喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請(qǐng)放心下載,原稿可自行編輯修改=====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請(qǐng)放心下載,原稿可自行編輯修改=====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請(qǐng)放心下載,原稿可自行編輯修改=====================
第 19 頁(yè) 共 19 頁(yè)
利用DEM法對(duì)挖掘機(jī)鏟斗填充進(jìn)行數(shù)值模擬
C.J. Coetzee *, D.N.J. Els
斯坦陵布什大學(xué)機(jī)械與機(jī)電工程系
專用郵袋x1,Matieland(馬鐵蘭德)7602號(hào),南非
2007年2月15號(hào)收到;2009年2月25號(hào)收到修改稿;2009年5月28可接受
在線可見(jiàn)2009年6月25號(hào)
摘要
挖掘機(jī)的鏟斗填充是一個(gè)復(fù)雜的顆粒流問(wèn)題。為了優(yōu)化填充過(guò)程,了解參與的不同機(jī)制很重要。離散單元法(DEM)是一種很有前途的實(shí)現(xiàn)模型間的土壤行動(dòng)的方法,它用于本研究中模型的挖掘機(jī)斗填充過(guò)程。模型的驗(yàn)證是基于該模型的斗阻力和不同的流動(dòng)區(qū)域的發(fā)展預(yù)測(cè)結(jié)果的精度。與實(shí)驗(yàn)測(cè)量方法相比,DEM預(yù)測(cè)的挖掘阻力較小,但總的趨勢(shì)是準(zhǔn)確地模擬。在填充過(guò)程結(jié)束時(shí)的誤差在預(yù)測(cè)的阻力為20%。定性,有觀察和建模流區(qū)域之間的一個(gè)很好的協(xié)議條款位置和從一個(gè)階段到其他過(guò)渡。在填充的所有階段,DEM能夠準(zhǔn)確地預(yù)測(cè)材料體積在±6%鏟斗內(nèi)。
2009 ISTVS。由Elsevier公司出版。保留所有權(quán)利。
1簡(jiǎn)介
土方工程設(shè)備在農(nóng)業(yè),土方工程和采礦業(yè)中起著重要的作用。設(shè)備在形態(tài)和功能上是高度多樣化的,但大多數(shù)土壤的切割機(jī)可分到一個(gè)三大類,即葉片,松土機(jī)(撕裂者)和水桶(鏟斗)。本文重點(diǎn)研究用離散元方法(DEM)進(jìn)行挖掘機(jī)鏟斗填充的數(shù)值模擬。
在許多土方機(jī)械上均可發(fā)現(xiàn)鏟斗。挖掘機(jī)是用來(lái)去除覆蓋在露天礦山的超載荷。它的去除作業(yè)使得在挖掘的煤礦床暴露出來(lái)。拉索是類似于起重機(jī)的一種結(jié)構(gòu),它有一個(gè)通過(guò)鋼絲繩以懸浮的體積至多可達(dá)100 m3的巨大的鏟斗。挖掘機(jī)是礦井操作中的一個(gè)十分重要的部分,在南非礦山企業(yè)競(jìng)爭(zhēng)力中發(fā)揮重要的作用。人們通常認(rèn)為:在煤炭開(kāi)采行業(yè)挖掘機(jī)效率提高1%會(huì)使得每臺(tái)挖掘機(jī)的年產(chǎn)量提高1百萬(wàn)[ 1 ]。鏟斗還可用在液壓挖掘機(jī),裝載機(jī),鏟挖掘機(jī)。
