《2022年高考數(shù)學(xué)大一輪總復(fù)習(xí) 第2篇 第10節(jié) 導(dǎo)數(shù)的概念與計(jì)算課時(shí)訓(xùn)練 理 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)大一輪總復(fù)習(xí) 第2篇 第10節(jié) 導(dǎo)數(shù)的概念與計(jì)算課時(shí)訓(xùn)練 理 新人教A版(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué)大一輪總復(fù)習(xí) 第2篇 第10節(jié) 導(dǎo)數(shù)的概念與計(jì)算課時(shí)訓(xùn)練 理 新人教A版
一、選擇題
1.(xx四川廣元二診)如圖所示是某一容器的三視圖,現(xiàn)向容器中勻速注水,則容器中水面的高度h隨時(shí)間t變化的函數(shù)圖象可能是( )
解析:由三視圖知容器為錐形漏斗,在向容器中勻速注水過(guò)程中,水升高得越來(lái)越慢,高度h隨時(shí)間t的變化率越來(lái)越小,表現(xiàn)在切線上就是切線的斜率在減小,故選B.
答案:B
2.(xx廣東惠州模擬)設(shè)P為曲線C:y=x2+2x+3上的點(diǎn),且曲線C在點(diǎn)P處切線傾斜角的取值范圍為[0,],則點(diǎn)P橫坐標(biāo)的取值范圍為( )
A.[-1,-] B.[-1,0]
2、
C.[0,1] D.[,1]
解析:設(shè)P(x0,y0),P點(diǎn)處切線傾斜角為α,
則0≤tan α≤1,
由f(x)=x2+2x+3,
得f′(x)=2x+2,
令0≤2x0+2≤1,
得-1≤x0≤-.
故選A.
答案:A
3.(xx東北三省三校聯(lián)考)已知函數(shù)f(x)=+1,g(x)=aln x,若在x=處函數(shù)f(x)與g(x)的圖象的切線平行,則實(shí)數(shù)a的值為( )
A. B.
C.1 D.4
解析:在x=處兩函數(shù)圖象的切線平行,
即兩個(gè)函數(shù)的導(dǎo)數(shù)值相等.
由f′(x)=,g′(x)=,
所以=,
即1=4a,
得a=.
答案:A
4.函數(shù)
3、f(x)=sin2的導(dǎo)數(shù)是( )
A.f′(x)=2sin
B.f′(x)=4sin
C.f′(x)=sin
D.f′(x)=2sin
解析:由于f(x)=sin2
=
=-cos,
∴f′(x)=4×sin
=2sin,
故選D.
答案:D
5.已知函數(shù)f(x)=xln x,若直線l過(guò)點(diǎn)(0,-1),并且與曲線y=f(x)相切,則直線l的方程為( )
A.x+y-1=0 B.x-y-1=0
C.x+y+1=0 D.x-y+1=0
解析:∵點(diǎn)(0,-1)不在f(x)=xln x上,
∴設(shè)切點(diǎn)為(x0,y0).
又f′(x)=1+ln x,
∴
解得
4、x0=1,y0=0.
∴切點(diǎn)為(1,0),
∴f′(1)=1+ln 1=1.
∴直線l的方程為y=x-1,
即x-y-1=0.
故選B.
答案:B
6.(xx河北保定一模)設(shè)函數(shù)f(x)=|sin x|的圖象與直線y=kx(k>0)有且僅有三個(gè)公共點(diǎn),這三個(gè)公共點(diǎn)橫坐標(biāo)的最大值為α,則α等于( )
A.-cos α B.tan α
C.sin α D.π
解析:如圖,若直線與函數(shù)有且僅有三個(gè)公共點(diǎn),
則直線y=kx與曲線y=-sin x(x∈[π,2π])相切,
設(shè)切點(diǎn)為(α,-sin α),
則-sin α=kα且k=-cos α,
所以α=tan α.
5、
故選B.
答案:B
二、填空題
7.(xx江西南昌模擬)已知函數(shù)f(x)=sin x+cos x,且f′(x)=2f(x),f′(x)是f(x)的導(dǎo)函數(shù),則=________.
解析:f′(x)=cos x-sin x,
由f′(x)=2f(x)得-cos x=3sin x,
即tan x=-.
=
=
=
=.
答案:
8.(xx廣東江門調(diào)研)曲線y=ln(2x)上任意一點(diǎn)P到直線y=2x的距離的最小值是________.
解析:如圖,所求最小值即曲線上斜率為2的切線與y=2x兩平行線間的距離,
也即切點(diǎn)到直線y=2x的距離.
由y=ln x,
則y′
6、==2,
得x=,y=ln(2×)=0,
即與直線y=2x平行的曲線y=ln(2x)的切線的切點(diǎn)坐標(biāo)是(,0),y=ln(2x)上任意一點(diǎn)P到直線y=2x的距離的最小值,即=.
答案:
9.(xx山師大附中期末)已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足f(x)=2xf′(1)+ln x,則f(x)在點(diǎn)M(1,f(1))處的切線方程為________________.
解析:f′(x)=2f′(1)+,令x=1得f′(1)=2f′(1)+1,
即f′(1)=-1,
此時(shí)f(x)=-2x+ln x,f(1)=-2,
故所求的切線方程為y+2=-(x-1),
即x+y+1=0.
7、
答案:x+y+1=0
10.定義在R上的函數(shù)f(x)滿足f(4)=1,f′(x)為f(x)的導(dǎo)函數(shù),已知y=f′(x)的圖象如圖所示,若兩個(gè)正數(shù)a、b滿足f(2a+b)<1,則的取值范圍是________.
解析:觀察圖象,可知f(x)在(-∞,0]上是減函數(shù),在[0,+∞)上是增函數(shù),
由f(2a+b)<1=f(4),可得
畫出以(a,b)為坐標(biāo)的可行域(如圖陰影部分所示),
而可看成(a,b)與點(diǎn)P(-1,-1)連線的斜率,可求得選項(xiàng)C為所求.
答案:(,5)
三、解答題
11.設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為
8、y=3.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.
解:(1)f′(x)=a-,
于是
解得或
因a,b∈Z,
故f(x)=x+.
(2)在曲線上任取一點(diǎn)x0,x0+.
由f′(x0)=1-知,過(guò)此點(diǎn)的切線方程為
y-=1-(x-x0).
令x=1得y=,
切線與直線x=1交點(diǎn)為1,.
令y=x
得y=2x0-1,
切線與直線y=x交點(diǎn)為(2x0-1,2x0-1).
直線x=1與直線y=x的交點(diǎn)為(1,1).
從而所圍三角形的面積為
-1|2x0-1-1|
=|2x0-2|
=2.
所以,所圍三角形的面積為定值2.
12.(xx浙江永嘉縣聯(lián)合體第二學(xué)期聯(lián)考)已知點(diǎn)M是曲線y=x3-2x2+3x+1上任意一點(diǎn),曲線在M處的切線為l,求:(1)斜率最小的切線方程;
(2)切線l的傾斜角α的取值范圍.
解:(1)y′=x2-4x+3=(x-2)2-1≥-1,
∴當(dāng)x=2時(shí),y′=-1,y=,
∴斜率最小的切線過(guò),
斜率k=-1,
∴切線方程為x+y-=0.
(2)由(1)得k≥-1,
∴tan α≥-1,
∴α∈∪.