購(gòu)買(mǎi)設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見(jiàn)即所得,都可以點(diǎn)開(kāi)預(yù)覽,,資料完整,充值下載就能得到。。?!咀ⅰ浚篸wg后綴為CAD圖,doc,docx為WORD文檔,有不明白之處,可咨詢(xún)QQ:1304139763
設(shè)計(jì)題目 銅墊片沖壓模具設(shè)計(jì) 系 別 機(jī)電工程系 專(zhuān) 業(yè) 模具設(shè)計(jì)與制造 班 級(jí) 姓 名 學(xué) 號(hào) 指導(dǎo)老師 完成時(shí)間 目 錄 設(shè) 計(jì) 課 題 2 職業(yè)技術(shù)學(xué)院畢業(yè)設(shè)計(jì)說(shuō)明書(shū) 1 一 沖 壓 件 工 藝 性 分 析 1 制 件 結(jié) 構(gòu) 工 藝 性 分 析 3 2 公 差 和 表 面 粗 糙 度 分 析 3 二 工 藝 方 案 的 制 定 3 三 沖 壓 零 件 主 要 參 數(shù) 的 計(jì) 算 4 1 確 定 搭 邊 值 計(jì) 算 條 料 寬 度 4 3 壓 力 中 心 及 沖 壓 力 的 計(jì) 算 5 4 壓 力 機(jī) 標(biāo) 準(zhǔn) 公 稱(chēng) 壓 力 確 定 6 5 模 具 工 作 零 件 的 刃 口 尺 寸 及 公 差 的 計(jì) 算 7 四 沖 壓 模 總 體 結(jié) 構(gòu) 設(shè) 計(jì) 1 模 具 類(lèi) 型 8 3 模 架 類(lèi) 型 的 確 定 8 4 結(jié) 構(gòu) 分 析 9 5 工 作 過(guò) 程 9 五 設(shè) 計(jì) 小 結(jié) 10 六 謝 辭 10 七 參 考 文 獻(xiàn) 10 畢業(yè)設(shè)計(jì)任務(wù)書(shū) 職業(yè)技術(shù)學(xué)院畢業(yè)設(shè)計(jì)說(shuō)明書(shū) 2 姓名 學(xué)號(hào) 45 班級(jí) 模具 061 一 設(shè)計(jì)課題 銅墊片沖壓模具設(shè)計(jì) 二 工件圖及技術(shù)要求 190 246 5 0 213R2R24 0 165 0 1 3 0 4 1 1 零件名稱(chēng) 銅墊片 2 材 料 H62 3 材料厚度 0 5mm 4 未注公差按 14級(jí) 5 批量生產(chǎn) 三 任務(wù)要求 1 完成制件工藝性分析 確定制件成形工藝方案 2 完成模具裝配圖設(shè)計(jì) 繪制模具總裝圖 3 完成模具零件圖設(shè)計(jì) 繪制模具零件圖 4 撰寫(xiě)畢業(yè)設(shè)計(jì)說(shuō)明書(shū) 指導(dǎo)教師 職業(yè)技術(shù)學(xué)院 機(jī)電工程系模具教研室 200 年 月 職業(yè)技術(shù)學(xué)院畢業(yè)設(shè)計(jì)說(shuō)明書(shū) 3 制件圖19 0 246 5 0 213R2R24 0 165 0 1 3 0 4 1 一 沖壓件工藝性分析 1 結(jié)構(gòu)工藝性分析 1 該工件形狀簡(jiǎn)單 規(guī)則 使用單次沖裁 2 該沖件處有尖角 但圖紙上無(wú)特殊要求 用圓角過(guò)渡 3 沖件無(wú)懸臂和狹槽 4 最小孔邊距為 4 1 5 2 1 25 1 5t 孔與孔之間的距離 3 3 0 75 0 5 2 05 t 合理 5 沖裁件端部帶圓弧 因?yàn)樵摬牧媳容^軟 所以不會(huì)出現(xiàn)臺(tái)階 6 受凸模強(qiáng)度和剛度限制 沖裁件上的孔不能太小 因?yàn)樽钚】?d 1 0 9t 所以合理 2 公差和表面粗糙分析 1 該工件最小公差尺寸為 1 上公差為 0 12 下公差為 0 查的精度等級(jí)為 IT12 級(jí) 復(fù)合模沖 孔能達(dá)到 9 級(jí) 落料能達(dá)到 10 級(jí) 2 表面粗糙度 圖紙未作特殊要求 3 沖裁材料 H62 沖裁性能比較好 適合沖裁 二 工藝方案制定 1 采用單沖模 分別做兩副模具 沖孔模與落料模 但這樣操作制件兩次定位精度低 兩副模具經(jīng)濟(jì)成 本不高但模具壽命相對(duì)也較低 但需要?jiǎng)趧?dòng)力多 管理成本多 分?jǐn)傇趩渭系某杀据^高 生產(chǎn)操作不 安全 2 采用級(jí)進(jìn)模即將沖孔和落料分成兩個(gè)不同工位但裝在同一副模具上同時(shí)完成不同工序沖裁 這種方法 能使沖件精度較高 但是不適合批量生產(chǎn) 而且制造成本比較高 3 采用復(fù)合模即沖孔和落料同時(shí)進(jìn)行 一次定位能提高沖件精度且模具結(jié)構(gòu)相對(duì)簡(jiǎn)單 制作費(fèi)用較低 勞 動(dòng)力需求少 適合批量生產(chǎn) 制造成本一般 結(jié)論 綜合以上的比較 選擇復(fù)合模工藝方案比較可行 符合各方面要求 三 沖 壓 零 件 主 要 參 數(shù) 的 計(jì) 算 職業(yè)技術(shù)學(xué)院畢業(yè)設(shè)計(jì)說(shuō)明書(shū) 4 1 搭邊值的確定和條料寬度的確定 查課本表格 2 6 得普通沖裁的塔邊值 材料厚 0 5mm 彈壓卸料 工件寬度 L 小于 50 毫米 即 a 1 0 a1 1 2 由表 2 7 得剪料公差為 0 4 條料寬度為 27 9mm 材料利用率 87 2 壓力中心及沖壓力計(jì)算 a 沖裁力 Fp 1 3 68 01 0 5 225 9946 5N b 卸料力 F Q 0 04 9946 5 397 86N c 推件力 查表 2 10 得凹模刃口高 h 4 FQ1 0 05 9946 5 4 0 5 3978 6N 采用彈壓卸料和下出件裝置 F 9946 5 397 86 3978 6 14322 96N 職業(yè)技術(shù)學(xué)院畢業(yè)設(shè)計(jì)說(shuō)明書(shū) 5 d 壓力中心計(jì)算 沖孔 O 0 0 0 L0 4 71 O 2 3 3 0 L2 3 14 落料 O 1 2 3 0 L1 6 28 O3 7 4 2 L3 15 5 O4 7 4 2 L4 15 5 O5 19 2 2 7 L5 5 O6 19 2 2 7 L6 5 O7 22 5 2 4 L7 1 6 O8 22 5 1 8 L8 1 6 O9 22 5 1 8 L9 1 6 O10 22 5 2 4 L10 1 6 X0 4 71 0 3 14 3 3 6 28 2 3 15 5 7 4 15 5 7 4 5 19 2 5 19 2 1 6 22 5 1 6 22 5 1 6 22 5 1 6 22 5 61 53 13 Y0 0 即壓力中心為 13 0 e 壓力機(jī)標(biāo)準(zhǔn)公稱(chēng)壓力確定 P 大于等于 1 1 1 3 F 總 1 1 1 3 14KN 15 4 18 2 KN 根據(jù)表 2 2 得選擇壓力機(jī)為開(kāi)式壓力機(jī) 公稱(chēng)壓力為 100KN 壓力機(jī)型號(hào)為 J 23 10 主要技術(shù)參數(shù)為 職業(yè)技術(shù)學(xué)院畢業(yè)設(shè)計(jì)說(shuō)明書(shū) 6 mmKN5301780451 模 柄 孔 尺 寸 工 作 臺(tái) 墊 板 厚 度 工 作 臺(tái) 墊 板 孔 尺 寸 封 閉 高 度 調(diào) 節(jié) 量 最 大 封 閉 高 度 滑 塊 行 程 公 稱(chēng) 壓 力 f 凹模周界尺寸計(jì)算和模具典型結(jié)構(gòu)選擇 1 計(jì)算凹模周界 L B 外形尺寸按下式計(jì)算 L 2 L1 L2 式中 L1 為壓力中心到最遠(yuǎn)型孔的壁距離 按照孔型的布置 凹模的外形尺寸 L1 分別為 L1 平行 12 75 垂直與送料方向的凹模外形最遠(yuǎn)壁間距 L2 垂直 2 7 由表 2 9 查得 L2 20 垂直送料方向的凹模外形尺寸 L 垂直 2 12 75 20 65 5 平行送料方向的凹模外形尺寸 L 平行 2 2 7 20 58 L 垂直 65 5 大于 L 平行 58 所以該模具送料方向?yàn)榭v向送料 由從向送料 彈壓卸料而選擇典型組合 查手冊(cè)的 L B 80 80 g 沖裁凸凹模刃口尺寸計(jì)算 凸凹??