 塑件圖
在模具設計之前需要對塑件的工藝性如形狀結構、尺寸大小、精度等級和表面質量要進行仔細研究和分析,只有這樣才能恰當確定塑件制品所需的模具結構和模具精度。
本設計課題-塑料扣蓋如圖所示,具體結構和尺寸詳見圖紙,該塑件結構較為簡單,生產量大,要求較低的模具成本,成型容易,精度要求高。
塑料扣蓋三維立體圖
塑料扣蓋二維圖
1.2 分析塑料材料的基本特性
ABS是由丙烯、丁二烯、苯乙烯三種單體共聚而成的。這三種組分的各自特性,使ABS具有良好的綜合理學性能。丙烯腈使ABS有良好的耐腐蝕性、耐熱性及表面硬度,丁二烯使ABS·堅韌,苯乙烯使ABS有良好的加工性和染色性能。ABS價格便宜原料易得,是目前產量最大、應用范圍最廣的工程塑料之一。是一種良好的熱塑性塑料。本次設計塑料扣蓋塑件可選用 ABS作為材料。
1.3 塑件尺寸精度選用
根據(jù)我國目前的成型水平,塑件尺寸公差可以參照塑件的尺寸與公差數(shù)值標準來確定。根據(jù)任務書和圖紙要求,本產品采用MT6級精度。
1.4 計算塑件的體積、質量
本次設計中,塑件的質量和體積采用3D測量,在UG軟件中,使用塑模部件驗證功能,可以測得塑件的體積5,因ABS的密度為1.05,即可以得出該塑件制品的質量約為5.25。
2 塑件成型方案設計
2.1 分型面選擇
將模具適當?shù)胤殖蓛蓚€或幾個可以分離的主要部分,它們的接觸表面分開時能夠取出塑件及澆注系統(tǒng)凝料,當成型時又必須接觸封閉,這樣的接觸表面稱為分型面,它是決定模具結構的重要因素,每個塑件的分型面可能只有一種選擇,也可能有幾種選擇。合理地選擇分型面是使塑件能完好的成型的先決條件。
選擇分型面時,應從以下幾個方面考慮:
1)分型面應選在塑件外形最大輪廓處;
2)使塑件在開模后留在動模上;
3)分型面的痕跡不影響塑件的外觀;
4)澆注系統(tǒng),特別是澆口能合理的安排;
5)使斜頂痕跡不露在塑件外觀表面上;
6)使塑件易于脫模。
綜合考慮各種因素,并根據(jù)本模具制件的外觀特點,受用平面分型面,并選擇在塑件的最大平面處,開模后塑件留在動模一側。
分型面的選擇
2.2 型腔數(shù)的確定
因為本設計塑料扣蓋結構簡單,生產量大,塑件的尺寸較大,為提高塑件成功概率,并從經濟型的角度出發(fā),節(jié)省生產成本和提高生產效率,采用一模二腔,進行加工生產。
2.3 型腔布局
型腔的布局與澆注系統(tǒng)的布置密切相關,型腔的排布應使型腔每個區(qū)域都通過澆注系統(tǒng)從總壓力中均等的分得所需的壓力,以保證塑料熔體均勻地充滿型腔,使塑件內在質量均一穩(wěn)定。這就要求型腔與主流道之間的距離盡可能短,同時采用平衡流道,以求達到良好的澆注質量。型腔布局由圖所示。
型腔布局方式
2.4 澆注系統(tǒng)的類型和位置的選擇
澆注系統(tǒng)是指注射模中從主流道始端到型腔之間的熔體進料通道,澆注系統(tǒng)可分為普通流道澆注系統(tǒng)和無流道凝料澆注系統(tǒng)兩類,本設計中采用普通側澆口澆注系統(tǒng)。正確設計澆注系統(tǒng)對獲得優(yōu)質的塑料制品極為重要。
2.4.1澆注系統(tǒng)組成
普通流道澆注系統(tǒng)的組成一般包括以下幾個部分:
1-主澆道 2-第一分澆道 3-第二分澆道 4-第三分澆道
5-澆口 6-型腔 7-冷料穴
2.4.2 確定澆注系統(tǒng)的原則
在設計澆注系統(tǒng)時應考慮下列有關因素:
a)、塑料成型特性:設計澆注系統(tǒng)應適應所用塑料的成型特性的要求,以保證塑件質量。
b)、模具成型塑件的型腔數(shù):設置澆注系統(tǒng)還應考慮到模具是一模二腔或一模多腔,澆注系統(tǒng)需按型腔布局設計。
c)、塑件大小及形狀:根據(jù)塑件大小,形狀壁厚,技術要求等因素,結合選擇分型面同時考慮設置澆注系統(tǒng)的形式、進料口數(shù)量及位置,保證正常成型,還應注意防止流料直接沖擊嵌件及細弱型芯受力不均以及應充分估計可能產生的質量弊病和部位等問題,從而采取相應的措施或留有修整的余地。
d)、塑件外觀:設置澆注系統(tǒng)時應考慮到去除、修整進料口方便,同時不影響塑件的外表美觀。
e)、冷料:在注射間隔時間,噴嘴端部的冷料必須去除,防止注入型腔影響塑件質量,故設計澆注系統(tǒng)時應考慮儲存冷料的措施[6]。
2.5 成型零件結構設計
模具閉合時用來填充塑料成型制品的空間稱為型腔。構成模具型腔的零部件稱成型零部件。一般包括型腔、型芯、型環(huán)和鑲塊等。成型零部件直接與塑料接觸,成型塑件的某些部分,承受著塑料熔體壓力,決定著塑件形狀與精度,因此成型零部件的設計是注射模具的重要部分。
成型零部件在注射成型過程中需要經常承受溫度壓力及塑料熔體對它們的沖擊和摩擦作用,長期工作后晚發(fā)生磨損、變形和破裂,因此必須合理設計其結構形式,準確計算其尺寸和公差并保證它們具有足夠的強度、剛度和良好的表面質量。
成型零部件結構設計主要應在保證塑件質量要求的前提下,從便于加工、裝配、使用、維修等角度加以考慮。
2.5.1型腔設計
型腔是用來成型制品外形輪廓的模具零件,其結構與制品的形狀、尺寸、使用要求、生產批量及模具的加工方法等有關,常用的結構形式有整體式、嵌入式、鑲拼組合式和瓣合式四種類型。
本設計中采用整體式型腔,其特點是結構簡單,牢固可靠,不容易變形,成型出來的制品表面不會有鑲拼接縫的溢料痕跡,還有助于減少注射模中成型零部件的數(shù)量,并縮小整個模具的外形結構尺寸。不過模具加工起來比較困難,要用到數(shù)控加工或電火花加工。
型腔
2.5.2型芯設計
本設計中零件結構較為簡單,深度不大,經過對塑件實體的研究,采用嵌入式型芯。這樣的型芯加工方便,便于模具的維護型芯與動模板的配合可采用。
型芯
2.6 脫模機構的設計
塑件從模具上取下以前還有一個從模具的成型零部件上脫出的過程,使塑件從成型零部件上脫出的機構稱為脫模機構。主要由推出零件,推出零件固定板和斜頂,推出機構的導向和復位部件等組成。
2.6.1 脫模機構的選擇
脫模機構按其推出動作的動力來源分為手動推出機構,機動推出機構,液壓和氣動推出機構。根據(jù)推出零件的類別還可分為斜頂推出機構、套管推出機構、斜頂推出機構、推塊推出機構、利用成型零部件推出和斜滑桿側抽芯機構等。
脫模機構的選用原則:
(1)使塑件脫模時不發(fā)生變形(略有彈性變形在一般情況下是允許的,但不能形成永久變形);
(2)推力分布依脫模阻力的的大小要合理安排;
(3)斜頂?shù)氖芰Σ豢商?,以免造成塑件的被推局部產生隙裂;
