一種行駛特定軌跡的無碳小車的設計【畢業(yè)論文+CAD圖紙全套】
《一種行駛特定軌跡的無碳小車的設計【畢業(yè)論文+CAD圖紙全套】》由會員分享,可在線閱讀,更多相關《一種行駛特定軌跡的無碳小車的設計【畢業(yè)論文+CAD圖紙全套】(44頁珍藏版)》請在裝配圖網(wǎng)上搜索。
一種行駛特定軌跡的無碳小車的設計 本科生畢業(yè)設計 題 目: 一種行駛特定軌跡 的無碳小車的設計 學生姓名: 學 號: 專業(yè)班級: 指導教師: 完成時間: 目錄 中文摘要及關鍵詞 Ⅰ 英文摘要及關鍵詞 II 第1章 前言 1 1.1 研究背景及意義 1 1.2 研究狀況 3 1.3 技術要求 3 第2章 系統(tǒng)分析 5 2.1 能耗規(guī)律分析 5 2.2 受力系統(tǒng)分析 7 2.3 穩(wěn)定性分析 8 2.4 軌跡分析 9 第3章 結構設計 11 3.1 原動機構 11 3.2 傳動機構 12 3.3 轉向機構 13 3.3.1 轉向部分 13 3.3.2 間歇部分 14 3.3.3 調節(jié)部分 14 3.4 驅動機構 15 3.5 底板和支撐架 16 3.6 整車設計 18 第4章 軌跡模擬 19 4.1 基于SimMechanics的軌跡模擬 19 4.1.1 SimMechanics模塊和功能 19 4.1.2 仿真機構分析 21 4.1.3 建立仿真模型 22 4.1.4 仿真參數(shù)設置 23 4.1.5 仿真結果輸出 26 4.2 偏差分析 27 第5章 三維建模及運動仿真 28 5.1 三維建模 28 5.1.1 機構尺寸確定 28 5.1.2 基于Proe的三維建模 29 5.2 運動仿真 30 5.2.1 齒輪連接的定義 30 5.2.2 電機的定義 31 5.2.3 測量分析 31 結論 33 參考文獻 34 致謝 36 中文摘要及關鍵詞 摘 要:本文主要針對第四屆全國大學生工程訓練綜合能力競賽中的項目Ⅱ:以重力勢能驅動的具有“8”字型繞障功能的無碳小車,進行機構設計上的探討和總結。并對其進行能耗規(guī)律和穩(wěn)定性的分析,使其在前進的過程中,能量消耗得更少,走得更加久遠。通過小車主要組成模塊的分析和設計,建立轉向機構的數(shù)學模型,并使用MATLAB進行軌跡模擬,分析偏差,設置參數(shù),優(yōu)化結構。通過PROE三維建模,實現(xiàn)局部運動仿真,確保結構的可行性,減少加工的成本。 關鍵詞: 無碳小車 機構設計 軌跡模擬 運動仿真 英文摘要及關鍵詞 Abstract:In this paper, for the Fourth National University engineering training comprehensive ability of competition in the project Ⅱ: gravitational potential energy to drive with the "8" carbon-free car-shaped around the barrier function of the car body designs were discussed and summarized. Performed on the car model and stability analysis of energy law, to ensure that the car during walking, consume less energy, are more stable walk farther. Through the analysis and design of the main building blocks of the car, the establishment of the steering mechanism of the mathematical model and use MATLAB to optimize the structure, determine the structure parameters, trajectory simulation. PROE three-dimensional modeling, to achieve local motion simulation, to ensure the feasibility of the structure, reducing the cost of processing. Key words: carbon car; body design; trajectory simulation; motion simulation. 第1章 前言 1.1研究背景及意義 如今,環(huán)境污染和能源問題相當嚴重,人類逐漸的思考著自己長期的發(fā)展方式,節(jié)能減排的觀念慢慢的被人們所認可,以節(jié)能減排為主題的活動也在全球范圍內(nèi)展開。在這種國際大背景下,各個國家也努力的采取措施,全面的推動節(jié)能減排工作的進行,在一定程度上是取得了一些不錯的效果和有用的經(jīng)驗。 自20世紀60年代以來,美國出臺了一系列有關環(huán)境保護的法律法規(guī),如:《清潔空氣法》、《清潔水法》、《瀕危動物保護法》等,這些法律法規(guī)很全很細,涉及到各個領域和各個環(huán)節(jié),凡構成對環(huán)境造成污染的污染源都列為法律規(guī)定的范圍,而這些法律法規(guī)的宗旨就是“一切為了健康”,而每一項立法與環(huán)境標準的制定都是圍繞保護人的健康這個主題。