紤]用配作法 寸落 料 制 件 的 最 大 極 限 尺注 凹凸凹 凹凸 max0in mAXZ 寸沖 孔 制 件 的 最 小 極 限 尺注 凹凸凸凹凸 min0mininbZ 制 件 公 差 的 尺 寸 分 別 為 沖 孔 凸 模 與 凹 模 凹凸 m 職業(yè)技術(shù)學(xué)院畢業(yè)設(shè)計(jì)說(shuō)明書(shū) 7 選 定 與 制 件 公 差根 據(jù) 材 料 厚 度磨 損 系 數(shù) 一 般 取 tXX 1 5 0 差 分 別 為 凸 凹 模 制 造 公 凹凸 m 間 隙 凸 凹 間 最 小 雙 面 合 理Zmin 查表 2 13 0 09t 0 09 0 5 0 045mmmin 0 12t 0 12 0 5 0 06mmMax Z 0 06 0 045 0 015mmZmin 4凹凸 尺寸 1 5 沖孔磨后變小 IT14 0 25 x 0 5 0 25 4 0 0625凹凸 b 凸 1 5 0 5 0 25 0 0 06 1 63 0 0 06 沖孔凹模按照凸模在最小間隙與最大間隙制件配做 尺寸 1 0 0 12 沖孔磨后變小 IT12 0 12 x 0 75 0 12 4 0 03凹凸 b 凸 1 0 75 0 12 0 0 03 1 09 0 0 03 沖孔凹模按照凸模在最小間隙與最大間隙制件配做 尺寸 R2 落料后變大 IT14 0 25 x 0 5 0 25 4 0 06凹凸 B 凹 2 0 5 0 25 0 0 06 1 88 0 0 06 落料凸模按照凹模在最小間隙與最大間隙之間配做 尺寸 4 0 0 16 落料后變大 IT12 0 16 x 0 75 0 16 4 0 04凹凸 B 凹 4 0 75 0 16 0 0 04 3 88 0 0 04 落料凸模按照凹模在最小間隙與最大間隙之間配做 尺寸 19 0 0 24 落料磨后變大 IT12 0 24 x 0 75 0 24 4 0 06凹凸 B 凹 19 0 75 0 24 0 0 06 18 82 0 0 06 落料凸模按照凹模在最小間隙與最大間隙之間配做 尺寸 6 5 0 0 2 落料后變大 IT12 0 2 x 0 75 0 2 4 0 05凹凸 B 凹 6 5 0 75 0 2 0 0 05 6 35 0 0 05 落料凸模按照凹模在最小間隙與最大間隙之間配做 尺寸 5 0 0 16 落料后變大 IT12 0 16 x 0 75 0 16 4 0 04凹凸 B 凹 5 0 75 0 16 0 0 04 4 88 0 0 04 職業(yè)技術(shù)學(xué)院畢業(yè)設(shè)計(jì)說(shuō)明書(shū) 8 落料凸模按照凹模在最小間隙與最大間隙之間配做 尺寸 5 4 0 0 1 落料后變大 IT12 0 1 x 0 75 0 1 4 0 03凹凸 B 凹 5 4 0 75 0 1 0 0 03 5 33 0 0 03 落料凸模按照凹模在最小間隙與最大間隙之間配做 尺寸 2 3 落料后變大 IT14 0 25 x 0 5 0 25 4 0 06凹凸 B 凹 2 3 0 5 0 25 0 0 06 2 18 0 0 06 落料凸模按照凹模在最小間隙與最大間隙之間配做 尺寸 3 0 0 12 落料后變小 IT12 0 12 x 0 75 0 12 4 0 03凹凸 B 凹 3 0 75 0 12 0 0 03 3 09 0 0 03 落料凸模按照凹模在最小間隙與最大間隙之間配做 尺寸 4 2 0 1 磨后尺寸不變 IT13 0 2 x 0 75 0 2 4 0 05凹凸 C 凸 C 凹 4 1 0 1 0 2 8 4 2 0 03 尺寸 3 3 磨后尺寸不變 IT14 0 3 x 0 5 0 3 4 0 08凹凸 C 凸 C 凹 3 3 0 15 0 3 8 3 45 0 04 h 選擇標(biāo)準(zhǔn)模架 由于沖件精度要求不高 選擇對(duì)角到導(dǎo)柱的模架 該模架適合橫 縱送料方向 h 彈簧選擇 F 卸 4 P Fx 398 4 p Fx 根據(jù)手冊(cè)查表 1 的取矩形界面符合彈簧 即 選擇 25 90 的規(guī)格 職業(yè)技術(shù)學(xué)院畢業(yè)設(shè)計(jì)說(shuō)明書(shū) 9 1 導(dǎo)柱 2 下模座 3 下固定板 4 凸凹模 5 彈壓卸料板 6 擋料銷(xiāo) 7 上模座 8 上墊板 9 浮動(dòng)模柄 10 調(diào)節(jié)螺釘 11 壓板 12 橡膠 13 螺釘 14 上固定板 15 中墊板 16 落料凹模 17 導(dǎo)套 18 頂桿 19 推板 20 沖孔凸模 結(jié)構(gòu)特點(diǎn) 模具導(dǎo)向 制件精度不高 采用對(duì)角導(dǎo)柱 用導(dǎo)柱 12 滑動(dòng)導(dǎo)套 8 導(dǎo)向定位 卸料 卸料板 5 不僅起卸料作用 同時(shí)可導(dǎo)向凸模的作用 卸料板材料為 45 鋼 不熱處理仍符合各 項(xiàng)要求 模具結(jié)構(gòu)小 凹模采用整體結(jié)構(gòu) 凸模用鉚接式固定 凸模選用 Cr12MoV 制作 熱處理 58 62HRC 耐磨損 制件精度不高 對(duì)模具定位精度也不高 擋料銷(xiāo)定位擋料 正確 方便 凸模固定板采用 Q235 凹模采用 Cr12Mov 熱處理 60 64HRC 上 下模用 HT250 制作 經(jīng)調(diào)質(zhì) 導(dǎo)柱 導(dǎo)套 采用 20 鋼熱處理 58 64 滲碳 凸模 固定板型腔 凹模 卸料板 采用快絲切割 沖模工作過(guò)程 將條料校平送入工作范圍 擋料銷(xiāo)定位 壓力機(jī)滑塊下行上模座向下運(yùn)動(dòng)卸料板將條料壓平至凹模 上 然后模具向上運(yùn)動(dòng)條料被卸料板卸下 推板推料 順利完成沖壓工序 職業(yè)技術(shù)學(xué)院畢業(yè)設(shè)計(jì)說(shuō)明書(shū) 10 設(shè) 計(jì) 小 結(jié) 此 課 題 來(lái) 的 比 較 晚 本 來(lái) 想 放 棄 做 畢 業(yè) 設(shè) 計(jì) 因 為 我 是 委 培 生 原 因 很 多 畢 業(yè) 證 書(shū) 不 能 拿 到 工 作 的 忙 碌 路 途 的 遙 遠(yuǎn) 但 后 來(lái) 想 想 以 上 的 原 因 也 不 能 成 為 什 么 大 學(xué) 三 年 也 應(yīng) 該 有 所 成 就 最 后 決 定 還 是 給 自 己 一 個(gè) 交 代 認(rèn) 認(rèn) 真 真 完 成 這 樣 一 生 只 有 一 次 的 畢 業(yè) 設(shè) 計(jì) 拿 到 課 題 分 析 之 后 發(fā) 現(xiàn) 將 要 設(shè) 計(jì) 的 是 一 副 復(fù) 合 沖 裁 模 這 樣 一 來(lái) 在 公 司 實(shí) 習(xí) 的 東 西 就 只 能 用 到 一 點(diǎn) 點(diǎn) 我 是 學(xué) 級(jí) 進(jìn) 模 的 相 對(duì) 來(lái) 說(shuō) 復(fù) 合 模 應(yīng) 該 是 在 這 之 前 所 需 要 經(jīng) 過(guò) 的 一 個(gè) 階 段 而 在 公 司 我 沒(méi) 去 學(xué) 過(guò) 單 沖 模 所 以 所 需 的 一 切 我 必 須 從 以 前 的 課 本 和 記 憶 中 尋 找 參 看 典 型 畢 業(yè) 設(shè) 計(jì) 讓 我 對(duì) 設(shè) 計(jì) 的 步 驟 有 了 一 定 的 了 解 翻 閱 參 考 書(shū) 利 用 一 段 時(shí) 間 進(jìn) 行 了 各 類(lèi) 工 藝 分 析 和 各 個(gè) 尺 寸 的 計(jì) 算 由 于 有 一 定 的 基 礎(chǔ) 這 些 方 面 做 起 來(lái) 也 比 較 輕 松 接 下 來(lái) 才 進(jìn) 入 正 題 模 具 圖 的 繪 制 我 們 公 司 主 要 用 的 軟 件 是 AutoCAD 所 以 一 個(gè) 設(shè) 計(jì) 員 對(duì) CAD 的 操 作 熟 練 度 是 不 可 忽 視 的 由 于 經(jīng) 過(guò) 一 個(gè) 月 的 強(qiáng) 化 練 習(xí) 我 對(duì) CAD 的 熟 練 度 達(dá) 到 了 一 個(gè) 很 高 的 程 度 所 以 繪 制 這 樣 的 模 具 的 是 難 不 到 我 的 我 參 閱 課 本 的 典 型 倒 裝 復(fù) 合 模 對(duì) 自 己 的 工 件 進(jìn) 行 總 裝 圖 的 設(shè) 計(jì) 手 冊(cè) 中 查 閱 出 了 典 型 的 模 座 布 置 然 后 配 上 了 各 個(gè) 板 的 大 小 并 且 對(duì) 各 板 的 連 接 配 上 了 銷(xiāo) 釘 和 螺 釘 我 選 擇 的 是 彈 簧 彈 壓 卸 料 因 為 我 認(rèn) 為 用 彈 簧 卸 料 要 比 其 他 方 式 都 要 好 用 圓 擋 料 銷(xiāo) 定 位 推 板 通 過(guò) 頂 桿 推 件 凸 模 凹 模 均 采 用 Cr12Mov 材料 有利于磨損 整個(gè)模具結(jié)構(gòu) 簡(jiǎn)單 模具壽命好 適合批量生產(chǎn) 此 次 畢 業(yè) 設(shè) 計(jì) 我 運(yùn) 用 了 公 司 與 學(xué) 校 所 學(xué) 知 識(shí) 結(jié) 合 利 用 工 作 空 出 時(shí) 間 參 考 各 類(lèi) 書(shū) 籍 獨(dú) 立 完 成 的 由 于 對(duì) 復(fù) 合 模 的 知 