鏟斗的填充是一個(gè)復(fù)雜的顆粒流問(wèn)題。用以測(cè)量填充的現(xiàn)場(chǎng)設(shè)備的儀表是困難和昂貴的。使用小規(guī)模(通常是1 /10規(guī)模)的實(shí)驗(yàn)鉆機(jī)來(lái)評(píng)估桶設(shè)計(jì)[1,2]是可行的,但它們是昂貴的而且在有關(guān)于縮放[ 3,4 ]的有效性上存在問(wèn)題。由于沒(méi)有通用的標(biāo)度律顆粒流以及流體動(dòng)力學(xué)[ 5 ],擴(kuò)大模型試驗(yàn)的結(jié)果是有問(wèn)題的。
根據(jù)克利里[ 5 ],在沒(méi)有非常大的巖石時(shí),鏟斗的填充可以視為相對(duì)地在橫向方向上幾乎不運(yùn)動(dòng)的二維點(diǎn)運(yùn)動(dòng)。在拖動(dòng)方向沿鏟斗的橫截面的流動(dòng)模式是填充的最重要的方面,它可以使用二維模型較為滿意的分析。根據(jù)拉鏟挖土機(jī)的鏟斗填充實(shí)驗(yàn)羅蘭[ 2 ]可以得到類似的觀點(diǎn)。
根據(jù)Hawkins等人[ 6 ],在實(shí)際情況下,當(dāng)涉及到運(yùn)動(dòng)的鏟斗或推土機(jī)刀片時(shí),平面應(yīng)變條件只適用于某些變形運(yùn)動(dòng)區(qū)。這樣的工具的平面應(yīng)變的解決方案僅僅可以假設(shè)到有限精度。Hawkins等人[ 6 ]同樣研究了平面應(yīng)變假說(shuō):在土壤箱那里的土壤和刀具運(yùn)動(dòng)受到兩個(gè)透明的墻之間的約束。用于測(cè)量這樣一個(gè)鏟斗時(shí),由于土壤和側(cè)壁之間的摩擦作用在刀具上的力必須估計(jì)到或忽略。他們發(fā)現(xiàn)在鏟斗上有大量的斗齒,但這些斗齒不作為單獨(dú)的三維物體,而是作為幾個(gè)模型的一個(gè)廣泛的的工具。在這樣的組件的牙齒前面的變形模式被認(rèn)為是平面應(yīng)變變形。然而,作者認(rèn)為,這只適用于特定的粘性土(砂土)而且或許不適用于其他(特別是巖石及脆性)的材質(zhì)。在這項(xiàng)研究中鏟斗有全寬的邊緣沒(méi)有斗齒而且基于Hawkins等人的發(fā)現(xiàn)。[ 6 ]。平面應(yīng)變假設(shè)了兩個(gè)維度并且采用三維DEM模型。
分析方法[7–11 ]用于模型的土壤–刀具間的運(yùn)動(dòng)是有限的無(wú)窮小運(yùn)動(dòng)和工具給定的幾何問(wèn)題。這些方法預(yù)計(jì)不能夠得到有效的后續(xù)分析階段的進(jìn)展的分析土壤挖掘問(wèn)題。[ 12 ]試驗(yàn)方法是基于太沙基的被動(dòng)土壓力的一個(gè)初步的土體破壞模式的理論和假設(shè)[ 13 ]。復(fù)雜刀具的幾何形狀(如鏟斗)和大變形不能使用這些方法[ 14 ]模擬。
離散單元法是一種很有前途的方法,可以通過(guò)對(duì)模型與土壤的相互作用解決一些困難(問(wèn)題)。分析方法[ 15 ]。在DEM,失效模式和材料變形是不需要提前的。該工具是使用多個(gè)平壁塑造(模擬)成的而刀具的幾何形狀的復(fù)雜性不會(huì)使DEM模型變得復(fù)雜。在大粒狀材料的變形和發(fā)展的粒狀材料的自由表面是由這種方法自動(dòng)控制的。
克利里[ 5 ]利用DEM建模拖桶灌裝。趨勢(shì)顯示和定性的比較,但給出的實(shí)驗(yàn)的結(jié)果沒(méi)有出現(xiàn)。液壓挖掘機(jī)鏟斗的填充的過(guò)程由Hawkins和澤波夫斯基[ 12 ] 以試驗(yàn)形式表現(xiàn)出來(lái)。他們研究的目的是優(yōu)化挖掘工藝及鏟斗軌跡。結(jié)果表明,最節(jié)能的鏟斗是一個(gè)推動(dòng)作用最小化的背墻。Owen et al。[ 21 ]模擬3D挖掘機(jī)的鏟斗填充。用這種方法,鏟斗由有限元方法和DEM的土壤建模。成群的橢球被用來(lái)近似的粒子棱角。斗按照預(yù)定的路線運(yùn)動(dòng)