其次,美國環(huán)境立法,均以科學數(shù)據(jù)作支撐,每一項法律背后,都有科研人員付出的巨大勞動,他們經(jīng)過多年實驗,得出精確的數(shù)據(jù),依靠這些科學數(shù)據(jù)立法,可以說美國的環(huán)境法律法規(guī)與實用技術實現(xiàn)了一體化。近年來,我國經(jīng)濟雖然取得了很大的發(fā)展,但也承受著資源緊缺、能源匱乏、環(huán)境污染等的巨大壓力[1],為此,國家采取了很多相關治理和解救的措施,也制定了許多相關的政策。我國早在2006年3月16日就下達了單位GDP能耗必須下降20%的目標。并于在2009年在哥本哈根氣候大會上,設置了到2020年單位GDP的CO2排放量比2005年的減少百分之四十左右的目標。據(jù)調查,在2013年30.49十億噸全球碳排放量,中國排名第一,占22.3%,人均碳排放量已超過世界平均水平。 同時,去年4月在京召開了2015第七屆國際節(jié)能減排展覽會,本次節(jié)能減排展覽了近300多個品牌。我國最近在研究無碳技術,已經(jīng)有了一定的成果,在日常生活和工業(yè)生產(chǎn)等領域也有了相關設計產(chǎn)品,例如節(jié)能(包括節(jié)電、節(jié)油、節(jié)煤、節(jié)水等)產(chǎn)品的銷售等,這些新技術的發(fā)明給人類信心在于改善環(huán)境方面。 最近,國際原油價格浮動比較大、汽車尾氣排放繼續(xù)增多、全球變暖等問題日益嚴峻,這些情況都讓汽車生產(chǎn)商重新規(guī)劃自己的發(fā)展。太陽能、氫燃料電池、電混合電力汽車等順勢而來,但是這些都成本太高、性能不是很好,因此,新型能源的開發(fā)研究和使用變得尤為重要。 環(huán)境的污染、能源的緊缺等問題越來越嚴重,可持續(xù)發(fā)展的道路勢在必行,也將變成當今時代的最新潮流。很多國家把無碳技術用到工農(nóng)業(yè)和日常生活的每個地方,“低碳生活”已成為全球發(fā)展趨向。就在國內(nèi)外大興節(jié)能減排時,這種純機械的機構理所應當?shù)拇嬖诤艽蟮氖袌龊桶l(fā)展前景[2],該課題也就具有了比較大的研究價值。同時,該命題對科學技術和工程有很大的實際應用價值和理論意義。 當然對我們當代大學生有待提升的創(chuàng)造性思維和動手能力有很大的幫助。本小車是對“無碳”理念的探索與開發(fā),對未來“無碳”的憧憬。小車構思巧妙,在完成設計的要求下充分考慮了外觀、成本、加工的可行性等問題,方便以后的擴展和進一步的開發(fā)。在小車的設計和制造過程中,能滿足大部分初高中及大學學生對機械知識實踐的實驗與了解,同時對于繪圖軟件的使用、零件加工工藝的過程有了更深入的了解,對激發(fā)青少年對機械構造的熱情有深遠的影響。 36 1.2研究狀況 自2010年第二屆大學生工程訓練競賽主題定為“無碳小車”,以后的第三、四屆也繼續(xù)沿用此主題。該命題與高校教學中的工程訓練密切相關,意在鍛煉學生的“創(chuàng)新設計、制造工藝、實際操作和工程管理”四個方面的綜合能力,比較系統(tǒng)和完整地考察學生的綜合素質和學習能力。剛開始,沒有對小車的軌跡要求,只是要求能繞障。后來,2012年第三屆開始要求小車的軌跡,分為S形和8字型。每屆競賽也都呈現(xiàn)出了很多優(yōu)秀的設計和實物的展現(xiàn),各種機構層出不窮,各有所長。并以競賽項目相關的設計、工藝、成本分析和工程管理四大部分來評比,其中,現(xiàn)場演示的成績相當重要,再加上8字型軌跡的特征,需要實現(xiàn)轉向、間歇和調節(jié)功能,這就對小車的轉向機構要求較高[3]。 據(jù)調查,無碳小車相關的圖書和期刊等,有對8字型小車的結構設計、軌跡分析等,相關的專利已查閱到28篇,其中與8字型直接相關的有4篇。但仍未形成相關的學位和會議論文,也未出現(xiàn)使用MATLAB模擬軌跡的相關分析成果。 大多是對軌跡分析、能耗分析、機構的設計等得討論和分析居多。也可能因為小車性能決定的原因,轉向部分相當重要,所以分析得較多的是轉向機構的設計。有采用過共軛凸輪滾子直動推桿、凹槽凸輪推桿、不完全齒輪和曲柄滑塊組合、曲柄搖桿、萬向節(jié)連桿、空間曲柄搖桿和不完全齒輪的組合、曲柄連桿等機構。傳動上的設計也有所不同,有選用帶輪、齒輪、皮帶和鏈傳動等,驅動上主要因為是三輪結構,所以也就單輪驅動的設計較多。 1.3技術要求 本論文主要以第四屆工程能力競賽的要求為主,設計具有“8”字型軌跡的繞障功能小車。障礙物是設在半大的兵乓球臺中線上,距離在300mm~500mm之內(nèi)可調,小車必須繞過兩障礙物且不碰倒,并按八字型運行,走的距離越長越好,完成的8字繞行圈數(shù)越多越好。對機構設計方面的要求:三輪結構,且轉向部分需要可控可調, 只有重塊提供源能量(其中,ma=1kg,φ5065 mm,普通碳鋼,懸高4002mm)。行走過程中,小車不能碰倒障礙,不能掉下球臺,重塊不能脫離小車[4]。如圖1-1為小車示意圖, 圖1-2 無碳小車示意圖 第2章 系統(tǒng)分析 為了使小車能夠更穩(wěn)更遠地行走,除了結構設計合理外,還需對小車系統(tǒng)的建模分析,以確定更加合適的結構尺寸。然而,影響小車行走軌跡的因素有很多,本章就最主要的能耗、受力、穩(wěn)定性三個方面做系統(tǒng)的分析。 2.1能耗規(guī)律分析 假設,重塊下降的勢能全用于小車前進(即在理想條件下),由系統(tǒng)能量守恒,可得: (2-1) (2-2) 注:Ni—第i個輪子對地面的壓力; Ri—第i個輪子的半徑; Si—第i個輪子行走的距離; —輪子與地面的摩擦系數(shù); —能量的傳遞效率; m總—小車總質量。 