識(shí) 有 所 欠 缺 難 免 出 現(xiàn) 錯(cuò) 誤 今 后 也 會(huì) 一 一 改 正 然 而 在 學(xué) 習(xí) 過(guò) 程 中 首 先 我 明 白 了 做 學(xué) 問(wèn) 要 一 絲 不 茍 對(duì) 于 出 現(xiàn) 的 任 何 問(wèn) 題 和 偏 差 都 不 要 輕 視 要 通 過(guò) 正 確 的 途 徑 去 解 決 在 做 事 情 的 過(guò) 程 中 要 有 耐 心 和 毅 力 不 要 一 遇 到 困 難 就 打 退 堂 鼓 只 要 堅(jiān) 持 下 去 就 可 以 找 到 思 路 去 解 決 問(wèn) 題 的 在 工 作 中 要 學(xué) 會(huì) 與 人 合 作 的 態(tài) 度 認(rèn) 真 聽(tīng) 取 別 人 的 意 見(jiàn) 這 樣 做 起 事 情 來(lái) 就 可 以 事 倍 功 半 畢 業(yè) 設(shè) 計(jì) 的 完 成 既 為 大 學(xué) 三 年 劃 上 了 一 個(gè) 完 美 的 句 號(hào) 也 為 將 來(lái) 的 人 生 之 路 做 好 了 一 個(gè) 很 好 的 鋪 墊 謝辭 三年一晃而過(guò) 校園生活已成回憶 在學(xué)校里 同學(xué)老師都很照顧我 我深表感謝 這次畢業(yè)設(shè)計(jì) 做的很沖忙 有太多的紕漏 請(qǐng)老師多多包容 雖然我不是學(xué)校真正的學(xué)生 也不敢說(shuō)為學(xué)校爭(zhēng)光 但我也不會(huì)替學(xué)校摸黑 這三年 在學(xué)校學(xué)到很多專(zhuān)業(yè)知識(shí) 這可能就是我以后的衣食父母 我很感激 這是在學(xué)校交的最后一份作業(yè)了 主觀(guān)上還是希望能完美結(jié)束 做到善始善終 但走出社會(huì)后 好 多事情超出了自己能掌握的范圍 與本意相違背了 考慮的不夠好的希望給予指正 參考文獻(xiàn) 1 韓森和主編 冷沖壓工藝及模具設(shè)計(jì)制造 M 高等教育出版社 2006 2 2 馮炳堯等 模具設(shè)計(jì)與制造簡(jiǎn)明手冊(cè) M 上??茖W(xué)技術(shù)出版社 2008 6 3 金大鷹主編 機(jī)械制圖 M 機(jī)械工業(yè)出版設(shè) 2006 8 崗位實(shí)習(xí)小結(jié) 公司設(shè)立了改圖這一崗位 就有著他獨(dú)特的崗位意義 我主要是針對(duì)設(shè)計(jì)錯(cuò)誤這一塊 作分析 畢竟從事設(shè)計(jì)工作是我的目標(biāo) 設(shè)立改圖員這一位置 主要是為了提高設(shè)計(jì)員的 設(shè)計(jì)效率 也就是說(shuō)設(shè)計(jì)員發(fā)放圖紙下來(lái) 加工中可能會(huì)發(fā)現(xiàn)一些設(shè)計(jì)錯(cuò)誤 那么就要執(zhí) 行改圖工作 最終對(duì)設(shè)計(jì)員設(shè)計(jì)中總的錯(cuò)誤做歸納 做出評(píng)定 評(píng)出設(shè)計(jì)質(zhì)量 錯(cuò)誤當(dāng)然 是很難免的 但可以減少 相對(duì)兒言 該的圖越少就表示設(shè)計(jì)效率越高 這當(dāng)然是設(shè)計(jì)員 所希望的 也是我們大家都希望的 此外該圖工作還有另外一個(gè)意義 那就是對(duì)改圖員開(kāi) 放的 改圖員可以根據(jù)設(shè)計(jì)員所犯的錯(cuò)誤做歸納 學(xué)習(xí) 為以后從事設(shè)計(jì)工作做鋪墊 減 少設(shè)計(jì)錯(cuò)誤 所以這一位置讓實(shí)習(xí)生來(lái)從事是最好不過(guò)了 我就是這樣一名改圖員 肩負(fù)著所有改圖任務(wù) 既然安排了這樣一個(gè)位置 我就會(huì)努 力做好這一崗位的每一步工作 目前在這進(jìn)行了一個(gè)月的改圖工作中 我發(fā)現(xiàn)了許許多多 形形色色的設(shè)計(jì)錯(cuò)誤 并且我對(duì)他們做了總的歸納 總共可以分為三個(gè)階段 小的錯(cuò)誤主 要是表現(xiàn)在標(biāo)注方面 比如說(shuō)尺寸少標(biāo) 公差少標(biāo) 未標(biāo)注坐標(biāo) 技術(shù)要求少寫(xiě)等等 一 般來(lái)說(shuō)這些錯(cuò)誤基本上是加工人員在加工中發(fā)現(xiàn)的 當(dāng)然這對(duì)于整個(gè)制作模具的流程是沒(méi) 什么大的關(guān)系 但對(duì)加工人員的心態(tài)會(huì)有一定的影響 這當(dāng)然是設(shè)計(jì)員所犯的一些小粗心 中等錯(cuò)誤主要表現(xiàn)在制作模具中做出的變換 調(diào)換加工工序 加深螺孔深度 增加各類(lèi)鑲 塊 調(diào)整厚度等等 這類(lèi)錯(cuò)誤就有一定負(fù)面影響 不但給整個(gè)制造模具產(chǎn)生了一定的障礙 而且很有可能會(huì)出現(xiàn)拖期現(xiàn)象 大的錯(cuò)誤是我們最不愿意看到的 那就是出現(xiàn)模具的報(bào)廢 重投材料 這不但大大影響了設(shè)計(jì)員的設(shè)計(jì)效率 而且對(duì)公司的知名度也大打折扣 最主 要的還是出現(xiàn)了不必要的損失 總的來(lái)說(shuō) 所有的錯(cuò)誤是我們想方設(shè)法要避免的 沒(méi)有錯(cuò) 誤是我們所遐想的 也不可能出現(xiàn) 是人都要犯錯(cuò) 減少錯(cuò)誤是我們要定的第一原則 吸取所有的教訓(xùn)是對(duì)我最大收獲 為我以后從事設(shè)計(jì)目標(biāo)有了很大的幫助 2009 5 5 設(shè)計(jì)題目 銅墊片沖壓模具設(shè)計(jì) 系 別 機(jī)電工程系 專(zhuān) 業(yè) 模具設(shè)計(jì)與制造 班 級(jí) 姓 名 學(xué) 號(hào) 指導(dǎo)老師 完成時(shí)間 目 錄 設(shè) 計(jì) 課 題 2 一 沖 壓 件 工 藝 性 分 析 1 制 件 結(jié) 構(gòu) 工 藝 性 分 析 3 2 公 差 和 表 面 粗 糙 度 分 析 3 職業(yè)技術(shù)學(xué)院畢業(yè)設(shè)計(jì)說(shuō)明書(shū) 1 二 工 藝 方 案 的 制 定 3 三 沖 壓 零 件 主 要 參 數(shù) 的 計(jì) 算 4 1 確 定 搭 邊 值 計(jì) 算 條 料 寬 度 4 3 壓 力 中 心 及 沖 壓 力 的 計(jì) 算 5 4 壓 力 機(jī) 標(biāo) 準(zhǔn) 公 稱(chēng) 壓 力 確 定 6 5 模 具 工 作 零 件 的 刃 口 尺 寸 及 公 差 的 計(jì) 算 7 四 沖 壓 模 總 體 結(jié) 構(gòu) 設(shè) 計(jì) 1 模 具 類(lèi) 型 8 3 模 架 類(lèi) 型 的 確 定 8 4 結(jié) 構(gòu) 分 析 9 5 工 作 過(guò) 程 9 五 設(shè) 計(jì) 小 結(jié) 10 六 謝 辭 10 七 參 考 文 獻(xiàn) 10 畢業(yè)設(shè)計(jì)任務(wù)書(shū) 姓名 學(xué)號(hào) 45 班級(jí) 模具 061 職業(yè)技術(shù)學(xué)院畢業(yè)設(shè)計(jì)說(shuō)明書(shū) 2 一 設(shè)計(jì)課題 銅墊片沖壓模具設(shè)計(jì) 二 工件圖及技術(shù)要求 190 246 5 0 213R2R24 0 165 0 1 3 0 4 1 1 零件名稱(chēng) 銅墊片 2 材 料 H62 3 材料厚度 0 5mm 4 未注公差按 14級(jí) 5 批量生產(chǎn) 三 任務(wù)要求 1 完成制件工藝性分析 確定制件成形工藝方案 2 完成模具裝配圖設(shè)計(jì) 繪制模具總裝圖 3 完成模具零件圖設(shè)計(jì) 繪制模具零件圖 4 撰寫(xiě)畢業(yè)設(shè)計(jì)說(shuō)明書(shū) 指導(dǎo)教師 職業(yè)技術(shù)學(xué)院 機(jī)電工程系模具教研室 200 年 月 制件圖 職業(yè)技術(shù)學(xué)院畢業(yè)設(shè)計(jì)說(shuō)明書(shū) 3 19 0 246 5 0 213R2R24 0 165 0 1 3 0 4 1 第 0 頁(yè) 共 27 頁(yè) Process simulation in stamping recent applications for product and process design Abstract Process simulation for product and process design is currently being