Esterhuyse [ 1 ]和羅蘭茲 [ 2 ]研究了標(biāo)拖鏟斗實(shí)驗(yàn)的填充行為,其重點(diǎn)在于安裝配置,鏟斗外形及齒間距。他們發(fā)現(xiàn)鏟斗的縱橫比(寬度比深度)在用以填充鏟斗的拖動(dòng)距離起了重要的作用。他們發(fā)現(xiàn)用最短的填充距離產(chǎn)生拖曳力的最高的峰值。
本研究的主要目的是為了證明DEM預(yù)測(cè)鏟斗上的拖拽力和隨鏟斗填充而發(fā)展的材料的流動(dòng)模式的能力。DEM結(jié)果與每—土槽的形成實(shí)驗(yàn)相比較。
2。離散元方法
離散元方法(DEM)基于模擬作為單獨(dú)組分的顆粒物質(zhì)的運(yùn)動(dòng)。DEM一開(kāi)始由庫(kù)德?tīng)柡褪┨乩薣 16 ]應(yīng)用于巖石力學(xué)。在這項(xiàng)研究中,所有的模擬都是二維的而且通過(guò)商業(yè)DEM軟件PFC2D [ 17 ]運(yùn)行。
一個(gè)線性接觸模型用一個(gè)彈簧剛度kn在正常的方向和彈簧剛度ks剪切方向(如圖1所示)。摩擦滑動(dòng)是在切線允許的方向的摩擦系數(shù)。作用在在相反方向的阻力(摩擦力)與合力成正比及一個(gè)顆粒比例常數(shù)(阻尼系數(shù))C [ 17 ]。想要了解DEM的詳細(xì)描述,讀者可以參考克利里和Sawley(薩利) [ 18 ],庫(kù)德?tīng)柡褪┨乩?[ 16 ],霍格[ 19 ]以及張和懷恩的 [ 20 ]。
3。實(shí)驗(yàn)
兩個(gè)平行的玻璃板,間隔200毫米分開(kāi)固定形成土槽。這種鏟斗形固定小車
是由滾珠絲杠、步進(jìn)電機(jī)驅(qū)動(dòng)的。
圖1。DEM接觸模型。
圖2 a
圖2 實(shí)驗(yàn)裝置
這套完整的裝置可以設(shè)置在一個(gè)圖2 a所示的水平的角度。第一臂進(jìn)行旋轉(zhuǎn)和固定因此這兩個(gè)臂保持垂直。第二臂在垂直方向保持自由的移動(dòng)。首先,在(圖2a)位置A添加平衡重量以實(shí)現(xiàn)在鏟斗和第二個(gè)臂組件權(quán)重的平衡。這導(dǎo)致了一個(gè)“'weightless“(失重的或無(wú)重力的)鏟斗。然后在位置B加配重來(lái)設(shè)置 “有效”桶的重量。由于臂2總是垂直,即使鉆機(jī)角度不是零度,有效的斗重量總是作用垂直向下(圖2C)。重量為49.1 N,93.2 N,138.3 N和202.1 N的斗常被使用。
當(dāng)鏟斗按照預(yù)定方向拖動(dòng)時(shí),由于有效鏟斗的重量和作用在顆粒上的力,它也可以在垂直方向自由移動(dòng)。鏟斗的底部邊緣總是設(shè)置為平行于拖動(dòng)方向和材料的自由表面。這種類型的運(yùn)動(dòng)類似于一個(gè)拉鏟挖土機(jī)的鏟斗,由一組繩拖在拖動(dòng)方向,但在所有其他方向的運(yùn)動(dòng)是自由的[ 2 ]。