由此,可以看出小車行走的距離S與能量的傳遞效率、摩擦系數(shù)、輪子半徑R都有很大的聯(lián)系。小車在盡可能消耗少的能量走得更遠,即是小車能耗少,性能好的體現(xiàn),下面就主要以、、R分析[5]。 日常一般材料的是在0.1到0.8,通過調查,隨著的遞增,車子所走距離與能量轉換效率之間的關系,如圖2-1所示。由圖分析可見,隨著的增大,距離在減小,即小車可能更早的停下。由于,地面材料的不確定性,只有在選擇小車輪子時考慮與地面的摩擦和內(nèi)部能耗的因素,慎重選擇材料。 圖2-1 行走距離—摩阻系數(shù)圖 圖2-2是當摩擦系數(shù)=0.5m m時,小車行走距離與小車內(nèi)部轉換效率的坐標圖。由圖2-2可知,當小車的半徑遞增lcm時距離則相應的增多1~2m。因此,在結構設計上,在能保證完成八字型繞行和結構安裝的同時,可以適量地增大輪子半徑,從而使小車行走得更遠。 圖2-2 距離—輪子半徑圖(σ=0.5mm) 圖2-3是當小車后輪直徑與摩擦系數(shù)都定下來之后,隨著小車重量的遞增,小車的前進距離與內(nèi)部轉換的效率的關系圖。由圖2-3可知,小車質量越重,行走的距離相應也就越近,能量消耗地也就更多,更容易較早地停車。因此在設計小車時應盡量減少機構,材質的密度也要盡可能小,以減輕小車質量。 圖2-3 距離—重量圖 2.2受力系統(tǒng)分析 以小車為整體研究,系統(tǒng)的受力如圖2-4分析所示,其中Pl、P2、P3是重塊下降的重力的等效作用力,即主動力;FA、FB、FC為地面對小車的支撐力,即約束力,這六個力相互作用構成空間三維上的一個平衡力系。 圖2-4 小車受力系統(tǒng)分析示意圖 如上圖所示,在Oxyz中,由力的平衡,可以得到方程: (2-3) (2-4) (2-5) ∵Pl=P2=P3=8N,∴FA=6.8N,F(xiàn)B=6.8N,F(xiàn)c=10.4N, 又∵木質地板與鋁合金之間的摩擦系數(shù)大概在0.18~0.22,這里暫時以u=0.20為例計算,由,,, 所以,可解得三個輪子與地面的滾動摩擦分別為: ,. 這里對小車穩(wěn)定時的系統(tǒng)的動力分析,可得出輪子與地面間的滾動摩擦力的大小,但由于場地的不確定性,因此,摩擦力也不確定[6]。但通過此分析,可以得出摩擦力的大小與小車的質量有很大關系,因此,后期設計和選材方面,應該盡量減重。 2.3穩(wěn)定性分析 根據(jù)8字型軌跡的走法,一定存在轉向。有轉彎就有可能側翻,所以有必要找到不翻倒的條件,這里就以小車右傾倒為例做系統(tǒng)的穩(wěn)定性分析,圖2-5是右倒的受力分析圖, 圖2-5 小車側翻時的受力示意圖 以小車為研究對象,F(xiàn)max為小車轉彎時重塊所受的離心力,其余力與圖2-4相同,由受力分析可得, , (2-6) , (2-7) , (2-8) (2-9) (2-10) (2-11) 若小車出現(xiàn)右側翻,則FB=0,可得FA=13.6N,F(xiàn)B=0N,F(xiàn)c=10.4N,F(xiàn)max=2.72N, 其中,,Rmin為小車轉彎時的最小半徑,則。 由上述的分析可知,小車在行走時的最大速度可以通過改變繩子繞錐形輪的位置改變,最大速度時不超過錐形輪的最大端,隨后慢慢減小,以此達到控制轉彎時速度過大而側翻[7]。 2.4軌跡分析 小車實現(xiàn)繞“8”字型運行,有兩種軌跡走法:其一,不規(guī)則的軌跡,可近似地看作是由圓形和非圓組成,如圖2-6所示;其二,接近于兩個相切的圓組成,如圖2-7所示。 為使小車轉彎過程平穩(wěn),所設計的小車運行的軌跡曲率半徑不能突變,并且應當在滿足加工的可制造性和繞障距離的同時,整個軌跡長度應盡可能的短。這樣才能充分地利用重塊的重力勢能,減少行走過程中的能耗,以至于讓小車在規(guī)的能量下多走幾個循環(huán)周期[8]。 圖2-6 軌跡一 圖2-7 軌跡二 軌跡一,為計算簡便,假設為兩段半圓和兩段正弦曲線組成。在這里設定相同的障礙物距離為400mm,經(jīng)計算,軌跡總長度為L1≈2042.59mm[3]。相同情況下,軌跡二的總長度大概為L=22πR=2009.6m m,固選擇軌跡二。但由于實際實驗中很難走到圓形并且相切的情況,因此在后期結構設計中,也只能盡可能使8字軌跡更加豐滿,不要太瘦長。 第3章 結構設計 根據(jù)小車的技術和功能要求,可大致將小車分為五個模塊設計,包括:原動部分、傳動部分、轉向部分、驅動部分及車架部分。本章就小車結構設計方面討論和分析,并得出較為完整的結構設計方案。 3.1原動機構 原動機構的功能是把重塊的重力勢能轉化為到小車前進的動力上。于是,小車原動部分的設計須考慮以下條件: ①適當大的起動力矩,適當?shù)臓恳?,才能使小車足以起動、行駛平穩(wěn),拐彎的時候不會因為速度太大而出現(xiàn)晃動或者側翻; ②重塊在即將落到底板時,豎直方向上的速度應該盡可能地小,以免較大地沖擊小車,以至于停車; ③由于每種材料的摩擦力不同,場地的不確定性,小車轉化的動力也不同,因此需要考慮牽引力可調; ④小車的機構設計應該盡量簡化,減輕小車整體的質量,減少消耗; 綜合以上方面的考慮,選擇采用以前設計中出現(xiàn)的輸出動力可調的繩輪機構,材料選用鋁合金。為減少能量損失,采用高強度的尼龍線。開始時,起動力矩克服車輪的阻力矩向前滾動,起動小車,重物下降的過程就是重力勢能向小車動能的轉換。 由于重塊下降過程中不是勻速運動,實際下落的運動規(guī)律是:由靜止開始加速,然后勻速下落,最后進入減速階段,以接近速度為零落至底板。因此,開始時需要較大的起動力矩,才足以將小車牽動。