practiced in industry However a number of input variables have a significant effect on the accuracy and reliability of computer predictions A study was conducted to evaluate the capability of FE simulations for predicting part characteristics and process conditions in forming complex shaped industrial parts In industrial applications there are two objectives for conducting FE simulations of the stamping process 1 to optimize the product design by analyzing formability at the product design stage and 2 to reduce the tryout time and cost in process design by predicting the deformation process in advance during the die design stage For each of these objectives two kinds of FE simulations are applied Pam Stamp an incremental dynamic explicit FEM code released by Engineering Systems Int l matches the second objective well because it can deal with most of the practical stamping parameters FAST FORM3D a one step FEM code released by Forming Technologies matches the first objective because it only requires the part geometry and not the complex process information In a previous study these two FE codes were applied to complex shaped parts used in manufacturing automobiles and construction machinery Their capabilities in predicting formability issues in stamping were evaluated This paper reviews the results of this study and summarizes the recommended procedures for obtaining accurate and reliable results from FE simulations In another study the effect of controlling the blank holder force BHF during the deep drawing of hemispherical dome bottomed cups was investigated The standard automotive aluminum killed drawing quality AKDQ steel was used as well as high performance materials such as high strength steel bake hard steel and aluminum 6111 It was determined that varying the BHF as a function of stroke improved the strain distributions in the domed cups Keywords Stamping Process stimulation Process design 第 1 頁(yè) 共 27 頁(yè) 1 Introduction The design process of complex shaped sheet metal stampings such as automotive panels consists of many stages of decision making and is a very expensive and time consuming process Currently in industry many engineering decisions are made based on the knowledge of experienced personnel and these decisions are typically validated during the soft tooling and prototyping stage and during hard die tryouts Very often the soft and hard tools must be reworked or even redesigned and remanufactured to provide parts with acceptable levels of quality The best case scenario would consist of the process outlined in Fig 1 In this design process the experienced product designer would have immediate feedback using a specially design software called one step FEM to estimate the formability of their design This would allow the product designer to make necessary changes up front as opposed to down the line after expensive tooling has been manufactured One step FEM is particularly suited for product analysis since it does not require binder addendum or even most process conditions Typically this information is not available during the product design phase One step FEM is also easy to use and computationally fast which allows the designer to play what if without much time investment Fig 1 Proposed design process for sheet metal stampings Once the product has been designed and validated the development project would enter the time zero phase and be passed onto the die designer The die designer would validate his her design with an incremental FEM code and make necessary design changes and perhaps even optimize the process parameters to ensure not just minimum acceptability of part quality but maximum achievable quality This increases product quality but also increase process robustness Incremental FEM is particularly suited for die design analysis since it does require binder addendum and process conditions which are either known during die design or desired to be known The validated die design would then be