彈簧加載的聚四氟乙烯刮用于密封的小鏟斗和玻璃板之間的開(kāi)口。一個(gè)力傳感器被設(shè)計(jì)和建造來(lái)測(cè)量作用在斗上的阻力。一套應(yīng)變計(jì)粘貼到如圖2a所示的鋼束位置。四集的應(yīng)變計(jì)是用于測(cè)量在拖動(dòng)方向的力。其他成分的力不測(cè)量。力傳感器的標(biāo)定和校準(zhǔn)的定期檢查,避免在測(cè)量方法漂移。鉆機(jī)的角度不是零,在拖動(dòng)開(kāi)始前力傳感器為零。這種用于鏟斗填充重量組分的補(bǔ)償表現(xiàn)在拖動(dòng)方向上。鏟斗的垂直位移測(cè)量由一個(gè)線性可變差動(dòng)變壓器(LVDT)確定并且作為DEM模擬量的一個(gè)輸入量。在實(shí)驗(yàn)及DEM模擬狀態(tài)下鏟斗均給定一個(gè)10毫米每秒的速度。鏟斗形狀及尺寸在圖2b所示。
本研究采用玉米粒。雖然玉米粒不是實(shí)際的土壤,但是羅蘭[ 2 ]發(fā)現(xiàn)種子顆粒是適合實(shí)驗(yàn)測(cè)試而且像自然土壤流入鏟斗那樣緊密。
4。DEM參數(shù)和數(shù)值模型
圖3顯示測(cè)量的晶粒尺寸的范圍和等效DEM晶粒。正態(tài)分布在尺寸范圍被用來(lái)創(chuàng)建成群的粒子。通過(guò)加入兩個(gè)或兩個(gè)以上的顆粒(在3D的2D和球盤)可以形成團(tuán)塊,在一起形成一個(gè)剛性粒子,即粒子包括在叢保持固定距離彼此 [17]。一叢內(nèi)顆??梢灾丿B的任何程度的影響和接觸力之間是沒(méi)有這些粒子產(chǎn)生克萊斯。在模擬無(wú)論作用于他們的力是多大簇不能打破。模型中20000–30000的成群粒子被使用。
圖3(a)物理晶粒尺寸和(b)DEM晶粒模型尺寸(mm)。
校準(zhǔn)過(guò)程,在另一篇文章,是開(kāi)發(fā)的無(wú)粘性材料。顆粒大小,形狀及密度是從物理測(cè)量和確定的。實(shí)驗(yàn)室試驗(yàn)和壓縮試驗(yàn)分別用以確定材料的內(nèi)摩擦角及剛度。這些測(cè)試都重復(fù)利用不同的DEM模型顆粒摩擦系數(shù)的數(shù)值及剛度值。變形試驗(yàn)和壓縮試驗(yàn)的結(jié)果可以確定一個(gè)獨(dú)特的顆粒摩擦顆粒剛度值,表1。
表1
粒子性能參數(shù)摘要和DEM。
宏觀性能 測(cè)量 DEM
內(nèi)摩擦角 23 24
休止角 25±2 24±1
堆積密度 778千克每立方米 778千克每立方米
密閉的體積彈性模量 1.60 MPa 1.52 MPa
鋼性摩擦材料14 14
校準(zhǔn)的DEM的特性
顆粒剛度,KN = KS 450 kN / m
粒子密度,QP 855千克每立方米
顆粒摩擦系數(shù),L 0.12
其他性能
阻尼, C 0.2
模型寬度0.2米
在軟件PFC2D,所謂的墻,用來(lái)建立結(jié)構(gòu)。該試驗(yàn)臺(tái)及鏟斗,同尺寸與實(shí)驗(yàn),建立了墻。壁是剛性的并且按照規(guī)定的速度做平移和旋轉(zhuǎn)運(yùn)動(dòng)。作用在墻壁上的力和彎矩不影響墻壁的運(yùn)動(dòng)。在實(shí)驗(yàn)過(guò)程中持續(xù)不斷的10毫米每秒的速度被應(yīng)用當(dāng)測(cè)定垂直位移時(shí)。豎向位移由兩臺(tái)的角度和有效的鏟斗的重量的影響。一個(gè)典型的結(jié)果如圖4所示。除了最初的過(guò)渡,垂直速度幾乎是恒定的,對(duì)于一個(gè)給定的安裝程序,并且伴隨著鏟斗的重量增加。在DEM模型中,牽引速度為10毫米每秒而且測(cè)量的垂直位移被數(shù)據(jù)文件讀取并且應(yīng)用于鏟斗。
圖4 鉆機(jī)角度為10度時(shí)測(cè)量的斗的垂直位移和
四組有效鏟斗的重量值
建立在PFC2D的標(biāo)準(zhǔn)函數(shù)用來(lái)獲取作用于單獨(dú)的墻壁和鏟斗上的作為一個(gè)整體的力及彎矩。鉆機(jī)角度不為零,鉆機(jī)是保持水平但重力的組分進(jìn)行了相應(yīng)的設(shè)置。