(4)斜頂?shù)膹姸燃皠傂詰銐?,在推出動作時不產生彈性變形;
(5)斜頂位置痕跡須不影響塑件外觀;
本設計中采用斜頂推出機構使塑料制件順利脫模。
2.6.2斜頂推出機構設計
本設計中采用臺肩形式的圓形截面推管機構,設計時斜頂與回針鎖定,回針運動時帶動斜頂運動?;蒯樁似矫娌粦休S向竄動。定模板與斜頂孔配合一般為,其配合間隙不大于所用溢料間隙,以免產生飛邊,ABS塑料的溢料間隙為。
2.6.3 脫模力的計算
脫模力是從動模一側的主型芯上脫出塑件所需施加的外力,需克服塑件對型芯包緊力、真空吸力、粘附力和脫模機構本身的運動阻力。本設計主要計算由型芯包緊力形成的脫模阻力。
當開始脫模時,模具所受的阻力最大,斜頂剛度及強度應按此時計算,亦即無視脫模斜度(a=0)
Q=8t·E·S·l·f/(1-m)(1+f) (kN)
式中,Q—脫模最大阻力(kN)
t—塑件的平均壁厚(cm)
E—塑料的彈性模量(N/)
S—塑料毛坯成型收縮率(mm/mm)
l—包容凸模長度(cm)
f—塑料與鋼之間的摩擦系數(shù)
m—泊松比,一般取0.38~0.49
查表得,S=0.005,E=1.8×10N/cm
已知,t0.12cm,l=4.5cm,f=0.28
Q=8×0.12×1.8×10×0.005×4.0×0.28/(1-0.43)(1+0.28)
=1.32kN
---摩擦阻力(N)
---摩擦系數(shù),一般取0.15~1.0,本設計取0.5
---因塑件收縮對型芯產生的正壓力(N)
---塑件對型芯產生的單位正壓力,一般取8~12MPa,本設計取10MPa
---塑件包緊型芯的側面積(㎜2)
斜頂推出機構
2.7 導向與定位機構設計
導向機構的作用:保證模具在進行開合模時,保證公母模之間一定的方向和位置。導向零件承受一定的側向力,起了導向和定位的作用,導向機構零件包括導柱和導套等。
1. 導向結構的總體設計
(1) 導向零件應合理的均勻分布在模具的周圍或靠近邊緣的部位,其中心至模具邊緣應有足夠的距離,以保證模具的強度,防止壓入導柱和導套后發(fā)生變形。
(2) 根據(jù)模具的形狀和大小,一副模具一般需要2-4個導柱。如果,模具的凸模與凹模合模有方位要求時,則用兩個直徑不同的導柱,或用兩個直徑相同,但錯開位置的導柱。
(3) 由于塑件通常留于公模,所以為了便于脫模導柱通常安裝在母模。
(4) 導柱和導套在分型面處應有承屑槽
(5) 導柱`導套及導向孔的軸線應保證平行
(6) 合模時,應保證導向零件首先接觸,避免公模先進入模腔,損壞成型零件。
2. 導柱的設計
(1) 有單節(jié)與臺階式之分
(2) 導柱的長度必須高出公模端面6…8mm
(3) 導柱頭部應有圓錐或球形的引導部分
(4) 固定方式有鉚接固定和螺釘固定
(5) 其表面應熱處理,以保證耐磨。
3. 導套和導向孔
(1) 無導套的導向孔,直接開在模板上,模板較厚時,導向孔必須做成盲孔,側壁增加排氣孔。
(2) 導套有套筒式`臺階式`凸臺式
(3) 為了導柱順利進入導套孔,在導套前端應倒有圓角r。
一般情況下,導柱與導套共同使用,用于保證動模與定模兩大部分內零件的準確對合和塑料部品的形狀,尺寸精度,并避免模內零件互相碰撞與干涉,起到合模導向的作用.