manufactured directly into the hard production tooling and be validated with physical tryouts during which the prototype parts would be made Tryout time should be decreased due to the earlier numerical validations Redesign and remanufacturing of the tooling due to unforeseen forming problems should be a thing of the past The decrease in tryout time and elimination of redesign remanufacturing should more than make up for the time used to numerically validate the part die and process 第 2 頁(yè) 共 27 頁(yè) Optimization of the stamping process is also of great importance to producers of sheet stampings By modestly increasing one s investment in presses equipment and tooling used in sheet forming one may increase one s control over the stamping process tremendously It has been well documented that blank holder force is one of the most sensitive process parameters in sheet forming and therefore can be used to precisely control the deformation process By controlling the blank holder force as a function of press stroke AND position around the binder periphery one can improve the strain distribution of the panel providing increased panel strength and stiffness reduced springback and residual stresses increased product quality and process robustness An inexpensive but industrial quality system is currently being developed at the ERC NSM using a combination of hydraulics and nitrogen and is shown in Fig 2 Using BHF control can also allow engineers to design more aggressive panels to take advantage the increased formability window provided by BHF control Fig 2 Blank holder force control system and tooling being developed at the ERC NSM labs Three separate studies were undertaken to study the various stages of the design process The next section describes a study of the product design phase in which the one step FEM code FAST FORM3D Forming Technologies was validated with a laboratory and industrial part and used to predict optimal blank shapes Section 4 summarizes a study of the die design stage in which an actual industrial panel was used to validate the incremental FEM code Pam Stamp Engineering Systems Int l Section 5 covers a laboratory study of the effect of blank holder force control on the strain distributions in deep drawn hemispherical dome bottomed cups 2 Product simulation applications The objective of this investigation was to validate FAST FORM3D to determine FAST FORM3D s blank shape prediction capability and to determine how one step FEM can be implemented into the product design process Forming Technologies has provided their one step FEM code FAST FORM3D and training to the ERC NSM for the purpose of benchmarking and research FAST FORM3D does not simulate the deformation history Instead it projects the final part geometry onto a flat plane or developable surface and repositions the nodes and elements until a minimum energy state is reached This process is computationally faster than incremental simulations like Pam Stamp but also makes more assumptions FAST FORM3D can evaluate formability and estimate optimal blank geometries and is a strong tool for product designers due to its speed and ease of use particularly during the stage when the die geometry is not available 第 3 頁(yè) 共 27 頁(yè) In order to validate FAST FORM3D we compared its blank shape prediction with analytical blank shape prediction methods The part geometry used was a 5 in deep 12 in by 15 in rectangular pan with a 1 in flange as shown in Fig 3 Table 1 lists the process conditions used Romanovski s empirical blank shape method and the slip line field method was used to predict blank shapes for this part which are shown in Fig 4 Fig 3 Rectangular pan geometry used for FAST FORM3D validation Table 1 Process parameters used for FAST FORM3D rectangular pan validation Fig 4 Blank shape design for rectangular pans using hand calculations a Romanovski s empirical method b slip line field analytical method Fig 5 a shows the predicted blank geometries from