所以需要對滾筒的直徑進行設計,這里通過資料的查閱,決定采用錐形圓柱體和滑輪組合結構,能夠更好地滿足以上的運動規(guī)律,使小車能夠比較平穩(wěn)地起動和行走得更長。這樣既減小了能量的損失,也充分地運用了重塊下降所做的功。此外,需要注意的是變徑線輪和驅動輪軸之間為過盈配合[9]。小車原動部分機構設計的組合方案,如圖3-1所示, 1-錐形圓柱體(繞線),2-滑輪機構(懸掛重塊) 圖3-1 小車原動機構圖 3.2傳動機構 傳動機構主要是將轉化來的動力傳到小車的驅動輪上。要使小車按照理想的軌跡行走,并且收到比較滿意的結果,傳動部分的設計須要保證傳遞效率高、傳動穩(wěn)定、結構簡單、質量輕等優(yōu)點[10]。常見的傳動機構及分析如下: ①帶輪傳動:結構相對簡單、傳動平穩(wěn)、抗震性能較好、成本低等,但其效率和傳動精度不高,不適合本小車設計,固舍棄。 ②齒輪傳動:結構緊湊、工作可靠、傳動比穩(wěn)定、傳動效率高,可達到95%。 ③同步帶傳動:雖然傳動效率很高,但是無碳小車中兩傳動軸的中心距小,不容易保證包角,所以舍棄。 ④皮帶傳動:易打滑,不夠平穩(wěn),傳動性不好,摩擦較大,能耗損失太大。 ⑤鏈條傳動:傳動比較準確,且質量輕,但瞬時轉速和瞬時傳動比無法固定,傳動的平穩(wěn)性較差。 綜上分析,可以采用線切割鋁合金制造齒輪,以保證傳動的精確性與質量較輕,固選齒輪傳動。 由于小車的動力源全部由重塊提供,則驅動輪和轉向機構都是通過傳動機構來運作的。驅動輪旋轉時,繞線筒在重塊的牽引力下產(chǎn)生扭矩使得驅動輪軸轉動。 此外,還以一定的傳動比將驅動輪上的旋轉運動傳遞給搖桿,帶動轉向機構旋轉。 為了行走到接近重合的8字,傳動部分的作用很大,則齒輪的傳動比i的取值就顯得非常重要。它不僅傳遞轉向機構的動力輸入,同時保證了在驅動輪完成一個周期的路程時,轉向機構完成一個周期的動作。 這里通過計算,以300mm直徑的軌跡為例,后輪直徑為160mm,則周長為160πmm。一個八字,軌跡長度相當于直徑為300mm的兩個圓,即600πmm。則小車每走完一個八字,后輪就轉動三圈,轉向兩次,如此循環(huán)。由于不完全齒輪與小齒輪是同軸輸出的,則暫選傳動機構中的齒輪傳動比1:5最為合適,所以初步確定小齒輪z=19,大齒輪z=99,不完全齒輪與轉向小齒輪的齒數(shù)比為1:2。須注意的是,齒輪的設計和材料的選擇,以及加工精度的保證。以盡量減少受載時軸彎曲變形,因此各傳動軸應有較高的剛度,位置上也有考慮軸的兩端支承跨距盡可能小,軸伸尺寸盡可能短,齒輪盡可能靠近支承處以提高運動的精度[11]。 3.3轉向機構 要實現(xiàn)8字型軌跡周期性的繞行,必須滿足軌跡封閉且曲率不能突變,這就要求轉向機構必須具有轉向和間歇的功能,又因為障礙物的距離是可調動的,則要求轉向機構根據(jù)間距做一定的調整,所以還必須設計調節(jié)機構。當然,在同樣能滿足基本功能的時候,要考慮怎樣才能使小車更精確地轉向、更遠更穩(wěn)地行駛。 3.3.1轉向部分 通過查閱大量書籍和文獻,能夠實現(xiàn)將豎直平面的轉動轉化為水平面運動的轉向功能機構的主要有以下幾種:錐齒輪、凸輪搖桿、曲柄搖桿、差速轉彎等。考慮到結構的復雜和安裝精度等當面,不考慮前兩者,后面兩者的比較分析如下: 差速轉彎:通過運用兩個驅動輪的角速度不同,而導致轉動的半徑不同,從而使產(chǎn)生不同的速度,形成差速。但是加工精度要求高,較難實現(xiàn)預期的運動[12]。 曲柄搖桿:曲柄做圓周運動轉化為平面的往復運動,結構簡單,加工方便。 最終選擇,決定使用曲柄搖桿。但是,由于曲柄搖桿無間歇的運動特性,單純地采用曲柄搖桿機構可以實現(xiàn)的8字軌跡非?!笆蓍L”,這樣小車軌跡的重復性不是很好,而且因其所需要的前輪最大擺角非常大,容易使小車轉彎時發(fā)生傾覆,所以在這里還應添加補充設計間歇機構。此外,曲柄搖桿機構是將豎直平面內(nèi)將旋轉運動轉化為周期性的往返運動,卻無法將豎直平面的運動轉向為水平面的運動,也無法控制前輪的轉向,所以添加球頭,將豎直平面的運動轉化為水平面的運動,已達到小車轉向的目的。 3.3.2間歇部分 間歇機構的主要功能是將主動件中的連續(xù)運動轉化為從動件有停歇的周期或非周期性的運動。使用比較多的機構有:凸輪、不完全齒輪、棘輪和槽輪機構,下面就這幾種比較和分析。 凸輪:擺角設計上有其優(yōu)勢,通過調整凸輪輪廓便于實現(xiàn)復雜的軌跡樣式。 不完全齒輪:配合完全齒輪使用。當不完全齒輪上的輪齒與從動齒輪的相嚙合時,從動輪運動;當嚙合分開時,從動輪靜止,停歇比可控性較高,設計較靈活。但在嚙合時,隨著從動輪角速度的變化,機構將產(chǎn)生剛性沖擊,且脫離嚙合時,也會產(chǎn)生剛性沖擊[13]。 棘輪:具有單向間歇特性,多用于進給、制動、超越和轉位分度等機構、且摩擦大,不適用于周期性的往復運動。 槽輪:轉位較快,效率較高。但不能保證轉彎時的穩(wěn)定性,且槽輪的轉角大小不能調節(jié),制造和裝配的精度要求較高,難以保證。 考慮到小車實際運轉速度慢、輕載和重復性要求高的特點,不完全齒輪有著更為明顯的優(yōu)勢,所以,選擇不完全齒輪機構能夠更好地實現(xiàn)小車轉向過程中的間歇運動。 3.3.3調節(jié)部分 由于障礙物的間距不確定、隨機的,所以小車的最大轉向角需可調,而小車的轉角又與曲柄、連桿、搖桿的長度有關。曲柄和搖桿的長度對小車精確地完成重復軌跡至關重要,考慮到加工和裝配精度的限制,必須增設微調機構。 針對曲柄搖桿機構可采用兩種微調方式,一種是螺母式,另一種是滑塊式。為了更方便的調節(jié)搖桿連桿的長度,選用螺母式[14]。