2.8 排氣及引氣系統(tǒng)的設計
排氣是注射模設計中不可忽視的一個問題。在注射成型中,若模具排氣不良,型腔內的氣體受壓縮將產生很大的背壓,阻止塑料熔體正??焖俪淠?,同時氣體壓縮所產生的熱使塑料燒焦,在充模速度大、溫度高、物料黏度低、注射壓力大和塑件過厚的情況下,氣體在一定的壓縮程度下會滲入塑料制件內部,造成氣孔、組織疏松等缺陷。特別是快速注射成型工藝的發(fā)展,對注射模的排氣系統(tǒng)要求就更為嚴格。
在塑料熔體充模過程中,模腔內除了原有的空氣外,還有塑料含有的水分在注射溫度下蒸發(fā)而成的水蒸氣、塑料局部過熱分解產生的低分子揮發(fā)性氣體,塑料中某些添加劑揮發(fā)或化學反應所生成的氣體。常用的排氣方式有利用配合間隙排氣,在分型面上開設排氣槽排氣,利用斜頂運動間隙排氣等。
由于本次設計中模具尺寸不大,本設計中采用間隙排氣的方式,而不另設排氣槽,利用間隙排氣,以不產生溢料為宜,其值與塑料熔體的粘度有關。
2.9模溫調節(jié)系統(tǒng)的設計
在注射模中,模具的溫度直接影響到塑件的質量和生產效率。由于各種塑料的性能和成型工藝要求不同,對模具溫度的要求也不相同。一般注射到模具內的塑料粉體的溫度為左右,熔體固化成為塑件后,從左右的模具中脫模、溫度的降低是依靠在模具內通入冷卻水,將熱量帶走。對于要求較低模溫(一般小于)的塑料,如本設計中的ABS,僅需要設置冷系統(tǒng)即可,因為可以通過調節(jié)水的流量就可以調節(jié)模具的溫度。
模具的冷卻主要采用循環(huán)水冷卻方式,模具的加熱有通入熱水、蒸汽,熱油和電阻絲加熱等。
溫度調節(jié)對塑件質量的影響
注射模的溫度對于塑料熔體的充模流動、固化成型、生產效率以及制品的形狀和尺寸精度都有影響,對于任一個塑料制品,模具溫度波動過大都是不利的。過高的模溫會使塑件在脫模后發(fā)生變形,若延長冷卻時間又會使生產率下降。過低的模溫會降低塑料的流動性,使其難于充模,增加制品的內應力和明顯的熔接痕等缺陷。
模具冷卻水路圖
冷卻計算:單位時間內進入模具應除去的總熱量Q,可以用參考文獻中的公式計算:
Q=W1 × a
式中 W1—單位時間內進入模具的塑料的重量g
a—克塑料的熱容量(J/g)
經計算:Q=225×1.1÷1.6×130≈20109J
則帶走上述熱量,所需的冷卻水量按下式計算:
式中 W—通過模具冷卻水的重量(g/h)
T3—出水溫度℃
T4—入水溫度℃
K—熱傳導系數(shù);
經計算 W≈378.997 g/h
由下式可以計算出冷卻水道的直徑:
式中 —冷卻液容重kg/cm3 =0.001 kg/cm3,
L —冷卻水道長度cm L=380cm
d—冷卻水道直徑cm
經計算d≈7.628 cm,取8mm
2.10模架選用
2.10.1確定模具的基本類型