5。結(jié)果與討論
當(dāng)涉及到流動(dòng)模式時(shí),很難進(jìn)行定量的比較。然而當(dāng)比較材料的自由表面時(shí),一些比較還是可以做的。圖5和6顯示材料是如何分別在鉆機(jī)角度為h = 0_ and h = 20_流入鏟斗的。當(dāng)比較材料的自由表面的形狀時(shí),仿真能預(yù)測(cè)在填充初期的一般形狀。但模擬未能準(zhǔn)確地預(yù)測(cè)材料的自由表面在最后階段的填充。
圖5鉆機(jī)角度為0度時(shí)的填充結(jié)果 圖6鉆機(jī)角度為20度時(shí)的填充結(jié)果
曲線進(jìn)行擬合實(shí)驗(yàn)的自由表面和覆蓋在圖的數(shù)值結(jié)果如圖5和6所示。兩個(gè)自由表面之間(堆高度)最大的差異是沿垂直的方向在拖動(dòng)方向上測(cè)量得到。兩個(gè)測(cè)量,一在DEM的預(yù)測(cè)較高的堆高度,和一個(gè)測(cè)量在DEM的預(yù)測(cè)較低的堆高度。數(shù)值和測(cè)定的位置的數(shù)據(jù)可以在圖中顯示。以虛粒子尺寸為10 mm為例, DEM準(zhǔn)確地預(yù)測(cè)堆高度在1.5–4.5顆粒粒徑。
圖新!為您提供類似表述,查看示例用法:
分享到
翻譯結(jié)果重試
抱歉,系統(tǒng)響應(yīng)超時(shí),請(qǐng)稍后再試
· 支持中英、中日在線互譯
· 支持網(wǎng)頁(yè)翻譯,在輸入框輸入網(wǎng)頁(yè)地址即可
· 提供一鍵清空、復(fù)制功能、支持雙語(yǔ)對(duì)照查看,使您體驗(yàn)更加流暢
7顯示了從試驗(yàn)及模擬得到的典型的阻力結(jié)果。在大多數(shù)情況下,在開(kāi)始的實(shí)驗(yàn)中觀察到大的阻力跳躍是無(wú)法解釋的,并且需要進(jìn)一步的調(diào)查研究。從這個(gè)結(jié)果來(lái)看,很明顯,DEM模型捕獲到阻力的一般趨勢(shì),但它的預(yù)測(cè)值與實(shí)測(cè)值相比較低。超過(guò)800毫米的完整的阻力時(shí),該模型預(yù)測(cè)力低于測(cè)量力15–50 N。終端(最后)阻力的誤差為20%。聚四氟乙烯刮和玻璃板電極之間的摩擦力在無(wú)谷粒的情況下測(cè)定。這種摩擦力是從測(cè)得的阻力提取的。谷物和側(cè)面板之間的摩擦力對(duì)測(cè)量的結(jié)果也有影響。這些摩擦力2D DEM模型是不可測(cè)量的或包含而這可能是該模型預(yù)測(cè)的阻力較低的原因[ 6 ]。
圖7 在鉆機(jī)角為10度和鏟斗重量為WB = 138.3N時(shí) 的典型的鏟斗拖動(dòng)力。
阻力的能量被定義為在力–位移曲線下阻力的面積。利用不同的鉆機(jī)角和有效的桶重量WB,阻力能e700至多到700毫米的位移在圖8中可以比較。
圖8不同的鉆機(jī)角度下斗阻力能E700關(guān)于斗的重量Wb的函數(shù)
第一次觀察,我發(fā)現(xiàn),對(duì)于一個(gè)給定的鉆機(jī)角度,增加有效鏟斗的重量,所需的拖力能量呈線性增加。一個(gè)相近的調(diào)查顯示,在鏟斗的重量增加時(shí),斗被迫進(jìn)入材料更深,這與用較少的量桶相比,導(dǎo)致了較高的阻力。
