新浙教版初二數(shù)學(xué)二次根式提高講義.doc
《新浙教版初二數(shù)學(xué)二次根式提高講義.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《新浙教版初二數(shù)學(xué)二次根式提高講義.doc(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
二 次 根 式 提 高 講 義 一、知識(shí)點(diǎn)睛 1. 理解二次根式的雙重非負(fù)性,辨識(shí)四類典型形式. (1)若,則 (2)若出現(xiàn)或,則 (3)若和同時(shí)存在,則 (4); 2. 根據(jù)數(shù)軸和線段的幾何特征建等式. 如圖,數(shù)軸上三點(diǎn)A,B,C對(duì)應(yīng)的實(shí)數(shù)分別為a,b,c,若點(diǎn)A與點(diǎn)B關(guān)于點(diǎn)C對(duì)稱(即C是線段AB的中點(diǎn)),則線段AC=_______,BC=_______,因?yàn)锳C=BC,所以a,b,c的數(shù)量關(guān)系是______________. 3. 完全平方公式在二次根式化簡(jiǎn)中的應(yīng)用. (1); (2)若,則 4. 實(shí)數(shù)比較大?。? (1)作差法 (2)形似法 (3)乘方法 (4)分母有理化 二、精講精練 1. 若x,y為實(shí)數(shù),且,則的值為( ) A.1 B.-1 C.2 D.-2 2. 已知,則=___________. 3. 一個(gè)數(shù)的平方根是和4a-6b+13,求這個(gè)數(shù). 4. 若a,b為實(shí)數(shù),且滿足,則 =________. 5. 若有意義,則x的值為________. 6. 化簡(jiǎn)=________. 7. 若,則=________. 8. 若,則3x+4y=________. 9. 當(dāng)時(shí),化簡(jiǎn): 10. 實(shí)數(shù)a、b、c在數(shù)軸上的對(duì)應(yīng)點(diǎn)如圖所示: 化簡(jiǎn): 11. 化簡(jiǎn): 12. 如圖,矩形ABCD中,AB=3,AD=1,AB在數(shù)軸上,若以點(diǎn)A為圓心,對(duì)角線AC的長(zhǎng)為半徑作弧交數(shù)軸的正半軸于點(diǎn)M,則點(diǎn)M所表示的數(shù)為( ) A. B. C. D. 13. 如下圖所示的數(shù)軸上,點(diǎn)B與點(diǎn)C關(guān)于點(diǎn)A對(duì)稱,A,B兩點(diǎn)對(duì)應(yīng)的實(shí)數(shù)是和-1,則點(diǎn)C所對(duì)應(yīng)的實(shí)數(shù)是( ) A.1+ B.2+ C.-1 D.+1 14. 數(shù)軸上A,B兩點(diǎn)對(duì)應(yīng)的實(shí)數(shù)分別是和2,若點(diǎn)A關(guān)于點(diǎn)B的對(duì)稱點(diǎn)為點(diǎn)C, 則點(diǎn)C所對(duì)應(yīng)的實(shí)數(shù)為 . 15. 若,則 16. 若,則__________. 17. 已知,求的值. 18. 已知,求的值. 19. 化簡(jiǎn)下列各式: (1) (2) (3) (4) (5) (6). 20. 比較實(shí)數(shù)大小. (1)______4; (2) (3)______;(4)______; (5)______0.5; (6)______-8. 21.(1)已知a、b為有理數(shù),m、n分別表示5-的整數(shù)部分和小數(shù)部分,且amn+bn2=1,則2a+b=__________。 (2)已知2012+與2012-的小數(shù)部分分別是a和b,求代數(shù)式ab-3a+4b+8的值。 【閱讀理解與創(chuàng)新探究】 我國(guó)著名數(shù)學(xué)家華羅庚曾說過:“數(shù)形結(jié)合百般好,隔裂分家萬事非”.?dāng)?shù)與形是數(shù)學(xué)中的兩個(gè)最古老,也是最基本的研究對(duì)象,它們?cè)谝欢l件下可以相互轉(zhuǎn)化.?dāng)?shù)形結(jié)合就是把抽象的數(shù)學(xué)語言、數(shù)量關(guān)系與直觀的幾何圖形、位置關(guān)系結(jié)合起來,通過“以形助數(shù)”或“以數(shù)解形”即通過抽象思維與形象思維的結(jié)合,可以使復(fù)雜問題簡(jiǎn)單化,抽象問題具體化,從而起到優(yōu)化解題途徑的目的. 【思想應(yīng)用】 實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng),為了在數(shù)軸上找到這個(gè)點(diǎn)的位置,可以借助于勾股定理來構(gòu)造直角三角形來解決.請(qǐng)你利用勾股定理在下圖的數(shù)軸上找出點(diǎn). 【思想類比1】 試比較-與(x>y>0)的大小,并說明理由. 小明受此啟發(fā),想用數(shù)形結(jié)合的思想來處理,聯(lián)想到勾股定理,分別以,為直角邊作如圖(1)所示的直角三角形,則其斜邊長(zhǎng)為,就能輕松解決上述問題,你能說明里面的道理嗎?___________________________________________. 圖(1) 圖(2) 【思想類比2】已知m,n均為正實(shí)數(shù),且m+n=2. 求的最小值. 如圖(2),AB=2,AC=1,BD=2,AC⊥AB,BD⊥AB,點(diǎn)E是線段AB上的動(dòng)點(diǎn),且不與端點(diǎn)重合,連接CE,DE,試表達(dá)CE和DE的長(zhǎng)度,并據(jù)此解決上述最小值問題. 圖(2) 【探究遷移】代數(shù)式的最小值是____.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 新浙教版 初二 數(shù)學(xué) 二次 根式 提高 講義
鏈接地址:http://ioszen.com/p-7862635.html