連桿的長短主要通過粗調和細調兩種方式來實現(xiàn),即在連桿的一端設置不同位置的定位孔與曲柄連接實現(xiàn)粗調,而在連桿的另一端通過螺紋與搖桿連接實現(xiàn)細調,通過螺紋轉動的角度來改變連桿、搖桿的長度。此外,兩端的螺紋需要反向,當向某一側旋轉旋套,兩側的螺桿同時旋入或旋出,從而減小或增大連桿的長度。這里采用的是M5公制細牙螺紋,牙距為0.5mm。微調時,當旋轉旋套10,連桿長度變化值Δ為:Δ=0.52=0.0278mm??梢姡⒄{機構可以實現(xiàn)小距離的調整,在一定范圍內(nèi)滿足調整要求。結構如圖3-4所示, 1和3—球頭,2和4—微調螺桿 圖3-4 雙球頭—螺桿 3.4驅動機構 根據(jù)小車的運動原理和技術要求,初步確定可行的驅動方案有雙輪驅動、差速驅動、單輪驅動,三種方案的對比和分析如下: 雙輪同步驅動:小車前進中會有輪子與地面打滑從而產(chǎn)生滑動摩擦,能量利用率因此而降低,行走時也會受到更多的約束,導致行走的軌跡誤差變大; 雙輪差速驅動:雖然可以通過差速器能相應的減少摩擦,但單向軸承存在間隙,在主動輪和從動輪的切換過程中會出現(xiàn)誤差導致運動軌跡有偏差,精確度較低[16]。 最終,考慮到加工過程中的可操作性和加工成本等一些列問題,選擇單輪驅動作為小車的驅動機構。在確定單輪驅動作為驅動方案后,就直接把驅動輪作簡化為參考點,并進行軌跡分析。通過前面一章軌跡的分析可以得到理想的軌跡路線應該是一個對稱的且圓滑的八字形。考慮到單輪驅動向左轉彎和向右轉彎時,在主動輪在內(nèi)側和外側,會產(chǎn)生不同的回轉半徑R。假設右邊的后輪為主動輪,向右轉時R=-,向左轉時R=+(其中,a為障礙物間距,b為小車的車寬,θ為前輪擺角),因此,最終形成的軌跡是一個葫蘆型的八字。 3.5底板和支撐架 為了防止重塊下降過程中擺動,影響小車行走,設計了三根立柱的約束導軌,提高了小車的穩(wěn)定性。車架要盡可能的輕便、牢固,剛度要適當,彈性小,在重物的壓力下要求變形盡可能小。綜合質量、成本、加工難易、裝配等因素的考慮,車架選擇鋁合金制作成支撐架。如圖3-5所示, 圖3-5 三導軌支撐架 底板是小車最主要的承載體,連接重要機構,固結構設計一定要合理??紤]到小車載重不是很大,將底板設計成框式結構。為了避免底板因發(fā)生振動而造成大量能量損失,將支撐架橫截面設計成T字型,邊框的寬度為10mm,厚度為5mm,這樣就可以保證了小車的剛度,在不變形的情況下又能承受住載荷,理想的底板結構如圖3-6所示。 圖3-6 底板理想結構示意圖 然而,底板的寬度決定了兩個后輪之間的軸距,由于小車連續(xù)不斷地作曲線運動,因此兩個后輪行走時存在著速差。軸距會影響小車的平穩(wěn)性,并且對后輪的差速性能也有很大的影響。軸距太小則會降低小車行走過程中的平穩(wěn)性,軸距太大又會加大小車的轉向難度[17]。在把每個零件裝配上去后,取底板能夠達到的最小值,將底板的寬度設計為130mm,長度根據(jù)齒輪嚙合的長度以及轉向部分和行走部分所占長度設計為261.5mm,厚度為3mm,既可以保證形變量很小,也可以最大化的減輕重量,最終小車底板實際結構如圖3-7所示, 圖3-7 底板實際俯視圖 3.6整車設計 整車的軸承統(tǒng)一選擇:內(nèi)徑確定為6毫米,外徑確定為10毫米,寬度確定3毫米的微型深溝球軸承。根據(jù)往屆工程能力競賽的要求設計前輪直徑為30mm,厚度為10mm,以便于放下兩個軸承。 轉向部分的球頭為網(wǎng)上購買,設計尺寸為內(nèi)徑3mm,外徑5mm;微調螺母為雙向螺紋,為了適應球頭設計外徑為3毫米,長度為55毫米;轉向支撐架根據(jù)已確定的零件尺寸來設計;與前輪支撐架連接到螺桿為全螺紋,設計長度為86mm,便于大幅度的調節(jié)長度,改變前輪的最大轉角。 傳動機構的不完全齒輪設計為68個齒,模數(shù)為1,隔90把齒切掉,與不完全齒輪連接的小齒輪設計為33個齒,模數(shù)為1,傳動比約為1:2;而有前面的說明可知原動軸上的齒輪與傳動軸上的齒輪齒數(shù)分別為19和99,模數(shù)為1;繞線輪設計為錐形,最大直徑和最小直徑分別為18mm和15mm。 根據(jù)前面章節(jié)的設計,后輪的直徑160毫米,厚度為5毫米,小車底板寬130毫米,長度為150毫米,厚度為3毫米,各個支架依據(jù)安放位置自行調整設計,再把車架多余的地方掏空。 依據(jù)以往比賽經(jīng)驗,支撐長桿要保持重心的穩(wěn)定,設計桿長500mm,且三根桿起穩(wěn)定砝碼的作用;滑輪直徑根據(jù)繞線軸一側到砝碼中心線的距離設計為25mm,厚度8mm。 第4章 軌跡模擬 在前面第二章里已經(jīng)設計好轉向機構,但為了確保機構的可行性以及更遠更穩(wěn)地行駛,需要事先對軌跡模擬,本章主要是利用MATLAB中SimMechanics模塊對8字型軌跡的模擬的分析和探討。 4.1基于SimMechanics的軌跡模擬 SimMechanics是將Simulink和Matlab結合起來對機械系統(tǒng)進行建模仿真的一個模塊。主要運用牛頓定律的原理,結合模塊圖的建模將各種運動件和運動副連接起來進行建模和仿真,以完成對機構系統(tǒng)的分析和設計[18]。 4.1.1 SimMechanics模塊和功能 SimMechanics是一個模塊庫,使用的環(huán)境為Simulink,具有特殊仿真性質。SimMechanics中的模塊都是建立機構系統(tǒng)所必須的,剛度、聯(lián)接和自由度都能有組織的聯(lián)接表示成實際系統(tǒng)[19]。 