9、,d=2.
(2)由(1)知,f(x)=x2+4x+2,g(x)=2ex(x+1).
設函數(shù)F(x)=kg(x)-f(x)=2kex(x+1)-x2-4x-2,
則F'(x)=2kex(x+2)-2x-4=2(x+2)(kex-1).
由題設可得F(0)≥0,即k≥1.
令F'(x)=0得x1=-ln k,x2=-2.
①若1≤k0.即F(x)在(-2,x1)單調(diào)遞減,在(x1,+∞)單調(diào)遞增.故F(x)在[-2,+∞)的最小值為F(x1).
而F(x1)=2x1+2--4x
10、1-2=-x1(x1+2)≥0.
故當x≥-2時,F(x)≥0,
即f(x)≤kg(x)恒成立.
②若k=e2,則F'(x)=2e2(x+2)(ex-e-2).從而當x>-2時,F'(x)>0,
即F(x)在(-2,+∞)單調(diào)遞增.
而F(-2)=0,故當x≥-2時,F(x)≥0,即f(x)≤kg(x)恒成立.
③若k>e2,則F(-2)=-2ke-2+2=-2e-2(k-e2)<0.從而當x≥-2時,f(x)≤kg(x)不可能恒成立.
綜上,k的取值范圍是[1,e2].
5.解 (1)∵f(x)=ln(ax)+bx,
∴f'(x)=+b=+b,
∵點(1,f(1))處的切
11、線是y=0,
∴f'(x)=1+b=0,且f(1)=ln a+b=0,∴a=e,b=-1,即f(x)=ln x-x+1(x>0),∴f'(x)=-1=,
∴f(x)在(0,1)上遞增,在(1,+∞)上遞減.所以f(x)的極大值為f(1)=ln e-1=0,無極小值.
(2)由(1)知f(x)=ln x-x+1,當f(x)+x(m<0)恒成立時,
即ln x-x+1+x(m<0)在x∈(0,+∞)恒成立,同除以x得-2+
設g(x)=,h(x)=-2,
則g'(x)=,h'(x)=-,
又∵m<0,∴當00;當x>1時,g'(x)>0,h'(
12、x)<0.∴g(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,g(x)min=g(1)=;
∴h(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,h(x)max=h(1)=-1.
∴g(x),h(x)均在x=1處取得最值,所以要使g(x)≥h(x)恒成立,
只需g(x)min≥h(x)max,
即-1,解得m≥1-e.又m<0,∴實數(shù)m的取值范圍是[1-e,0).
6.解 (1)f'(x)=exsin x+excos x
=ex(sin x+cos x)=sinex,
當2kπ≤x++2kπ,
即x時,f'(x)≥0,f(x)單調(diào)遞增;
當π+2kπ≤x+2π+
13、2kπ,
即x時,f'(x)<0,f(x)單調(diào)遞減;
綜上,f(x)的單調(diào)遞增區(qū)間為+2kπ,,k∈Z;
f(x)的單調(diào)遞減區(qū)間為+2kπ,+2kπ,k∈Z.
(2)f(x1)+g(x2)≥m,即f(x1)≥m-g(x2),設t(x)=m-g(x),
則原問題等價于f(x)min≥t(x)min,x,一方面由(1)可知,當x時,f'(x)≥0,
故f(x)在單調(diào)遞增,
∴f(x)min=f(0)=0.
另—方面:t(x)=m-(x+1)cos x+ex,t'(x)=-cos x+(x+1)sin x+ex,由于-cos x∈[-1,0],ex,
∴-cos x+ex>0.
14、又(x+1)sin x≥0,
當x時,t'(x)>0,t(x)在為增函數(shù),t(x)min=t(0)=m-1+,所以m-1+0,m≤1-
(3)h(x)=2xex-nsin 2x,x∈0,,h'(x)=2(ex+xex)-2ncos 2x=2(x+1)ex-2ncos 2x.
①若00,h(x)單調(diào)遞增,h(x)>h(0)=0無零點,
②若n>1,設k(x)=2(x+1)ex-2ncos 2x,則k'(x)=2ex(x+2)+4nsin 2x>0,故k(x)單調(diào)遞增,∵k(0)=2-2n<0,k=2>0,
∴存在x0,使k(x0)=0,因此當x∈(0,x0)時,k(x)<0,即h'(x)<0,h(x)單調(diào)遞減;
當x時,k(x)>0,即h'(x)>0,h(x)單調(diào)遞增.故當x∈(0,x0)時,h(x)0,存在唯一零點,
綜上,當n>1時,有唯一零點.