注射模具的分類方式很多,此處是介紹的按注射模具的整體結構分類所分的典型結構如下: 單分型面注射模、雙分型面注射模、帶有活動成型零件的模、側向分型抽芯注射模、定模帶有推出機構的注射模、自動卸螺紋的注射模、熱流道注射模。
2.10.2模架的選擇
根據(jù)對塑件的綜合分析,確定該模具是單分型面的模具,由GB/T12556.1-12556.2-1990《塑料注射模中小型模架》可選擇CI型的模架,其基本結構如下:
CI型模架圖
CI型模具定模采用一塊模板,動模采用動模板、墊板,又叫兩板模,大水口模架,適合側澆口,采用斜頂側抽芯的注射成形模具。
由分型面分型面的選擇而選擇模具的導柱導套的安裝方式,經過考慮分析,導柱導套選擇選正裝。根據(jù)所選擇的模架的基本型可以選出對應的模板的厚度以及模具的外輪廓尺寸。
把型腔排列成一模二腔可得長為170mm,寬為170mm,
模架的長L=170+復位桿的直徑+螺釘?shù)闹睆?模板壁厚300mm
模架的寬W=170+復位桿的直徑+型腔壁厚300mm
根據(jù)制品的尺寸,在計算完模架的長寬以后,還需要考慮其它螺絲導柱等零件對模架尺寸的影響,在設計中避免干涉。在設計中,如果有斜滑塊側抽芯機構,還需要考慮側抽芯對模具設計中模架外形尺寸的影響。
綜合考慮本設計選用WL=300x300的模架。塑件的高度為4.5mm,塑件的大部分部膠位都留在型腔部分,型芯、型腔的厚度是塑件所伸入高度加20-40mm。
綜合考慮強度要求,定模板厚度取70mm, 動模板的厚度取80mm??紤]斜頂?shù)捻敵鲂谐桃?,支撐板?0mm以滿足頂出要求。
綜上所述所選擇的模架的型號為:CI-3030-A70-B80-C90。
2.11 斜斜頂?shù)脑O計
2.11.1斜斜頂種類
斜斜頂是常見的側向抽芯機構之一,它常用于制品內側面存在凹槽或凸起結構,強行推出會損壞制品的場合。它是將側向凹凸部位的成型鑲件固定在斜頂板上,在推出的過程中,此鑲件作斜向運動,斜向運動分解成一個垂直運動和一個側向運動,其中的側向運動即實現(xiàn)側向抽芯。
斜斜頂有整體式和二段式,二段式主要用于長而細的斜斜頂,此時采用整體圓柱銷式的斜斜頂
圖3.9 斜斜頂抽芯機構[1]
2.11.2 斜斜頂?shù)脑O計要點
(1) 要保證復位可靠。
(2)在斜斜頂近型腔一端,須做6~10mm的直身位,并做一2~3mm的掛臺起定位作用,以避免注塑時斜斜頂受壓而移動。設計掛臺亦方便加工、裝配及保證內側凹凸結構的精度。
(3)斜斜頂上端面應比動模鑲件底0.05~0.1mm,以保證推出時不損壞制品。
(4)斜斜頂上端面?zhèn)认蛞苿訒r,不能與制品內的其他結構(入圓柱、加強筋或型芯等)發(fā)生干涉;
(5)沿抽芯方向制品內表面有下降弧度時,斜斜頂側移時會損壞制品。解決方案有:a.制品減料做平,但須征得客戶同意;b.斜斜頂?shù)撞繉к壸鲂倍圈?,使斜斜頂延遲推出。
(6)當斜斜頂上端面和鑲件接觸時,推出時不應碰到另一側制品。
(7)斜斜頂在斜頂固定板上的固定方式見上圖3.9.