SimMechanics模塊集由七個模塊組成,如圖4-1所示, 圖4-1 SimMechanics模塊組 包含剛體子模塊組(Bodies)、運動副模塊組( Joints)、約束和驅動模塊組(Constraints & Drives )、傳感器和作動器模塊組( Sensors & Actuators)、力單元模塊組(Force Elements)、輔助工具模塊組(Utilities)、演示模塊組(Interface Elements)。各模塊組的組成和功能: (1)剛體子模塊組(Bodies):包含機械環(huán)境(Machine Environment)、機架(Ground)和剛體(Body)三個模塊。機械環(huán)境是仿真定義一個環(huán)境,它包括維數(shù)、重力、約束求解器、分析模式、誤差、可視化和線性化。機架只有一個連接端,另外一端固定。剛體有兩個連接端,即主動端(輸入端)和從動端(輸出端),且具有幾何和慣量的屬性,可以定義質量、坐標原點、初始位置、角度和慣性矩等[20]。 (2)運動副模塊組( Joints):包含Disassembled Joints和Massless Connectors兩個模塊。其中對應的鉸如下圖4-2和4-3所示, 圖4-2 Disassembled Joints模塊組 圖4-3 Massless Connectors模塊組 運用此模塊組中的運動鏈可以將不同的剛體構件連接起來。 (3)約束和驅動模塊組(Constraints & Drives ):如圖4-4所示, ? Distance Driver: 設定兩剛體坐標原點之間的距離 ? Angle Driver: 設定兩剛體坐標間的角度 ? Linear Driver: 確定兩剛體坐標間的向量差 ? Velocity Driver: 確定兩剛體坐標間的相對線速度和角速度 ? Point-Curve Constraint:曲線約束 ? Parallel Constraint:平行約束 ? Gear Constrain:齒輪約束 圖4-4 約束和驅動模塊組 (4)傳感器和作動器模塊組(Sensors & Actuators):主要用于與Simulink模塊進行交換。包含模塊如圖4-5所示, 圖4-5 傳感器和作動器模塊組 (5)力單元模塊組(Force Elements):模塊和功能如下, ? Body Spring & Damper:兩剛體間施加線性阻尼振子 ? Joint Spring & Damper:在兩剛體在單自由度鉸或轉動鉸處施加線性阻尼振蕩力或力矩。 (6)輔助工具模塊組(Utilities):包含Connection Port、Convert from Rotation Matrix to Virtual Reality Toolbox、Continuous Angle、Mechanical Branching Bar四個模塊。 (7) 演示模塊組(Interface Elements):包含Prismatic-Translationl Interface和Revolute-Rotational Interface兩個模塊。 4.1.2仿真機構分析 這里以機械系統(tǒng)中比較典型的機構——平面四桿為研究對象,探討如何用SimMechanics模塊集進行機構運動分析。如圖 4-6所示平面四桿機構(曲柄擺桿)的運動簡圖,圖中各構件均為等截面圓鋼(直徑d=20m),圖示中的位置表示此機構最開始的位置和結構尺寸。 圖4-6 四桿機構尺寸圖 因為每個桿都是受到約束的,且二維平面內(nèi),每個桿的運動都是唯一的,即自由度為1。運用SimMechanics建立模型大概可按以下三個步驟去實施: ①由系統(tǒng)構件的相對位置,建立仿真模型; ②由每個構件的幾何性質和物理特性,求出仿真所需的具體參數(shù),并設置模型仿真參數(shù); ③在Simulink環(huán)境中運行模型,動態(tài)地顯示機構仿真結果。 4.1.3建立仿真模型 操作步驟包括: (1)新建模型,并保存。 (2)從SimMechanics庫中拖放需要的模塊,并按一定的順序連接,在Ground模塊中設置機械環(huán)境。 (3)搭建模塊框圖,建立如圖4-7所示的模型圖。 圖4-7 模型圖 4.1.4仿真參數(shù)設置 (1)配置Ground模塊,設置不同的參數(shù),具體設置如下圖4-8所示。 (2)配置Jiont模塊,并分別設置參數(shù),如圖4-9。按順序打開Revolute參數(shù)對話框,Axis of rotation[x,y,z]都是[0 0 1],Reference csys均為WORLD,保留此參數(shù),觀察到每個均順序連接,并設置參數(shù)Number of senor。 圖4-8 Ground1和Ground2模塊參數(shù)對話框 4-9 Revolute1-4的模塊參數(shù)對話框 (3)配置Body模塊,并分別設置參數(shù)(主要包括質量、長度、方向、重心位置和剛體的坐標系統(tǒng)),如圖4-10-1,4-10-2,4-10-3所示。 圖4-10-1 Body1質量和坐標數(shù)據(jù) 圖4-10-2 Body2質量和坐標數(shù)據(jù) 圖4-10-3 Body3質量和坐標數(shù)據(jù) 4.1.5仿真結果輸出 (1)添加Joint Sensor模塊檢測運動,建立模型連接,如下圖4-11所示。 (2)添加Scop模塊,設置仿真參數(shù),運行仿真,結果如圖4-12所示。 圖4-11 完整的模型圖 圖4-12 添加Scop模塊后運行仿真圖 4.2偏差分析 上述仿真實例是分析的平面四桿機構,而本文小車的曲柄搖桿機構添加了球鉸鏈,實際結構為空間曲柄搖桿,故不完全適用于本設計。