the Romanovski method slip line field method and FAST FORM3D The blank shapes agree in the corner area but differ greatly in the side regions Fig 5 b c show the draw in pattern after the drawing process of the rectangular pan as simulated by Pam Stamp for each of the predicted blank shapes The draw in patterns for all three rectangular pans matched in the corners regions quite well The slip line field method though did not achieve the objective 1 in flange in the side region while the Romanovski and FAST FORM3D 第 4 頁(yè) 共 27 頁(yè) methods achieved the 1 in flange in the side regions relatively well Further only the FAST FORM3D blank agrees in the corner side transition regions Moreover the FAST FORM3D blank has a better strain distribution and lower peak strain than Romanovski as can be seen in Fig 6 Fig 5 Various blank shape predictions and Pam Stamp simulation results for the rectangular pan a Three predicted blank shapes b deformed slip line field blank c deformed Romanovski blank d deformed FAST FORM3D blank Fig 6 Comparison of strain distribution of various blank shapes using Pam Stamp for the rectangular pan a Deformed Romanovski blank b deformed FAST FORM3D blank To continue this validation study an industrial part from the Komatsu Ltd was chosen and is shown in Fig 7 a We predicted an optimal blank geometry with FAST FORM3D and compared it with the experimentally developed blank shape as shown in Fig 7 b As seen the blanks are similar but have some differences Fig 7 FAST FORM3D simulation results for instrument cover validation a FAST FORM3D s formability evaluation b comparison of predicted and experimental blank geometries Next we simulated the stamping of the FAST FORM3D blank and the experimental blank using Pam Stamp We compared both predicted geometries to the nominal CAD geometry Fig 8 and found that the FAST FORM3D geometry was much 第 5 頁(yè) 共 27 頁(yè) more accurate A nice feature of FAST FORM3D is that it can show a failure contour plot of the part with respect to a failure limit curve which is shown in Fig 7 a In conclusion FAST FORM3D was successful at predicting optimal blank shapes for a laboratory and industrial parts This indicates that FAST FORM3D can be successfully used to assess formability issues of product designs In the case of the instrument cover many hours of trial and error experimentation could have been eliminated by using FAST FORM3D and a better blank shape could have been developed Fig 8 Comparison of FAST FORM3D and experimental blank shapes for the instrument cover a Experimentally developed blank shape and the nominal CAD geometry b FAST FORM3D optimal blank shape and the nominal CAD geometry 3 Die and process simulation applications In order to study the die design process closely a cooperative study was conducted by Komatsu Ltd of Japan and the ERC NSM A production panel with forming problems was chosen by Komatsu This panel was the excavator s cabin left hand inner panel shown in Fig 9 The geometry was simplified into an experimental laboratory die while maintaining the main features of the panel Experiments were conducted at Komatsu using the process conditions shown in Table 2 A forming limit diagram FLD was developed for the drawing quality steel using dome tests and a vision strain measurement system and is shown in Fig 10 Three blank holder forces 10 30 and 50 ton were used in the experiments to determine its effect Incremental simulations of each experimental condition was conducted at the ERC NSM using Pam Stamp Fig 9 Actual product cabin inner panel Table 2 Process conditions for the cabin inner investigation 第 6 頁(yè) 共 27 頁(yè) Fig 10 Forming limit diagram for the drawing quality steel used in the cabin inner investigation At 10 ton wrinkling occurred in the experimental parts as shown in Fig 11 At 30 ton the wrinkling was eliminated as shown in Fig 12 These experimental observations were predicted with Pam stamp simulations as shown in Fig 13 The 30 ton