第二次觀察,可以是隨著鉆機(jī)角增大,有阻力的能量減少。有效的鏟斗的重量WB總是作用在垂直向下的方向(圖2C),因此使鏟斗進(jìn)入材料的正常的推力由WB與鉆機(jī)角度的余弦值的乘積給定。因此,隨著在鉆機(jī)角的增加,推動(dòng)鏟斗進(jìn)入材料的正常的力在減少。與使用一個(gè)較低的鉆機(jī)角相比,這導(dǎo)致了阻力在減少,從而阻力能量減少。DEM模擬能夠捕捉到一般的趨勢(shì),但它預(yù)測(cè)的阻力能量低于測(cè)量。預(yù)測(cè)阻力太低,這種情況的原因是,由于排除谷物與玻璃面板之間的摩擦力。它會(huì),然而,仍然可以使用的模擬結(jié)果對(duì)充填進(jìn)行定量?jī)?yōu)化。
利用仿真結(jié)果可以確定施加在鏟斗的每個(gè)部分(區(qū)域)的力有多少。圖9鏟斗分為六部分。該圖表表明,每一部分的力占總阻力的比例。從一開(kāi)始為200毫米的位移(25%的總位移)總力作用主要在邊緣和底部區(qū)域。隨著材料開(kāi)始流入鏟斗,其他部分發(fā)生作用,首先是內(nèi)曲線最后是前部。小于5%的力作用在頂部。這遠(yuǎn)小于底部(30%)。這樣情況的原因是,鏟斗內(nèi)的材料相對(duì)斗幾乎不顯示運(yùn)動(dòng)而且在頂部的壓力僅取決于鏟斗內(nèi)的材料的重量。而在底部,壓力是由斗內(nèi)材料的重量及斗本身的重量組合的重量確定。在整個(gè)填充過(guò)程20–30%的拖曳力作用在邊緣上。這表明,邊緣和斗齒的設(shè)計(jì)是很重要的。眾所周知影響充填因素中邊緣/齒的長(zhǎng)度和攻擊的角度是非常重要的[ 2 ]。
圖9 鉆機(jī)角度為10度時(shí)鏟斗阻力的分配
羅蘭[ 2 ]利用小米,豌豆和他在2D試驗(yàn)臺(tái)的玉米混合物。填充行為的觀察導(dǎo)致描述流量特性和模式的物質(zhì)進(jìn)入斗理論的發(fā)展。羅蘭[ 2 ]將這一概念命名為剪切帶理論。他觀察到一定的剪切平面(斷裂)在不同的物料運(yùn)動(dòng)的政權(quán)之間形成。這些剪切面改變方向和位置取決于初始安裝和在填充的不同階段過(guò)程本身。廣義的原理如圖10所示。不同的流動(dòng)區(qū)域,如羅蘭茲[ 2 ]命名,在圖上是不可或缺的。該材料對(duì)斗的相對(duì)運(yùn)動(dòng)是由箭頭表示。
圖10根據(jù)羅蘭茲[ 2 ]得出的剪切帶理論。
原始材料仍是原狀直到最后的第三層的阻力在'推土”發(fā)生時(shí)。最初的層流流入鏟斗中在第一第三的阻力之間(圖10a)。加入一定的距離后,該層未在鏟斗邊緣,隨后成為固定的與斗相關(guān)的其余的阻力(圖10B和C)。因?yàn)樵黾拥囊υ诙盖偷淖枇嵌?,材料更加迅速地朝后流?dòng)。這種效應(yīng)可以通過(guò)對(duì)比圖5和6看出。
成為固定的之后,一個(gè)新的區(qū)域,主動(dòng)流區(qū),發(fā)展起來(lái)了(圖10)。在這個(gè)區(qū)域,該材料的位移主要是在垂直方向。積極挖掘區(qū)(主動(dòng)流區(qū))位于齒和斗邊緣之上。當(dāng)材料開(kāi)始進(jìn)入鏟斗和及層流層失敗尺寸增加后這個(gè)區(qū)域發(fā)展起來(lái)。在這個(gè)區(qū),原始材料的失敗要么流入鏟斗為層流層的部分在第一部分的填充或移動(dòng)到活動(dòng)流程區(qū)在后一部分填充。
在主動(dòng)流動(dòng)區(qū)從“實(shí)況”材料造成的恒載增加,并在最初的層流層之上。在最初的層流層的一些材料失敗并開(kāi)始形成的恒載的部分(圖10C)。在實(shí)驗(yàn)中,當(dāng)材料流動(dòng)時(shí),可以觀察到明確的斷裂或剪切線。隨著拖動(dòng)角增大,積極挖掘區(qū)和活躍流區(qū)往往加入到一個(gè)連續(xù)的帶。