但其實原理相似,從中可以知道無論是空間還是平面四桿機構的仿真,均是由最初的位置確定的。位置應該包括連接處的坐標、連桿相對機架的角度等[21]。然后對機構中的每個構件進行分析,最后確定機構的自由度(這里一般都是1),并在SimMechanics庫中選擇需要的模塊,按一定的順序將其連接成完整的系統(tǒng)模型圖。當然,同時也要對相應的模塊設置相應的參數(shù),最后是添加傳感器和SCOP模塊將其運動仿真的結果以圖形的形式顯出來。 第5章 三維建模及運動仿真 通過前面幾章的設計和分析,機構和參數(shù)已經(jīng)大致明確,然而工程中,當需要加工出實物時,為了節(jié)省時間、降低加工成本,往往需要利用三維軟件繪制實體零件圖和整體裝配圖,以確保機構的可行性和裝配中可能遇到的問題得以更好地解決,也能確保實物加工的進度和精度。如果涉及到運動的機構,還須做 部分機構的運動仿真,保證機構的運動特性[22]。 5.1三維建模 本設計時采用的三維軟件是Proe,要對實物或設計進行三維建模時,同樣也需要零件的基本尺寸,所以實體建模之前還得確定每個零件的尺寸(這里不考慮材料的區(qū)分)。 5.1.1機構尺寸確定 通過前面的機構設計和軌跡模擬,整個小車的主要的結構和尺寸基本確定,詳見表5-1所示, 表5-1 小車結構尺寸 結構名稱 基本尺寸 材料、制造方式 不完全 齒輪 小齒輪 模數(shù)m=1,壓力角=20, 寬度=5mm 齒數(shù)z=33, 鋁合金 線切割 大齒輪 齒數(shù)z=68 傳動機構 小齒輪 齒數(shù)z=19 大齒輪 齒數(shù)z=99 后輪軸 直徑=6mm,長度=160mm 鋁合金 車削 驅動軸 直徑=6mm,長度=128mm 后輪 直徑=160mm,厚度=5mm 支撐桿 直徑=5mm,長度=500mm 連桿 直徑=4mm,長度=86mm 前輪 外徑=30mm,內(nèi)徑=10mm 鋁合金、銑削 5.1.2基于Proe的三維建模 Proe建模的一般步驟: (1)建立并選取基準(基準面、基準軸和基準坐標系等)作為參照; (2)建立基礎實體特征:拉伸、旋轉、掃描、混合等; (3)建立工程特征:孔、倒角、肋、拔模等; (4)特征的修改:特征陣列、特征復制等編輯操作; (5)添加材質和渲染處理。 根據(jù)前面小車結構和尺寸的確定,運用Proe繪制小車各零件實體圖(詳見后面附圖),通過裝配每個零件,形成一個完整的實物建模,如圖5-1所示小車裝配圖, 1-底板,2-右后輪,3-傳動(大)齒輪,4-導軌,5-滑輪,6-不完全齒輪,7-前輪 圖5-1 小車裝配圖 5.2運動仿真 在工程實驗中,凡是要求做實物、機構存在運動,為了降低時間和加工的成本,一般都會事先使用軟件做部分運動仿真,主要是檢驗機構間的傳動和配合,驗證機構的可行性,準確裝配保證正常的運動特征[23]。 基于PROE的運動仿真,主要是在三維建模之后的裝配圖中,實現(xiàn)運動部分的運動仿真。參數(shù)的設置尤為重要,需要根據(jù)運動的狀態(tài)和特性,添加電機和運動的時間,其中電機的位置和時間的長短等都是需要著重考慮的因素。下面就齒輪和電機的定義和測量分析做詳細的介紹[24]。 5.2.1齒輪連接的定義 在裝配正確的情況下,需要定義齒輪的連接,如圖5-2和5-3,需要確定每個齒輪的直徑即可完成定義[25]。 圖5-2 不完全齒輪連接副的定義圖 圖5-3 齒輪連接副的定義圖 5.2.2電機的定義 在動力方面,并沒有給定砝碼的自由落體提供能量,而是簡化成在原動軸上添加電機,如圖5-4,設定為伺服電機,速度為常數(shù)20度每秒。 圖5-4 伺服電機定義圖 5.2.3測量分析 設定初始時間0,結束時間50秒,幀數(shù)25幀每秒,最小間隔0.04,點擊確定和運行,即可觀察到電機運行機構的運動情況,如圖5-5所示。并觀察發(fā)現(xiàn),通過傳遞電機的動力帶動右后輪的轉動,并通過傳動驅使前輪間歇地轉向運動,即證明機構的可行性。 圖5-5 測量分析圖 結論 本文經(jīng)過前期充分的調查,翻閱大量的書籍和資料,分析了命題相關的研究狀況,再結合國內(nèi)外相關技術的發(fā)展趨勢和背景,確定了命題具有一定的研究意義和研究價值。根據(jù)小車的運動原理和技術要求設計了比較合理的結構,再使用MATLAB軟件中的Simulink-SimMechanics 模塊實現(xiàn)轉向機構的軌跡仿真,模擬出比較接近的8字型軌跡,通過參數(shù)的設置,分析和比較,確定最為合適的參數(shù),最后明確各機構尺寸的大小和材料。再使用PROE實體建模,裝配機構零件圖,實現(xiàn)部分運動仿真,驗證前期機構設計的合理性,以保障實物的加工,降低成本。 本文最大的難度在于空間四桿機構的軌跡仿真和不完全齒輪的機構運動仿真。MATLAB中的SimMechanics模塊的學習和熟悉度還不夠,未形成定量的計算,只是定性的分析了仿真的方法,從而更加明晰了小車的轉向原理。 同時,本文的不足之處包括,機構的設計分析還不夠明細和到位。由于時間的緊迫和知識的淺薄,大多都是定性的分析,沒有定量的計算,可能存在設計結構的選擇不是很好,一些細微的結構設計沒過多的闡釋理由。軸類沒有通過嚴格的剛度校核,軌跡模擬也存在很大的偏差,只能選擇更為接近的理想軌跡確定參數(shù),機構大多通過實現(xiàn)的功能借鑒歷屆的效果而選擇的,也未考慮太多實物加工的難度和精度,導致加工的實物與理想的存在很大的偏差,這可能也是導致軌跡沒法實現(xiàn)預期效果的原因之一。 但是,通過本次設計和論文的撰寫、圖紙的繪制和軟件的學習,比較系統(tǒng)的熟悉了無碳小車的結構和運動系統(tǒng),并且更加熟練了二維軟件CAD的使用,也基本學習了三維PROE和MATLAB的常用功能,重新溫習了以前學習的一些機械知識。