panel was measured to determine the material draw in pattern These measurements are compared with the predicted material draw in in Fig 14 Agreement was very good with a maximum error of only 10 mm A slight neck was observed in the 30 ton panel as shown in Fig 13 At 50 ton an obvious fracture occurred in the panel Fig 11 Wrinkling in laboratory cabin inner panel BHF 10 ton Fig 12 Deformation stages of the laboratory cabin inner and necking BHF 30 ton a Experimental blank b experimental panel 60 formed c experimental panel fully formed 第 7 頁(yè) 共 27 頁(yè) d experimental panel necking detail Fig 13 Predication and elimination of wrinkling in the laboratory cabin inner a Predicted geometry BHF 10 ton b predicted geometry BHF 30 ton Fig 14 Comparison of predicted and measured material draw in for lab cabin inner BHF 30 ton Strains were measured with the vision strain measurement system for each panel and the results are shown in Fig 15 The predicted strains from FEM simulations for each panel are shown in Fig 16 The predictions and measurements agree well regarding the strain distributions but differ slightly on the effect of BHF Although the trends are represented the BHF tends to effect the strains in a more localized manner in the simulations when compared to the measurements Nevertheless these strain prediction show that Pam Stamp correctly predicted the necking and fracture which occurs at 30 and 50 ton The effect of friction on strain distribution was also 第 8 頁(yè) 共 27 頁(yè) investigated with simulations and is shown in Fig 17 Fig 15 Experimental strain measurements for the laboratory cabin inner a measured strain BHF 10 ton panel wrinkled b measured strain BHF 30 ton panel necked c measured strain BHF 50 ton panel fractured Fig 16 FEM strain predictions for the laboratory cabin inner a Predicted strain BHF 10 ton b predicted strain BHF 30 ton c predicted strain BHF 50 ton Fig 17 Predicted effect of friction for the laboratory cabin inner BHF 30 ton a Predicted strain 0 06 b predicted strain 0 10 A summary of the results of the comparisons is included in Table 3 This table shows that the simulations predicted the experimental observations at least as well as the strain measurement system at each of the experimental conditions This indicates that Pam Stamp can be used to assess formability issues associated with the die design Table 3 Summary results of cabin inner study 4 Blank holder force control applications 第 9 頁(yè) 共 27 頁(yè) The objective of this investigation was to determine the drawability of various high performance materials using a hemispherical dome bottomed deep drawn cup see Fig 18 and to investigate various time variable blank holder force profiles The materials that were investigated included AKDQ steel high strength steel bake hard steel and aluminum 6111 see Table 4 Tensile tests were performed on these materials to determine flow stress and anisotropy characteristics for analysis and for input into the simulations see Fig 19 and Table 5 Fig 18 Dome cup tooling geometry Table 4 Material used for the dome cup study Fig 19 Results of tensile tests of aluminum 6111 AKDQ high strength and bake hard steels a Fractured tensile specimens b Stress strain curves Table 5 Tensile test data for aluminum 6111 AKDQ high strength and bake hard steels 第 10 頁(yè) 共 27 頁(yè) It is interesting to note that the flow stress curves for bake hard steel and AKDQ steel were very similar except for a 5 reduction in elongation for bake hard Although the elongations for high strength steel and aluminum 6111 were similar the n value for aluminum 6111 was twice as large Also the r value for AKDQ was much bigger than 1 while bake hard was nearly 1 and aluminum 6111 was much less than 1 The time variable BHF profiles used in this investigation included constant linearly decreasing and pulsating see Fig 20 The experimental conditions for AKDQ steel were simulated using the incremental code Pam Stamp Examples of wrinkled