應(yīng)當(dāng)指出的是,圖10僅僅顯示填充過(guò)程的三個(gè)階段,但在現(xiàn)實(shí)中從一個(gè)階段到下一個(gè)階段有一個(gè)漸進(jìn)的轉(zhuǎn)變。還應(yīng)注意的是這是一個(gè)廣義的理論,嘗試使用不同的材料和斗幾何形狀時(shí)結(jié)果會(huì)有變化。在實(shí)驗(yàn)過(guò)程中可以觀察到兩個(gè)明顯的切變線。一個(gè)擴(kuò)展的尖端邊緣上的自由表面。這被命名名為切削線。第二條線是在最初的層流與恒載層之間,稱為恒載剪切線。
利用DEM和進(jìn)一步的流動(dòng)區(qū)域的調(diào)查,設(shè)計(jì)出下面的程序步驟。材料流經(jīng)斗并且每運(yùn)動(dòng)100mm之后'暫?!薄?在斗給定了一個(gè)進(jìn)一步的10–15毫米位移(1–3粒長(zhǎng)度)之后,然后每個(gè)粒子的位移矢量設(shè)置為零。顆粒位移比PDR的比率被定義為粒子的絕對(duì)位移向量的大小與斗的絕對(duì)位移矢量的大小之比。然后根據(jù)顆粒各自的PDR值上色。一個(gè)PDR等式意味著評(píng)價(jià)顆粒與鏟斗運(yùn)動(dòng)。結(jié)果顯示在圖11。這實(shí)際上是在一個(gè)短周期的平均的速度比。
圖11 用鏟斗質(zhì)點(diǎn)位移比得到的流動(dòng)區(qū)
由剪切帶理論預(yù)測(cè)的流動(dòng)制度顯示在圖上。三圖片對(duì)應(yīng)圖10給出的三幅圖。在100毫米位移之后,積極挖掘區(qū)清晰可見(jiàn)PDR在0.40到0.65之間。最初的層流層以PDR0.10到0.2移動(dòng)到鏟斗5。這相當(dāng)于在圖10a所示的流動(dòng)區(qū)。
500毫米后,積極流區(qū)的“V”形特征可以看到PDR在0.10到0.2。雖然PDR是相對(duì)較低的值,位移主要在垂直方向。積極挖掘區(qū)仍然存在于在鏟斗的后面,最初的層流層開(kāi)始變得相對(duì)固定對(duì)于鏟斗而言。這是由PDR值增加可見(jiàn)鏟斗的后面。這與圖10B顯示的流區(qū)相當(dāng)吻合。
在800毫米之后,恒載荷切變線的存在清晰可見(jiàn)。與圖10c比較,活動(dòng)流程區(qū)和主動(dòng)挖掘帶不能從靜載荷區(qū)分。這樣做的原因是,在一個(gè)鏟斗位移為800毫米時(shí),推土作用大,超過(guò)其他流動(dòng)區(qū)域的陰影區(qū)域。
就力和能量要求和周期時(shí)間而言挖掘機(jī)鏟斗的優(yōu)化是非常重要的。在一些應(yīng)用中,這將有利于利用最少的能量填充鏟斗。在其他的應(yīng)用,這將有利于填充鏟斗時(shí)盡可能地快以盡可能減少周期時(shí)間[ 1 ]。探討填充率時(shí),應(yīng)從實(shí)驗(yàn)被取用的不同的填充的階段圖像,數(shù)字化的輪廓,及斗內(nèi)材料體積計(jì)算并表示為最大鏟斗容積百分比。最大斗容0.0146 立方米定義在圖2b。利用DEM的結(jié)果,按照同樣的步驟然后比較結(jié)果。