(8)當斜斜頂較長或較細時,在動模板上加導向塊,幫助頂出及回位時的穩(wěn)定性。加裝導向塊時其動模必須和內模鑲件組合一起切割。
(9)斜斜頂與內模的配合公差取H7/f6,斜斜頂與模架接觸處避空。
3.11.3斜斜頂傾斜角的確定
斜斜頂?shù)膬A斜角度取決于側向抽芯距離和斜頂板推出的距離H。它們的關系見圖,計算公式如下:
tanα=S/H
其中:S=側向凹凸深度S1+(1.5~3)mm 圖3.10 幾何關系
斜斜頂?shù)膬A斜角度不能太大,否則,在推出過程中斜斜頂會受到很大的扭矩的作用,從而導致斜斜頂磨損,甚至卡死或斷裂。
斜斜頂?shù)男苯且话銥?°~15°,常用5°~10°。在設計過程中,這一角度能小不大。
在此處設計中向凹凸深度為0.4+1.5mm,選擇的斜斜頂角度為4°,經過計算斜斜頂推出距離為30mm就可以完成脫模
本設計的斜斜頂如圖
斜頂
3 模具零件設計
3.1 模具成型零件尺寸計算
成型零部件工作尺寸是指成型零部件上直接決定塑件形狀的有關尺寸,主要有型腔和型芯的徑向尺寸,型腔的深度尺寸和型芯的高度尺寸,型芯和型芯之間的位置尺寸,以及中心距尺寸等。
在模具設計時要根據(jù)塑件的尺寸及精度等級確定成型零部件的工作尺寸及精度等級。影響塑件尺寸精度的主要因素有塑件的收縮率,模具成型零部件的制造誤差,模具成型零部件的磨損及模具安裝配合方面的誤差。這些影響因素也是作為確定成型零部件工作尺寸的依據(jù)。
由于按平均收縮率、平均制造公差和平均磨損量計算型芯型腔的尺寸有一定的誤差(因為模具制造公差和模具成型零部件在使用中的最大磨損量大多憑經驗決定),這里就只考慮塑料的收縮率計算模具盛開零部件的工作尺寸。
塑件經成型后所獲得的制品從熱模具中取出后,因冷卻及其它原因會引起尺寸減小或體積縮小,收縮性是每種塑料都具有的固有特性之一,選定ABS材料的平均收縮率為0.5%,剛計算模具成型零部件工作尺寸的公式為:
式中 A — 模具成型零部件在常溫下的尺寸
B — 塑件在常溫下實際尺寸
成型零部件工作尺寸的公差值可取塑件公差的1/3~1/4,或取IT7~8級作為模具制造公差。在此取IT8級,型芯工作尺寸公差取IT7級。模具型腔的小尺寸為基本尺寸,偏差為正值;模具型芯的最大尺寸為基本尺寸,偏差為負值,中心距偏差為雙向對稱分布。各成型零部件工作尺寸的具體數(shù)值見圖紙。
本設計中零件工作尺寸的計算均采用平均尺寸、平均收縮率、平均制造公差和平均磨損量來進行計算,已給出這ABS的成型收縮率為1.005,模具的制造公差取δz =Δ/3。因本設計塑件的尺寸精度為MT3,即 =0.6 mm。
如表4-2
表4-2 型腔型芯工作尺寸的計算
類別
塑件基本尺寸
計算公式
模具尺寸
型腔尺寸計算
Hm
Hs =3.5
Hm=(Hs+Hs. -2/3Δ)0+δz
Lm
Ls =101
Lm=(Ls+Ls. -3/4Δ)0+δz
型芯尺寸
Lm
Ls =36
Lm=(Ls+Ls. +3/4Δ)0-δz
3.2模具強度與剛度校核
普通意義上的模具強度包括模具的強度、剛度。模具的各種成型零部件和結構零部件均有強度、剛度的要求,足夠的強度才可以保證模具能正常工作。
由于模具形式較多,計算也不盡相同且較復雜,實際生產中,采用經驗設計和強度校核相結合的方法,通過強度校核來調整設計,保證模具能正常工作。
模具強度計算較為復雜,一般采用簡化的計算方法,計算時采取保守的做法,原則是:選取最不利的受力結構形式,選用較大的安全系數(shù),然后再優(yōu)化模具結構,充分提高模具強度。為保證模具能正常工作,不僅要校核模具的整體性強度,也要校核模具局部結構的強度。
