摘 要
振動壓路機是利用其自身的重力和振動壓實各種建筑和筑路材料。在公路建設中,振動壓路機最適宜壓實各種非粘性土壤、碎石、碎石混合料以及各種瀝青混凝土而被廣泛應用。目前國產振動壓路機以中小噸位和機械傳動方式為主,而性能優(yōu)良的全液壓重型振動壓路機主要依賴于進口。之所以出現(xiàn)處于這種狀況是由于全液壓壓路機液壓液壓系統(tǒng)結構比較復雜并且各類液壓元件加工復雜,為徹底改變這種現(xiàn)狀本文對現(xiàn)有壓路機液壓系統(tǒng)進行調研,研制出結構優(yōu)良的全液壓壓路機液壓系統(tǒng)。
本文在理論分析和計算的基礎上,完成了YZJ13型振動壓路機液壓系統(tǒng)的設計,在方案、結構和設計方法上進行了創(chuàng)新:采用全液壓的傳動方案,通過3個相互獨立的液壓回路實現(xiàn)行駛、振動和轉向三大基本功能,與機械傳動相比在壓實效果、爬坡能力、質量分配、操作控制和整體布局方面具備更大優(yōu)勢。轉向結構采用鉸接式車架折腰轉向的方案,轉彎半徑小、機動性好、前后輪跡重疊、重心低、駕駛員視野開闊。同時本文對分動箱的機構進行了詳細的設計計算,為縮小分動箱的體積本次采用齒面硬度達60HRC的齒輪和雙列滾柱軸承的結構。
關鍵詞:振動壓路機;設計;液壓系統(tǒng);分動箱
Abstract
Vibratory roller is the use of its own gravity and vibration compaction of various building and road construction materials. In the process of highway construction, vibratory roller is the most suitable for compaction of various kinds of non cohesive soil, crushed stone, crushed stone mixture and asphalt concrete. At present, the domestic vibratory roller is mainly based on the medium and small tonnage and mechanical transmission mode, and the full hydraulic vibratory roller with good performance mainly depends on import. The reason in this situation is due to hydraulic roller hydraulic system of complex structure and various hydraulic components processing complex, to completely change this situation in the research of the existing roller hydraulic system, developed the fine structure of the full hydraulic roller hydraulic system.
In this paper, on the basis of theoretical analysis and calculation, completed the design of YZJ13 type hydraulic system of vibratory roller, the innovation in the scheme, structure and design method: using hydraulic transmission scheme, realize the vibration and turned to the three basic functions of the 3 independent hydraulic circuits, compared with mechanical the transmission has more advantages in the compaction effect, climbing ability, quality distribution, operation control and overall layout. Steering articulated frame structure using articulated steering scheme, small turning radius, good maneuverability, and the wheel track overlap, low center of gravity, the driver vision. At the same time, the mechanism of the transfer case were calculated with the structure design, in order to reduce the volume of the transfer gear tooth surface hardness of 60HRC gear and double row roller bearing.
Keywords: Vibrating roller ; Design ; Hydraulic system ; Transfer case
目錄
摘 要 I
Abstract II
1.緒論 1
1.1引言 1
1.2壓路機的用途及分類 1
1.3國內外雙鋼輪振動壓路機發(fā)展現(xiàn)狀 3
1.4雙鋼輪振動壓路機發(fā)展趨勢 5
1.5課題提出的背景與意義 7
1.6本文的研究內容 7
2.振動壓實理論 9
3.振動壓路機動力學模型及運動方程 12
3.1研究振動壓路機動力學模型的意義 12
3.2兩個自由度系統(tǒng)振動壓路機的運動方程 12
3.3運動方程中各參數(shù)的取值 15
4. 液壓系統(tǒng)總體結構設計 18
4.1行走液壓系統(tǒng)的設計 19
4.1.1 全輪驅動液壓壓路機的優(yōu)點 19
4.1.2 全輪驅動液壓壓路機的缺點 20
4.2振動液壓系統(tǒng)設計 20
4.2.1開式液壓震動系統(tǒng) 20
4.2.2閉式液壓振動系統(tǒng) 21
4.2.3工作裝置液壓振動系統(tǒng)形式的選用 22
4.3轉向液壓系統(tǒng)設計 23
4.4液壓系統(tǒng)原理圖 24
5. 液壓系統(tǒng)計算與選型 26
5.1 液壓系統(tǒng) 26
5.1.1 行走液壓系統(tǒng) 26
5.1.2 振動液壓系統(tǒng) 26
5.1.3 轉向液壓系統(tǒng) 27
5.2各液壓系統(tǒng)所需功率計算 27
5.2.1行駛液壓系統(tǒng)所需功率計算 27
5.2.2轉向液壓系統(tǒng)所需功率計算 28
5.2.3振動液壓系統(tǒng)所需功率計算 28
5.3 主要液壓元件計算選型 29
5.3.1 行駛液壓系統(tǒng) 29
5.3.2 振動液壓系統(tǒng) 31
5.3.3 轉向液壓系統(tǒng) 32
5.3.4油箱的設計計算 34
6. 分動箱設計 35
6.1分動箱結構設計 35
6.2分動箱設計計算 35
6.2.1動力參數(shù)計算 36
6.2.2行駛級齒輪傳動設計 36
6.2.3轉向-振動級齒輪傳動設計 38
6.2.4輸入軸的設計 40
6.2.5輸出軸1的設計 41
6.2.6輸出軸2的設計 41
6.2.7 軸強度的校核 42
7. 液壓系統(tǒng)的保養(yǎng) 43
8.結 論 45
參考文獻 46
致謝 47
第 4 頁