fractured and good laboratory cups are shown in Fig 21 as well as an image of a simulated wrinkled cup 第 11 頁(yè) 共 27 頁(yè) Fig 20 BHF time profiles used for the dome cup study a Constant BHF b ramp BHF c pulsating BHF Fig 21 Experimental and simulated dome cups a Experimental good cup b experimental fractured cup c experimental wrinkled cup d simulated wrinkled cup Limits of drawability were experimentally investigated using constant BHF The results of this study are shown in Table 6 This table indicates that AKDQ had the largest drawability window while aluminum had the smallest and bake hard and high strength steels were in the middle The strain distributions for constant ramp and pulsating BHF are compared experimentally in Fig 22 and are compared with simulations in Fig 23 for AKDQ In both simulations and experiments it was found that the ramp BHF trajectory improved the strain distribution the best Not only were peak strains reduced by up to 5 thereby reducing the possibility of fracture but low strain regions were increased This improvement in strain distribution can increase product stiffness and strength decrease springback and residual stresses increase product quality and process robustness Table 6 Limits of drawability for dome cup with constant BHF Fig 22 Experimental effect of time variable BHF on engineering strain in an AKDQ steel dome cup 第 12 頁(yè) 共 27 頁(yè) Fig 23 Simulated effect of time variable BHF on true strain in an AKDQ steel dome cup Pulsating BHF at the frequency range investigated was not found to have an effect on strain distribution This was likely due to the fact the frequency of pulsation that was tested was only 1 Hz It is known from previous experiments of other researchers that proper frequencies range from 5 to 25 Hz 3 A comparison of load stroke curves from simulation and experiments are shown in Fig 24 for AKDQ Good agreement was found for the case where 0 08 This indicates that FEM simulations can be used to assess the formability improvements that can be obtained by using BHF control techniques Fig 24 Comparison of experimental and simulated load stroke curves for an AKDQ steel dome cup 5 Conclusions and future work In this paper we evaluated an improved design process for complex stampings which involved eliminating the soft tooling phase and incorporated the validation of product and process using one step and incremental FEM simulations Also process improvements were proposed consisting of the implementation of blank holder force control to increase product quality and process robustness Three separate investigations were summarized which analyzed various stages in the design process First the product design phase was investigated with a laboratory and industrial validation of the one step FEM code FAST FORM3D and its ability to assess formability issues involved in product design FAST FORM3D was successful at predicting optimal blank shapes for a rectangular pan and an industrial instrument cover In the case of the instrument cover many hours of trial and error experimentation could have been eliminated by using FAST FORM3D and a better blank shape could have been developed Second the die design phase was investigated with a laboratory and industrial validation of the incremental code Pam Stamp and its ability to assess forming issues associated with die design This investigation suggested that Pam Stamp could predict strain distribution wrinkling necking and fracture at least as well as a vision strain 第 13 頁(yè) 共 27 頁(yè) measurement system at a variety of experimental conditions Lastly the process design stage was investigated with a laboratory study of the quality improvements that can be realized with the implementation of blank holder force control techniques In this investigation peak strains in hemispherical dome bottomed deep drawn cups were reduced by up to 5 thereby reducing the possibility of fracture and low strain regions were increased This improvem