整體性強度主要針對型腔側壁厚度,型腔底板厚度,合模面所能承受的壓力等幾個方面,實際選用尺寸應大于計算尺寸并取整。校核時應從強度與彎曲兩個方面分別計算,選取較大的尺寸。
3.3脫模力的計算
脫模力的產生范圍:
①(脫模)塑件在模具中冷卻定型時,由于體積收縮,產生包緊力。
②不帶通孔殼體類塑件,脫模時要克服大氣壓力 。
③機構本身運動的磨擦阻力。
④塑件與模具之間的粘附力。
初始脫模力,開始脫模進的瞬間防要克服的阻力。
相繼脫模力,后面防需的脫模力,比初始脫模力小,防止計算脫模力時,一般計算初始脫模力。
脫模力的影響因素:
a. 脫模力與塑件壁厚,型芯長度,垂直于脫模方向塑件的投影面積有關,各項值越大,則脫模力越大。
b. 塑件收縮率,彈性模量E越大,脫模力越大。
c. 塑件與芯子磨擦力俞大,則脫模阻力俞大。
d. 排除大氣壓力和塑件對型芯的粘附等因素,則型芯斜角大到,塑件則自動脫落。
3.4澆注系統(tǒng)的設計
3.4.1 主流道的設計
流道是澆注系統(tǒng)中從注射機噴嘴與模具相接觸的部分開始,到分流道為止的塑料熔體的流動通道。
(1)、主流道的尺寸
設計中選用的注射機為HTF160XB,其噴嘴直徑為3.5,噴嘴球面半徑為11,依此主流道各具體尺寸設計如下:
主流道與澆口套
(2)、主流道襯套的形式
選用如下圖所示類型的熱流道,這種類型可防止熱流道在塑料熔體反作用下退出定模。將熱流道和定位環(huán)設計成兩個零件,然后配合固定在模板上,熱流道與定模板的配合采用。
(3)、定位環(huán)的固定
定位環(huán)采用2個M6的螺絲直接鎖附固定。
澆口襯套固定形式
3.4.2分主流道的設計
分流道是指主流道末端與澆口之間這一段塑料熔體的流動通道,分流道應能滿足良好的壓力傳遞和保持理想的填充狀態(tài)。本設計中塑件為一模二腔,且采用側澆口,流道布局如下圖。
流道布局
3.4.3澆口的設計
澆口又叫進料口,是連接分流道與型腔的通道。它有兩個功能:一是對塑料熔體流入型腔起著控制作用;另一個是當注射壓力撤銷后封鎖型腔,使型腔中尚未固化的塑料不會倒流。常向的澆口形式有側澆口,側澆口,點式澆口,扇形澆口,圓盤式澆口,環(huán)形澆口等。
澆口的位置選擇原則:
澆口的位置與塑件的質量有直接影響。在確定澆口位置時,應考慮以下幾點:
1. 熔體在型腔內流動時,其動能損失最小。要做到這一點必須使
1)流程(包括分支流程)為最短;
2)每一股分流都能大致同時到達其最遠端;
3)應先從壁厚較厚的部位進料;
4)考慮各股分流的轉向越小越好。
2. 有效地排出型腔內的氣體。
由于本設計中塑件外表面質量要求較高,所以選用側澆口。澆口于端面底位置,成型后將其切除,位置隱蔽而不影響外觀。
3.5模具冷卻系統(tǒng)的設計
設計冷卻系統(tǒng)的目的在于維持模具適當而有效率的冷卻。冷卻孔道應使用標準尺寸,以方便加工與組裝。設計冷卻系統(tǒng)時,模具設計者必須根據(jù)塑件的壁厚與體積決定下列設計參數(shù): 冷卻孔道的位置與尺寸、孔道的長度、孔道的種類、孔道的配置與連接、以及冷卻劑的流動速率與熱傳性質。
冷卻管路的位置與尺寸
塑件壁厚應該盡可能維持均勻。冷卻孔道最好設置是在型芯塊與型腔塊內,設在模塊以外的冷卻孔道比較不易精確地冷卻模具。
通常,鋼模的冷卻孔道與模具表面、模穴或模心的距離應維持為冷卻孔道直徑的1~2倍,冷卻孔道之間的間距應維持3~5倍直徑。冷卻孔道直徑通常為6~12 mm(7/16~9/16英吋),在此取8mm。
4 注射機的選用及相關參數(shù)的校核
注射成型工藝過程分析如下