整個過程中,也提高了自我思考、發(fā)現(xiàn)問題、分析和解決問題的能力。 參考文獻 [1]Devdas Shetty,Lou Manzione.Survey of Mechatronic Techniques in Modern Machine Design[J].Hindawi Publishing Corporation,11(2012). [2]Paul L, Chandler,Dean J. Counting the losses in very high efficiency machine design for renewable energy applications[J]. Renewable Energy,22(2001) 143~150. [3]吳新良,劉建春.重力驅動的避障小車設計與制造[J].機械設計,2014,31(10):25~28. [4]豆龍江,詹長庚,龐晨露.無碳小車的機械結構設計[J]. 機械工程與自動化,2014(2). [5]朱孝錄.機械傳動設計手冊[M].北京:電子工業(yè)出版社,2007. [6]王建軍,朱海龍.無碳小車轉向控制機構數(shù)學模型的建立[J].機電一體化,2014,20 (2). [7]吳朝春.無碳小車的機構與運動分析[J].電子制作刊,2013(13). [8]王偉.淺析無碳小車設計的原理與方法[J].華人時刊,2012,8(下). [9]曹斌等.基于槽輪機構的8字軌跡無碳小車設計[J].合肥工業(yè)大學報,2014,37(6). [10]趙亮,吳軍,鄭小軍.純機械傳動無碳小車創(chuàng)新設計[J].科技信息刊,2013 (2). [11]張克躍.理論力學[M].中國鐵道出版社,2004(07):19~102. [12]張磊.一種無碳小車的設計與性能分析[J].電子制作,2013(9). [13]陳曉東.無碳小車的設計、制作與創(chuàng)新實踐[J].實驗室研究與探索,2013,32(12). [14]胡紅英,于金普.無碳小車結構設計與分析[J].大連民族學院學報,2013,15 (5) . [15]張寶慶,肖富陽.重力勢能小車“軌跡法”創(chuàng)新結構優(yōu)化設計[J].機械傳動,2012,36 (3) . [16]徐巖,佟岳軍,陳彥國.自動繞障無碳小車的設計[J].現(xiàn)代企業(yè)教育,2012 (21) . [17]偉松,梁倩,王強.一種無碳小車的優(yōu)化設計[J].科技與企業(yè),2014 (5). [18]杜磊,葉海.無碳小車的能耗規(guī)律與穩(wěn)定性分析[J].硅谷,2013,6(10). [19]胡越銘.基于凸輪機構的8字形無碳小車創(chuàng)新設計[J].北方工業(yè)大學報,2014,26 (1). [20]卞玉帥,陳正強,晁興旺.無碳小車軌跡建模與參數(shù)優(yōu)化[J].科技視界,2013 (33). [21]付興建.控制工程數(shù)學基礎_教學中Matlab仿真的輔助應用[J].科技信息,2010 (16). [22]郗浩杰.無碳小車繞8字的創(chuàng)新設計與仿真[J].科技創(chuàng)新與應用,2013(26). [23]楊樹川.基于SimMechanics的機構運動分析與仿真[J].河北工業(yè)科技,2011 (4). [24]張玉航,黃力.8字繞障無碳小車轉向系統(tǒng)的設計[J].科技創(chuàng)新導報,2014(13):87~89. [25]王文君,袁新梅.8字形軌跡無碳小車的創(chuàng)新性設計[J].中國機械報,2013(17). 致謝 首先由衷地感謝唐黔湘老師精心為我擬定本次論文設計命題。而且主要是在唐老師的耐心指導和本專業(yè)同學的幫助下完成的。 論文進行中,唐老師定期給我們小組安排任務,并分批查收和指正。給與我們適當?shù)闹敢旨ぐl(fā)我們的主動性,很好的把控了每個階段的學習和任務,而我們依照他的指示認真的完成作業(yè),整個過程也相對比較輕松,得以順利而圓滿地完成畢業(yè)論文。感謝唐老師為我們的精心設計和付出,他嚴謹?shù)闹螌W態(tài)度、追求創(chuàng)新的進取精神是我學習的榜樣。 此外,也衷心地感謝我們專業(yè)的老師,是您們教予我專業(yè)的知識,授予我專業(yè)的技能,讓我在大學期間,學到了一技之長,才有基本的資格參與社會去工作。也感謝所有敬業(yè)在教師職位上的老師,是您們教育我們學生做人做事,成長成才,您們辛苦了,老師! 當然,在這其中,也必須感謝一直陪伴我左右的同學,無論是在這次的畢業(yè)設計還是平日的學習中,我們互相探討、互相學習的樂趣無處不在,不懂的相互詢問,一起解答疑難,沒解決一個問題都是我們共同努力的成果,我們在學習中成長,在成長中快樂。同時,也感謝我的舍友們,在生活上和學習上給予的幫助,我們朝夕相處,無話不說,失落或高興都有你們相伴,從此不再孤單,因為分享而更加快樂,因為分擔而更加釋懷。感謝你們的陪伴,讓我的大學生活更加豐富多彩。 最后,衷心地感謝為本次畢業(yè)設計而付出辛勤勞動的各位老師,您們的意見和批評都是我需要改正的地方,我將虛心接受并校正,謝謝!- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 畢業(yè)論文+CAD圖紙全套 一種 行駛 特定 軌跡 小車 設計 畢業(yè)論文 CAD 圖紙 全套
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://ioszen.com/p-7036480.html