圖12顯示了使用三個(gè)不同鉆機(jī)角度的實(shí)驗(yàn)結(jié)果。以在鏟斗斗位移長(zhǎng)度為橫坐標(biāo),鏟斗填充百分比為縱坐標(biāo)作圖。在挖掘機(jī)行業(yè),目標(biāo)是讓鏟斗完全填充2–3鏟斗的長(zhǎng)度。隨著鉆機(jī)角度由0度增加10度,在填充的最后階段填充百分比有輕微的增加。事實(shí)上,這是由于當(dāng)材料受到干擾時(shí),它流動(dòng)到鏟斗更加容易。當(dāng)鉆機(jī)的角度進(jìn)一步增加到20度時(shí),然而,填充百分比在下降。進(jìn)一步的研究調(diào)查表明,鉆機(jī)角的增加,鏟斗到材料的位移減少。實(shí)驗(yàn)已經(jīng)表明,垂直于材料的力表面是由有效鏟斗重量與鉆機(jī)角余弦值乘積給定。因此,隨著鉆機(jī)的角增加,迫使斗挖掘的分力減小。當(dāng)這個(gè)分力減小時(shí),斗穿透材料的深度減少并且鏟斗掘起較少的材料。當(dāng)斗掘起的材料減少時(shí),填充百分比在減少。
圖12不同鉆機(jī)角度下鏟斗填充率關(guān)于斗位移的函數(shù)
實(shí)驗(yàn)和DEM填充百分比比較是在圖13概述。使用三個(gè)不同的鉆機(jī)角度0度,10度,30度和兩個(gè)有效的斗權(quán)重WB = 49.1 N和138.3 N,填充率在位移為100,200,300,400, 500,600和700毫米計(jì)算。42個(gè)數(shù)據(jù)點(diǎn)的繪制而兩線表明,在所有情況下,除了兩個(gè),DEM的結(jié)果均在±6%的實(shí)驗(yàn)結(jié)果以內(nèi)。
圖13。實(shí)驗(yàn)和DEM的填充百分比的比較。
在實(shí)踐中,斗脫產(chǎn)時(shí)鏟斗轉(zhuǎn)動(dòng)以阻止大多數(shù)材料脫落。這一原則在圖14描述出來(lái),在它的位移結(jié)束時(shí),鏟斗被抬出材料并且保持在鉆機(jī)角度。鏟斗定位的效果顯,影響著鏟斗持有的材料的數(shù)量。再次,實(shí)驗(yàn)的自由表面輪廓在DEM的結(jié)果表示出來(lái)并且與角度為0時(shí)吻合良好。至于角度為20度時(shí),DEM模型預(yù)測(cè)在鏟斗的后面有額外的材料,這可以由圖6的位移為800毫米時(shí)在最后填充狀態(tài)的差異來(lái)解釋。
6。結(jié)論
本文的主要目的是為了證明離散元方法如何可以準(zhǔn)確地預(yù)測(cè)挖掘機(jī)鏟斗填充過(guò)程。原料進(jìn)入料桶的流動(dòng)模式,由于材料的相互作用而產(chǎn)生的作用在斗上的阻力,能量要求和桶填充率都需要與實(shí)驗(yàn)觀察及測(cè)量進(jìn)行比較。這項(xiàng)研究?jī)H限于粒狀材料和二維模型。
本文的結(jié)論是:
1。比較材料的自由表面,DEM可以精確地模擬填充的初始階段材料流到桶中的情形。然而,在填充的較為靠后的階段,DEM,無(wú)法準(zhǔn)確地預(yù)測(cè)材料的自由表面。
2。DEM可以準(zhǔn)確地預(yù)測(cè)在桶中拖曳力的總趨勢(shì)。在800 mm的完整的阻力DEM預(yù)測(cè)阻力低于測(cè)量值15–50 N。測(cè)得的最大阻力250 N,然而DEM預(yù)測(cè)最大牽引力200 N。
3。DEM無(wú)法準(zhǔn)確預(yù)測(cè)阻力的能量。然而它的總的趨勢(shì)是正確的,它表明,拖動(dòng)能量隨著桶的重量的增加呈線性增加。
4?;贒EM的結(jié)果,在20%和30%之間的總斗力作用在邊緣。當(dāng)前的實(shí)驗(yàn)裝置無(wú)法驗(yàn)證這些。
5。DEM結(jié)果與剪切能帶理論表現(xiàn)出許多相似之處?;诙ㄐ员容^,DEM可以預(yù)測(cè)的初始層的位置,積極挖掘區(qū),主動(dòng)流動(dòng)區(qū)和靜載荷。
6。DEM模型,通過(guò)采用不同的角度和斗重,能夠準(zhǔn)確地預(yù)測(cè)材料的體積±6%桶(鏟斗)內(nèi)。