如圖所示從料頭把樹脂擠入料筒中,通過螺桿的轉動將熔體輸送至機筒的前端。在那個過程中,在加熱器的作用下加熱使機筒內的樹脂材料受熱,在螺桿的剪切應力作用下使樹脂成為熔融狀態(tài),將相當于成型品及主流道,分流道的熔融樹脂滯留于機筒的前端(稱之為計量),螺桿的不斷向前將材料射入模腔。當熔融樹脂在模具內流動時,須控制螺桿的移動速度(射出速度),并在樹脂充滿模腔后用壓力(保壓力)進行控制。當螺桿位置,注射壓力達到一定值時可以將速度控制切換成壓力控制。
4.1 相關參數(shù)
由于采用一模二腔,需要至少注射量為5.25x2g,流道水口廢料3g,總注塑量13.5g,再根據(jù)工藝參數(shù)(主要是注射壓力),綜合考慮各種因素,選定注射機為HTF160XB。注射方式為螺桿式,其有關性能參數(shù)為:
型號
單位
160×2A
160×2B
160×2C
參數(shù)
螺桿直徑
mm
40
45
48
理論注射容量
cm3
253
320
364
注射重量PS
g
230
291
331
注射壓力
Mpa
202
159
140
注射行程
mm
201
螺桿轉速
r/min
0~230
料筒加熱功率
KW
9.3
鎖模力
KN
1600
拉桿內間距(水平×垂直)
mm
455×455
允許最大模具厚度
mm
500
允許最小模具厚度
mm
180
移模行程
mm
420
移模開距(最大)
mm
920
液壓頂出行程
mm
140
液壓頂出力
KN
33
液壓頂出桿數(shù)量
ABS
5
油泵電動機功率
KW
18.5
油箱容積
l
240
機器尺寸(長×寬×高)
m
5.4×1.45×2.05
機器重量
t
5
最小模具尺寸(長×寬)
mm
320×320
表<1> HTF160XB注塑機參數(shù)
4.2最大注塑量校核
模具設計時,必須使得在一個注射成型的塑料熔體的容量或質量在注射機額定注射量的80%以內。校核公式為:
式中 --型腔數(shù)量
--單個塑件的重量
--澆注系統(tǒng)所需塑料的重量
本設計中:n=2 5.25g =3 g
M=2x5.25+3=13.5 g
注塑機額定注塑量為m=291g,291x80%>13.5,
注射量符合要求。
4.3 鎖模力校核
注射成型時塑件的模具分型面上的投影面積是影響鎖模力的主要因素。如果這一數(shù)值超過了注射機所允許的最大成型面積,則成型過程中會出現(xiàn)漲模溢料現(xiàn)象,必須滿足以下關系。
式中 n --型腔數(shù)目
--單個塑件在模具分型面上的投影面積
--澆注系統(tǒng)在模具分型面上的投影面積
n=2 =3654.18 = 200
=2x3654.18+200=7914.38
注射成型時為了可靠的鎖模,應使塑料熔體對型腔的成型壓力與塑件和澆注系統(tǒng)在分型面上的投影面積之和的乘積小于注射機額定鎖模力。即:
()P < F
式中: P—塑料熔體對型腔的成型壓力(MPa)
F—注射機額定鎖模力(N)
其它意義同上
根據(jù)工具書查得,型腔內通常為20-40MPa,一般制品為24-34MPa,精密制品為39-44MP
()P=7914.38x30x1.1x0.001= 261.17454KN<1600KN
鎖模力符合要求
4.4 模具與注塑機安裝部分相關尺寸校核
(1)、模具長寬尺寸
模具長寬尺度必須小于注塑機拉桿間距,本設計選用機臺拉桿間距為455x455模具長寬為270x350,經核算機臺選用合適。
(2)、模具厚度(閉合高度)
模具閉合高度必須滿足以下公式
式中 --注射機允許的最大模厚
--注射機允許的最小模厚
本設計中模具厚度為291mm 180
收藏